CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 333: Operating Systems Lab
Autumn 2022
Lab Quiz 3 (30 marks)

No internet. No phone. No friends (strictly for the duration of the exam only!)

This lab quiz has a total of 3 questions. You can attempt them in any order of your choice.
Aucxiliary files are in the auxiliary files/ folder.

Test programs are in the testing/ folder.

Q1. FCFS Process Scheduling (10 marks)

You have to implement a First Come First Serve (FCFS) process scheduling policy in xv6. The
idea is simple: the process which arrives at the scheduler first will be scheduled to run till
completion.

Modify the scheduler function to implement an FCFS scheduling system in place of the
existing Round Robin scheduler. For this, you should need to maintain some scheduling
related metadata for processes in their PCB, such as :

- The first time a process became RUNNABLE (the arrival time of a process)
- The first time a process is scheduled.
- The time at which a process exits.

Note that the second and third fields are not necessary for the scheduler to work properly, but
we would like to have them for the sake of testing your implementation.

Using the above three fields, implement a system call wait2, which reaps a process exactly
like wait does, and also gives out the arrival time, first scheduled time, and the exit time of
the reaped process. The function signature of the system call is as follows:

int wait2(int *arrival time, int *first scheduled time, int *exit time)

Since it is a simple enough system call to implement, and is very critical to test your code, you
will receive O credit for this question if you don't implement wait2 correctly.

Now, coming back to our scheduler, here are some expectations and hints to help you:

- For this and only for this question, in your Makefile, replace the line CPUS := 2 with
CPUS:=1.

- A process is scheduled based on its Arrival time, and once scheduled, the process should
run till completion, except for a scenario where it has to block/sleep. This also means
that a process is not supposed to yield on a timer interrupt.

- Even if a process sleeps and wakes up, it will be scheduled based on its original Arrival
time; you should not modify the Arrival time of a process if its state changes from
SLEEPING to RUNNABLE. Although, in the test programs, we have made sure that the
child processes initiated by the main process do not block, so that it is easier for you to

CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

test your implementation.

- In both wait and wait2, while cleaning up a process’ PCB, you must reset the fields
related to the scheduling metadata of the process to a default value of O.

Testing: You have been provided with a test program gltc.c. In the test program, a parent
forks NCHILD number of children, each of which performs some significant amount of
computation and exits. The value of NCHILD is passed as a command line argument, and it
takes a default value of 2. Just to test if your implementation of wait2 works, you can set the
number of children to 1.

Here is a sample output with five children:

S gltc 5

Parent process started

Forking child processes

pid: 4, arrival time: 523, first scheduled time:

pid: 5, arrival time: 523, first scheduled time:
pid: 6, arrival time: 523, first scheduled time:
pid: 7, arrival time: 523, first scheduled time:
pid: 8, arrival time: 524, first scheduled time:
Parent process has reaped all the child processes

If your implementation is correct, then you should expect the first scheduled time of process
to increase with an increase in the arrival time. Also, since all the children in the test program
are non-blocking, the first scheduled time of one child should never be less than the exit time
of another child.

CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Q2. The Reusable Barrier (10 marks)

A barrier is a type of synchronization method that forces multiple worker threads to wait
until all threads have reached a particular execution point (barrier) before any thread
continues.

Meeting Point - Barrier

Thread 1 Rendezvous Wait 1 Post Barrier
Thread 2 Rendezvous . Post Barrier
Thread 3 Rendezvous Wait Post Barrier
Thread 4 Rendezvous Wait Post Barrier
You are required to implement a reusable barrier using pthreads and semaphores on Linux,

where the workers perform a series of steps in a loop, and use the same barrier code to
synchronize for each iteration of the loop. All threads should wait for each other at the start
of each iteration, and carry out steps for an iteration only after all threads have completed the
previous iteration.

The auxiliary files folder has reusable barrier.c . Use it as a starting point for your
code. It maintains a global C initialized to O. The main parent thread reads two integers N, K
from STDIN.

The worker () function runs a loop K times, increments C at the start of every iteration and
prints C and thread number at the end of the iteration.

You will have to add functionality, e.g., creating worker threads, synchronization for shared
variables etc.

In your code:

e Create N worker threads and number them from O to N-1. Pass this thread number as
an argument to the thread routine - worker ().
e Add proper synchronization such that numbers are printed as follows:
o Only N, 2*N, 3*N, .. K*N numbers are allowed since each worker executes K loops
o Number is never less than number printed on line above
o Each number should be displayed exactly n times, once for each thread number

These functions will be useful to implement the solution.
sem_t barrier sem;
int sem init(sem_t *sem, int pshared, unsigned int value);

CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

int sem post(sem_t *sem);
int sem wait(sem_t *sem);
int pthread create(pthread t *thread, const pthread attr t *attr,
void * (*start routine) (void *), void *argqg);
int pthread join(pthread t thread, void **retval);

You can use man pages for more details on the above functions. e.g., man sem post

Note:
1. All threads should be joined by the main thread.
2. You must only use semaphores to achieve the synchronization between the worker
threads.
3. The thread number ordering may differ from that provided in sample outputs, i.e., for
example in example 1 you may get thread _num 1 printed before thread _num 2.

Sample Outputs:

1. With N=3, K=1. This is similar to the standard barrier synchronization case.

purvi2eel@purvi:~$ gcc -o reusable barrier reusable barrier.c -lpthread
purvizeel@purvi:~% ./reusable barrier
N: 3

K: 1

thread num: 2,
thread num: 1,
thread num: @,
purvizeel@purvi:

2. N=2,K=3

purvi2eel@purvi:~$./reusable barrier
N: 2

K: 3

thread _num:

thread_num:

thread num:
thread num:
thread num: 1,
thread num: @, C
purvi2eel@purvi:

3. N=4,K=3

CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

purvizeel@purvi:~% ./reusable barrier
N: 4

(: 3

thread num:
thread num:
thread num:
thread num:
thread num:

Ll

L]

L]

L]

thread num:
thread num:
thread num:
thread num:
thread num:
thread num:
thread num: 2, C = 12
purvi2ee1@purvi:~$ []

L]

N e
[

Ll

PWUWOROWND BN W
= 00 000 R R

5]

CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Q3. return of the clone (10 marks)

Implement a clone () system call, like you did in Lab 8. This system call creates a new kernel
thread for a process. Recall that while kernel threads are independently schedulable entities
like processes, all the threads of a process share the same virtual address space and file
descriptors.

In order to allow for multi-threading in xv6, we need to come up with a design for Thread
Control Blocks (TCBs). For this quiz, like in Lab8, we will use the struct proc itself as the
PCB-cum-TCB for all the threads. We have provided you with a proc.h file to patch, which
has a modified struct proc adhering to our design of the TCB. You must not modify it any
further. We have already added some thread-relevant fields to the PCB, such as:

e A thread-group-ID, which can be the main thread’s process-ID. This will help us tie
together threads that belong to a process.

e A count of the number of threads of a process

e A pointer to the user stack of the thread (each thread has its own user and kernel
stacks)

We will be using the pid field of the struct proc as the thread-ID for this lab.
The signature of the clone system call is as follows:
int clone(void(*£fn) (int*, int*), int *argl, int *arg2, void *stack)

This system call will effectively create a kernel thread and the thread will start execution at
the function fn with argl and arg2 as the function’s arguments using the given stack
argument as its stack. Note that we are designing the system call to work only with functions
that take two arguments. Also, the order in which the two arguments are pushed onto the
stack is critical, and will be tested in the testcases. This is where this question differs from the
one in Lab 8.

The arguments of the system call are:

- fn -> atarget function, which indicates the start point of execution of the thread
- argl -> pointer to the first argument of function fn

- arg2 -> pointer to the second argument of function fn

- stack -> base address of the stack allocated for thread

On success, the clone call returns the thread-id of the new thread and if unsuccessful, it
returns -1.

Notes:

1. The stack pointer is passed from a thread wrapper function (which allocates memory
on the virtual space of the calling process). This stack pointer (virtual address of main
process, pointing to a single page) will be used as the user stack of the cloned process.

CS 333: Autumn 2022 Department of Computer Science and Engineering

Indian Institute of Technology Bombay

We have implemented a wrapper function create_thread in the file ulib.c.

2. Following are the expectations for the system call—

All the threads of a process must have an identical virtual address space and
share the same physical pages (and hence share a single page table).

All the threads of a process must share the same set of file descriptors. For this
lab, you can implement it like the way fork does it (by copying over the FDs to
the new proc table entry) as opposed to sharing it. This would mean that a fopen
or fclose call needs its effects to be replicated across threads but for this lab, you
may assume that these calls will not happen.

Every thread has its own user stack for user functions.

To initialize a thread, the instruction pointer and the stack pointer of the new
thread need to be initialized. The base pointer also needs to be intiliazed.

A new thread once created and initialized, when scheduled, should start
executing the user specified function.

Each thread function MUST end execution with an explicit call to exit(). We
have ensured this in the testcases that we have provided you with.

We have updated the allocproc, exit, wait and kill implementations based on
the requirements. Make sure that your implementation of clone is consistent
with the changes that we have made. DO NOT CHANGE ANY EXISTING CODE.
Only add code which is relevant to the implementation of the clone system call.

We have implemented a join system call to reap threads, which has been used in the test
cases. All that is left for you to do is to implement the clone system call.

Testing: You have been provided with two test programs:

1. g3-tc-var.c, in which multiple threads update a common global variable, irrespective
of their arguments. A sample output is given below:

S g3-tc-var
Calling Process Print VAR value: ©

Sum
Sum

Sum
Sum

of args: 0, VAR:
of args: 1, VAR:
of args: 2, VAR:
of args: 3, VAR:
of args: 4, VAR:
threads joined, VAR value: 5

2. g3-tc-var.c, in which multiple threads compute the sums of different parts of two
arrays. Each thread identifies the relevant parts of the arrays which it has to sum up,
using the two arguments that it has been provided with. A sample output is given
below:

CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

$ g3-tc-array

Creating threads to sum up two arrays
Argument 1: 0, Argument 2: 2 Sum Value: 29
Argument 1: 0, Argument 2: 3 Sum Value: 29

Argument 1: 1, Argument 2: 2 Sum Value: 55

Argument 1: 1, Argument 2: 3 Sum Value: 46

All threads joined

Sum of thread calls is equal to that of both array sums, value: 159

Note that in the above testcases, the domains of the two arguments are disjoint. This
means that you have to set-up your stack properly for your code to pass this testcase.

Submission Instructions

e All submissions are to be done on moodle only.
e Name your submission as cs333_<roll_number>.tar.gz

e The tar should contain the following files in the following directory structure:
<rollnumber> _labquiz3/

|--q1/
|- _< all modified files in xv6 such as
syscall.c, syscall.h, sysproc.c, user.h, usys.S, proc.c, trap.c, defs.h,proch, ... >

|--q2/

| - _reusable_barrier.c
|--q3/
|- _< all modified files in xv6 such as
syscall.c, syscall.h, sysproc.c, user.h, usys.S, proc.c, trap.c, defs.h,proch, ... >
Please adhere to it strictly.
e Your modified code/added code should be well commented on and readable.
e tar -czvf cs333 <rollnumber>.tar.gz <rollnumber> labquiz3

Deadline: Monday, 17* October 2022, 5:00 PM. Leave your submission tar
file in a directory to be specified during the quiz. A script will pick this up
(only if it is named in the exact format specified).

