
CS333 Operating Systems Lab
CSE, IIT Bombay

CS333: Operating Systems Lab
Autumn 2022

Lab Quiz 2 (20 marks)

- No internet. No phone. No friends (strictly for the duration of the exam only!)
- Test cases are in the testcases folder.

Note that different test cases may be used for grading.
- This lab quiz has a total of 3 questions. You can attempt them in any order of your choice.

Q1. Implement the waitpid system call (6 marks)
Implement the following version of the waitpid system call.
A parent process waits on its child process which is specified by a pid;
the caller also specifies if the call is blocking or non-blocking. If the call is non-blocking, then the
system call should return even if the child process is not exited.
The function signature for the system call is as follows:

int waitpid(int pid, int blocking)

The parameter pid specifies pid of the child process and blocking takes a value of 1 if the
call is blocking, and 0 if it is non-blocking.

The function should …

● return the pid of the child process if only if it is in the ZOMBIE state.
● return 0 if the call is non-blocking and the child process is not in the ZOMBIE state

parent can recheck status at a later point or default orphan processing take effect
● with a blocking call, block till the child process transitions to a ZOMBIE state and return

pid of the child process
● return -1 in all other cases

Implementation Notes:

- An implementation of the wait system call exists in xv6, and can be the starting point
for the waitpid implementation — a copy of the code for wait as a good starter for
implementation of waitpid.

- ptable the list of PCBs maintained and used by xv6 for process metadata use a lock
called the ptable.lock to protect against concurrent updates.
For the sake of this problem, observe that lock is acquired just before iterating over the
ptable, and released before returning from the function. If you add other points of
return in your function, make sure you release the lock before return.

CS333 Operating Systems Lab
CSE, IIT Bombay

Testing: Following are three test cases/programs for this question —

1. A test program testcase-waitpid-1.c tests your implementation for blocking calls
of waitpid. The expected output should look like the one shown below:

2. A test program testcase-waitpid-2.c tests your implementation for non-blocking
calls of waitpid. The expected output should look like the one shown below:

3. A test program testcase-waitpid-3.c tests both blocking non-blocking calls of
waitpid. The expected output should look like the one shown below:

Note that statements in your output need not appear in the same order as they appear above.

The functionalities being tested in each of the test cases carry partial credit.

Grading Note: Marks will be deducted from a positive score for this problem if a value of -1 is
not returned by the system call for the appropriate situations.

CS333 Operating Systems Lab
CSE, IIT Bombay

Q2. List all the descendants of a process (8 marks)
Implement a system call to fetch the list of the pids of all the descendants of a process with a
given pid. The pids are supposed to be populated in an array passed as an argument to the
call. The function signature for the system call is as follows:

int getDescendants(int pid, int maxDescendants, int *descendants)

The system call implementation should…
● populate the descendants array with the pids of the descendants of the process with

id pid, and
● return the total number of descendants.

The parameter maxDescendants is the maximum size of the descendants array.

Assumptions:
1. Here, the definition of the descendants of a given process includes the process itself.
2. You are allowed to fill the descendants array in any arbitrary order, except that the

pids of all the descendants must be present in the positions with indices in the range
[0, total-1], where total is the total number of descendants of the process under
consideration.
Note that total is also the return value of the system call.

3. Return -1 if a process with the given pid does not exist.

E.g., consider the diagram below showing the parent-child relationship of processes— process
A forks two children, B and C. B in turn forks two children of its own, D and E.

- The ‘leaf processes’ C, D and E have 1
descendant each (the descendant of a leaf
process is the process itself)

- Process B has 3 descendants — B, D, and
E
- Process A has 5 descendants — A, B, C,
D, and E

CS333 Operating Systems Lab
CSE, IIT Bombay

Testing: Following are the three test cases/programs for this question —

1. A test program testcase-getdescendants-1.c tests the count of descendants
returned for a tree of depth 1 (1 parent and and its children).

2. A test program testcase-getdescendants-2.c tests both the count and the list of
descendants returned for a tree of depth 1 (parent and its children).

3. A test program testcase-getdescendants-3.c tests both the count and the list of
descendants returned by your implementation for a tree of depth greater than 1.

Note:

- The statements in your output need not appear in the same order as they appear above.
- The pids being printed in the above examples need not match with the pids in the

output of your implementation.
- The pids listed by your implementation are not verified for their correctness. You can

verify them manually.

The functionalities being tested in each of the test cases carry partial credit.

Grading Note: Marks will be deducted from a positive score for this problem if a value of -1 is
not returned by the system call for the appropriate situations.

CS333 Operating Systems Lab
CSE, IIT Bombay

Q3. Implement a heapSize system call. (6 marks)
Implement a system call to return the total amount of heap memory allocated for a process.
The specification of the call is as follows: int heapSize()
The system call returns the size of the heap at the point of the call for the calling process. You
can assume that the total heap size will never be negative at any point of the test case
programs and only sbrk system calls will be made by the user program (no malloc or free
system calls).
Hint: The heap allocation call srbk(int n) is the entry point (of the system call) for heap
allocations for a process.

Testing: Test cases have been provided inside the folder testcases/q3.
The expected output for each test case is given below.

1. q3testcase1.c
a program to check the system call with no
sbrk() calls from the user process.

2. q3testcase2.c
a program to check the system call with one
sbrk() call from the user process to grow the
heap.

3. q3testcase3.c
a program to check the system call with
multiple sbrk() calls from the user process to
grow the heap.

4. q3testcase4.c
a program to check the system call with
multiple sbrk() calls from the user process to
grow and shrink the heap.

The functionalities being tested in each of the test cases carry partial credit.

CS333 Operating Systems Lab
CSE, IIT Bombay

Submission Instructions
● All submissions via moodle. Name your submissions as:

<rollnumber>_labquiz2.tar.gz
● Auxiliary files are available in the auxiliary_files folder.
● The tar should contain the following files in the specified directory structure:

<rollnumber>_labquiz2/
|____proc.h
|____proc.c
|____defs.h
|____syscall.h
|____syscall.c
|____sysproc.c
|____user.h
|____usys.S
|____ <any other source files that your change/add to xv6>
|____Makefile

please adhere to this format strictly

● Shell command to tar your submission directory …
tar -zcvf <rollnumber>_labquiz2.tar.gz <rollnumber>_labquiz2

● Due date: 12th September 2022, 5.15 pm

