
Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 333: Operating Systems Lab
Autumn 2023

Lab 2: A matter of processes

The scope of this lab is to understand system calls that relate to the process abstraction and the
functionality provided by the operating system to create and manage new processes, execute programs,
monitor execution state of a process, and to allow processes to communicate with each other.

Required reading/reference: https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-api.pdf

Q1: identify yourself

Write a program p1.c that forks a child process and prints the process identifiers of itself and its parent or
the child process.

Sample output :

Parent : My process ID is:12345
Parent : The child process ID is:15644
Child : My process ID is:15644
Child : The parent process ID is:12345

Note: Order of the print statement outputs is not deterministic and may show up in a different order.
Figuring out why this is the case is a homework question.

System calls of interest: fork, getpid, getppid

Q2: the waiting game

Q2a: (auxiliary file : p2a.c)
You are provided a program p2a.c that reads an integer n as input from the terminal/console. Add code
that forks a child process that prints if its a parent or child followed by its PID and numbers from 1 𝑡𝑜 𝑛
and the parent prints its PID and numbers from .(𝑛 + 1) 𝑡𝑜 2𝑛

Input : 3

Sample output :
C 3451 1
C 3451 2
P 3448 4
C 3451 3
P 3448 5
P 3448 6

Note: In the sample output, numbers 1, 2, and 3 are printed by the child process with pid 3451. The
ordering of the sequence from does not matter. Also, note that the value of variable n is required1 𝑡𝑜 2𝑛
and used by both the parent and child processes.

https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-api.pdf

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Q2b:
Write a program p2b.c that reads an integer n as input from from the terminal/console and forks
a child process that prints its PID and numbers from and the parent prints its PID and numbers1 𝑡𝑜 𝑛
from ,(𝑛 + 1) 𝑡𝑜 2𝑛
with an additional requirement that the numbers should be printed in an increasing order.1 𝑡𝑜 2𝑛

Input : 3
Desired Sample output :
C 3451 1
C 3451 2
C 3451 3
P 3448 4
P 3448 5
P 3448 6

Note: In the sample output, the numbers 1, 2, and 3 are printed by the child process with pid 3451.

System calls of interest: fork, getpid, wait, waitpid

Q3: no longer paper weights
(auxiliary files : p3a.c, helloworld.c and byeworld.c)

Q3a:
Edit the program given in p3a.c that takes as input the name of an executable program (You can create
an executable from helloworld.c and byteworld.c) located in the same folder. Next, p3a.c should call a
variant of exec with the specified program to execute the new program.
If everything goes well, any statement after the exec call in your program p3a.c should not execute.

Q3b:
Write a program p3b.c that prints a prompt (">>> ") and takes as input the name of an executable
program located in the same folder. Next, p3b.c should first call fork and from within the child process
call a variant of exec with the specified program to execute the new program.
The parent process should fallback to the prompt and wait for input specifying the name of another
executable to execute (and repeat).

For example,
Consider two executable programs helloworld and byeworld located in the same folder.

Prompt ">>> " should be printed before the user input is read
and then the name of the executable provided should be executed.

Sample output:
>>> helloworld
this is hello world program
>>> byeworld
this is bye world program
>>> ^C

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

You should be able to close this program using Ctrl + C.
Note: The name of the program at input prompt should not exceed 50 characters.

Hint: Use variations of the exec system call to replace the current process with a new/different process.
(man 3 exec)

Q4: just pipe it!
(auxiliary file : p4a.c)

Each process in linux is assigned a per-process file descriptor table
which keeps track of all the open files in that process. Further, each entry
in the file descriptor table points to a global file table as shown in the
figure below which contains actual metadata about the file (an example
would be where the file is actually located on disk). As shown in the
figure, entries at index 0, 1 and 2 in each process’s file descriptor table
point to the STDIN (input from your terminal/console), STDOUT (output to
your terminal/console) and STDERR (output to your terminal/console) files
respectively. File descriptor entry at 0 is read only, and entries at index 1
and 2 are write only in nature.

A pipe is a mechanism for inter-process communication using
file descriptors. As shown in the pseudo code below a program
initializes a pipe by passing an array of 2 uninitialized file
descriptors to the pipe system call. The pipe system call
initializes fd[0] to point to the read end of the pipe, and fd[1] to
point to the write end of the pipe as shown in the figure below.
After the pipe system call, anything written to fd[1] can be
read using fd[0] file descriptor.

Pipes are used to perform Inter Process Communication
(IPC), and that is what you will do now.

int fd[2];
char buffer[11];
pipe(fd);
write(fd[1], “hello pipe!”, 11);
read(fd[0], buffer, 11); // buffer will now contain “hello pipe!”

Write a program p4.c which creates a process A. Process A should take user input (a number) and then
use the fork() system call to spawn process B. Process B should take another user input and add its
value to the value previously taken in Process A. This sum must be printed in process A (the parent
process).

Processes A and B should communicate with each other using the pipe system call only.

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Sample Output:

Note:
If a process tries to read before something is written to the pipe, the process is suspended until something
is written and is available in the pipe.

Q5: zombie and done!

A running process becomes an orphan when its parent has finished the execution or terminated. In a
Unix-like operating system, any orphaned process is adopted by a special process (one of the first
user-level processes).
A process that has completed its execution or terminated but still has some state (pid, memory allocation,
stack, etc.) in the memory and has not been cleaned-up (reaped) is called a zombie process. A zombie
process is reaped when the parent process makes a wait system call or when the parent process exits.

Q5a:

Write a program p5a.c to demonstrate the state of process as an orphan.
The program should fork a child process, the parent and child processes print their PIDs and the
child/parent PIDs. The child process sleeps for a few seconds (5 seconds) and re-prints information about
its parent PID. By the time the child process wakes up from sleep, the parent process should have exited
and the child process would have a different parent process.

Sample Output:

Hint:
Use the C-library function sleep()for the sleep functionality. (man 3 sleep)

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Q5b:

Write a program p5b.c to demonstrate the presence of zombie processes.
The program forks a process, and the processes print PID information similar to Q5a.
Subsequently, the parent process sleeps for 1 minute and then waits for the child process to exit.
The child process waits for keyboard input from the user after displaying the messages and then exits.

Display the process state of the child process while it was waiting for input and after the input using the
ps command, in a separate terminal window.

ps -o pid,stat −−pid <child’s PID>

Refer to man ps for the details of different process states. Reason about the output.

Note: The state check of the child process before and after the user input should happen before the
parent process wakes up from sleep.

Sample Output:

Q6 and Q7 need your attention, but do not require a submission.

Q6: more fun with fork

Q6a:
Write a program p6a.c that takes a number n as a command line argument and creates n child
processes recursively, i.e., parent process creates the first child, the first child creates the second child,
and so on. The child processes should exit in the reverse order of the creation, i.e., The innermost child
exits first, then second innermost, and so on. Each process prints a short message (along with its PID) in
the order of creation and subsequently, in the order of exit also it prints the parent id while exiting as
shown in the sample. Refer to sample output files to understand the desired output format.
Sample output file : p6a-output.txt

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Q6b:
Write a program p6b.c that takes a number n as command line argument and creates n child
processes sequentially, i.e. The parent process (p6b) creates all child processes in a loop without any
delays. Let each child process sleep for a small duration of time (say 1 sec) and then exit.
The parent process should exit only after all the child processes have exited.
Each process prints a short message (along with its PID) . Refer to sample output files to understand the
desired output format. Sample output file : p6b-output.txt

Hint: Check the return behavior of the wait function call.

Q7: system calls only
We said this lab was all about processes but in the last problem you’ll write a program which uses system
calls dealing with files. Write a program p7.c that takes three filenames and an integer offset as
argument, and copies the content of the first filename to the third file name, and then additionally copies
the content of the second file name to the third file name starting at the mentioned offset.
The catch is that you should not use the file and IO related functions provided via stdio.h (e.g., scanf,
printf, fopen, fread, fwrite, fprintf, fscanf, …).
op
Hints:
Lookup and read the man pages of read, write, lseek, open and close system calls. Also have
a look at the atoi C library function.

Sample output: file1 and file2 are the input file and file3 does not exist.

Submission instructions:
● All submissions via moodle. Name your submissions as: <rollno_lab2>.tar.gz
● Auxiliary files are available in the auxiliaryfiles folder.
● The tar should contain the following files in the specified directory structure:

<roll_number_lab2>/
|____p1.c
|____p2a.c
|____p2b.c
|____p3a.c
|____p3b.c
|____p4.c
|____p5a.c
|____p5b.c
|____p6a.c
|____p6b.c
|____p7.c

● Due date: 11th August 11:59 PM

