
Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 333: Operating Systems Lab
Autumn 2023

Lab3: Shells and Signals

In this lab, you will learn about file descriptors for IO redirection and build a simple interactive shell of
your own to execute user commands, much like the bash shell in Linux.

Preamble
In Unix-like operating systems (like Linux), three file descriptors — stdin, stdout, stderr — are available
to each process. A file descriptor is a per-process unique identifier (an integer) which refers to a file,
directory, sockets, pipes etc., via which IO operations can be performed.

● Standard Input (stdin - File Descriptor 0) is the default input stream for a process and is
typically connected to the terminal's keyboard input.

● Standard Output (stdout - File Descriptor 1) is the default output stream for a process and is
typically connected to the screen/output device.

● Standard Error (stderr - File Descriptor 2) is the default error stream for a process and is
typically connected to the screen/output device.

These three file descriptors provide a standardized way for processes to interact with the users, other
programs, and handle error reporting. They are used for input and output redirection, allowing processes
to read from and write to different sources, such as files or other programs' output, without needing to
modify the program's code.
Programs can (and many programs do) read from stdin and write output and errors stdout and stderr. If
these file descriptors are made to point to other end points, e.g, a file or output of another process, then
the IO endpoints can be changed (IO redirection).

1. fun with files and file descriptors

Q1a. file IO system calls
This is a warm up exercise to revise the usage of file related systems calls for file IO, and to understand
the differences between the file handling C library functions and the IO related system calls.

The source code file fileio.c contains implementation of a simple program that reads from a file and
writes to a file, character-by-character. The program uses the standard C library file handling operations
and file variables.

The exercise is to replace all file handling C library calls—fopen, fclose, fread, fwrite with the system
calls open, close, read, write. Note that each of these calls has its own set of arguments, which in some
cases may be different from the C library calls, e.g., with open a specification of the file permissions and
user group is required.

The system calls version of the the program (cannot use any C library file handling calls) should be
named mycat1.c

references: man pages for open, close, read, write.
auxiliary files: in.txt, out.txt, fileio.c
to submit: mycat1.c

CS 333 Operating Systems Lab (Autumn 2023)

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Q1b. duplicating file descriptors + reusing file descriptors

Based on the mycat1.c solution, write a program mycat2.c to read from STDIN (file descriptor 0) and
write to STDOUT (file descriptor 1). The program should run as long as input is being provided.
Use CTRL-C to stop execution of the program.
Note: the read calls need a CRLF (Enter key to be pressed) before the read buffer is processed via the
system calls. mycat2 emulates behavior of the cat program when used with stdin and stdout for IO.

Extend the implementation of mycat2.c to perform file IO on the input file (similar to mycat1.c), but with
the dup/dup2 system calls, i.e., input should come from in.txt and output should be written to the file
out.txt.
The read/write loop used in mycat2.c should remain the same, i.e., read/write from stdout and stdin.
Appropriate usage of the dup system calls should duplicate stdin and stdout for read and write from the
file descriptors of the actual files. This version of the program should be named mycat3.c

references: man pages for dup/dup2
auxiliary files: in.txt, q1a/mycat1.c
to submit: mycat2.c, mycat3.c

Side note: Once the file descriptors are set up correctly the C library functions for IO — printf and
scanf should work as well, instead of read and write system calls.

Q1c. IO redirection
Now that we have learnt how to use dup()/dup2() system calls. Write a program that takes a string
as an input in the following format - "command > file.txt". The task for this question is to execute
the command and then redirect the output of this command to a file using the open, close and dup
system calls only.
Note that the command that is to be executed will by default write to the STDOUT file descriptor.

You are provided with a skeleton program output_redir.c which contains a tokenizer and the logic to
parse and store the command in a variable named comm, and a variable to store the name of the output
file called filename. Use your knowledge of execvp() and dup() to store the output of command to
an output file.

Sample usage:
./output_redir " cat output_redir.c > out.txt"
./output_redir " ls > out.txt"
Sample output:

Similar to output_redir.c write a program which takes input in the following format "command <
filename". However, this time the contents of the files should be input for the command. This program
should be named input_redir.c

CS 333 Operating Systems Lab (Autumn 2023)

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Sample usage:
./input_redir " grep monday < in.txt"

Sample output:

references: man pages for dup/dup2, exec
auxiliary files: in.txt, output_redir.c, input_redir.c
to submit: output_redir.c, input_redir.c

2. plumbers of the world unite!

Q 2a. plumbing 101

Write a program that takes a string as input which contains two commands separated by the pipe
operator "|" . Output of the first command should be piped as input to the second command. Both
commands by default perform input and output using the stdin and stdout file descriptors.

You are provided with a skeleton program
demo_pipe.c which contains a tokenizer and the
logic to parse and store the command in comm1
and comm2 variables.

Hint: A main program forks two processes, in
which the two programs specified with comm1 and
comm2 execute. Before exec is used to load the
programs, the main process uses the pipe system
call for appropriate setting of the inputs and
outputs of each process.

Sample usage: Sample output:

./demo_pipe "ls | grep .c"

./demo_pipe "cat file.txt | head -7 "

references: man pipe
auxiliary files: demo_pipe.c
to submit: demo_pipe.c

CS 333 Operating Systems Lab (Autumn 2023)

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

3. simple shell

Functionalities used: fork, chdir, execvp, waitpid, kill, signal, wait

Note: All the subparts require individual C file submissions.

Q3a. basic linux commands

FIle shell.c contains skeleton code for a custom shell implementation, which implements the basic
functionality of a shell. Understand the code (tokenizer and prompt input).

Compile and execute the shell.c program and observe what happens in the following cases

● Entering a zero argument command like - ls, pwd, ps, clear
● Entering a one argument command like - cd, sleep
● Entering a two argument command like - sleep 10 &
● Pressing CTRL+C to exit the shell

The task of this exercise is Implement the functionality by which the shell forks a child proces, and waits
till the child process executes the command entered by the user, which may or may not have
arguments. (You do not need to verify if the command is a valid command or not).

System calls of interest: fork, execvp, wait

Verify that the following commands work as expected while making sure the shell does not terminate
after the command has executed completely.

Sample output:

To submit: Build upon the skeleton code provided in the auxiliary file shell.c to implement the above
mentioned functionality and submit a new file with the solution named shell_3a.c

Q 3b. Overriding signals

A process can communicate with another process using signals, which are a type of inter-process
communication (IPC) mechanism. Signals allow the transfer of information, which can also be used to
control the execution of a process. In our case, we want to learn how to change the behavior of a
process on receiving a specific signal.

Some important examples of signals include:

● SIGINT: Issued if the user sends an interrupt signal (Ctrl + C)
● SIGKILL: If a process gets this signal it must quit immediately and will not perform any clean-up

CS 333 Operating Systems Lab (Autumn 2023)

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

operations
● SIGTERM: Software termination signal (allows process to perform clean-up operations)

As we have already tried in Part 3a, issuing CTRL+C in our shell terminates the shell program, but we
want to change this using user-level signal handler functions.

● Signal handler functions can be defined by programs to override the default functionalities of
the system calls, and to give them new, custom functionalities.

● Custom signal handler functions for a signal must be registered using the signal system call

signal(SIGINT, signal_handler_function);
//SIGINT is the signal to be handled

● man signal or kill -l for a detailed description of signals.

The task of this exercise is to write a signal handler function, which makes our custom shell do nothing
on receiving the SIGINT (CTRL+C) signal, and hence the shell does not exit.

Instead, the signal number of the signal is to be printed by the shell:
“\nRECEIVED SIGNAL: <signal_num>\n”.

The expected output after CTRL+C is pressed is as follows (you can continue writing other commands):

● How will the shell quit?

To submit: Build upon the code you have written in the Part 3a to implement the above mentioned
functionality and submit the new file as shell_3b.c

Q3c. exiting a shell

Now that we’ve made our shell powerful enough to overcome CTRL+C, we have to find a way to
terminate it before it becomes too powerful.

The task of this exercise is to add functionality so that when the entered command matches the string
exit, the shell program should quit. The termination of the shell program should be achieved using the
kill system call. The kill system call is to be used for self termination of the shell process. The syntax
of the kill system call is as follows:

● int kill(pid_t pid, int signum); // int can also be used on the place of pid_t
● pid is the process ID of the process to whom the signal is to be sent, and signum is the

number/name of the signal to be sent. Some of these names are given in Q3b above.

Additionally, register a signal handler for the signal being sent for termination and print a message
“Exiting via SIGTERM” before exiting the shell program.

Sample output

CS 333 Operating Systems Lab (Autumn 2023)

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

To submit: Build upon the code you have written in the Part 3b to implement the above mentioned
functionality and submit the new file as shell_3c.c

Submission Instructions
● All submissions have to be done via moodle. Name your submission as <rollnumber_lab3>.tar.gz

(e.g 190050096_lab3.tar.gz)

● The tar should contain the following files in the following directory structure:
<rollnumber_lab3>/

q1a
|__mycat1.c
q1b
|__mycat2.c
|__mycat3.c
q1c
|__output_redir.c
|__input_redir.c
q2a
|__demo_pipe.c
q2b
|__multipipe.c [optional]
q3
|__shell_3a.c
|__shell_3b.c
|__shell_3c.c
|__shell_3d.c [optional]
|__shell_3e.c [optional]
|__shell_3f.c [optional]

● Your code should be well commented and readable.

● tar -czvf <rollnumber_lab3>.tar.gz <rollnumber_lab3>

Deadline: Thursday 17th August 2023 5:00 PM via moodle.

CS 333 Operating Systems Lab (Autumn 2023)

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Optional Exercises

Q2b. (optional) multi-pipe network

Write a program that takes a string as input argument where multiple commands are separated by "|" .
The first command outputs to the second, and second to third and so on. The output of the last
command should be displayed to the console. You are provided with a skeleton program multipipe.c
which contains a tokenizer.

Syntax:

./multipipe "command_1 | command_2 | command_3 | | command_N"

Sample Input:

./multipipe "cat file.txt | head -7 | grep monday"

./multipipe "cat file.txt | head -7 | tail -2 | grep i "

Sample output:

auxiliary files: file.txt, multipipe.c
To submit: multipipe.c

Q3d. Implementing the “cd” command

In Linux, the cd command stands for change directory and is used to navigate between directories or
folders within the file system. With the cd command, you can move into different directories and change
your current working directory. The syntax of cd command is - cd [directory_path]

Observe that it seems like entering the “cd” command (say, cd ..) does not perform anything right now,
as cd changes the working directory of the child process but as soon as the cd command executes and
the parent (shell here) runs again, its directory still remains the same, as the child can not change the
working directory of the parent.

The task of this exercise is that we want to add the functionality of the “cd” command to our shell. When
a name (in case of a sub-directory) or the absolute path (in all cases) is entered after cd, the shell
should change the current working directory of the shell to the new directory. (Note: Verify the
correctness using “ls”, you can also use “pwd” to get the current working directory.)

● Hint: you can use the “chdir” function to achieve this functionality, by calling chdir from the

CS 333 Operating Systems Lab (Autumn 2023)

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

parent itself
● Hint: you can use strcmp to compare the entered token with the desired string

Also, add checks to print the following error messages in the respective cases.

● Print “ERROR: NO DIRECTORY SPECIFIED\n” when 0 directory names are passed as
arguments

● Print “ERROR: TOO MANY DIRECTORIES\n” when more than 1 directory names are passed as
arguments

● Print “ERROR: INVALID DIRECTORY\n” when the directory entered by the user dows not exist
(Hint: see man chdir for return type)

Expected output:

To submit (optional): Build upon the code you have written in the Question 3 (shell) to implement the
above mentioned functionality and submit the new file as shell_3d.c

Q3e. Implement background process execution

Background processes/commands are those which keep executing in the background while the user
can keep interacting with the shell to execute further commands. At a time, multiple background
processes spawned by a shell can run concurrently.

To create a background process in linux, a succeeding ampersand(&) is added after the command
name. For e.g. in the default linux shell,

● “sleep 10” runs as a foreground process and will execute the sleep command in foreground,
rendering the shell unable to take any input for the next 10 seconds.

● “Sleep 10 &” runs as a background process and will execute the sleep command in background
while keeping the shell active, so that the user can execute other commands in the shell in
the meantime.

Note: To monitor the currently running and zombie processes, use the command “watch -n 1 ps -au” in a
new terminal tab, which will update the output from “ps -au” every 1 second.

The task of this exercise is to implement the following:

CS 333 Operating Systems Lab (Autumn 2023)

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

● Add a functionality in the provided shell code to check if the last character entered is
ampersand(&). If yes, the process should execute in the background, i.e., the shell must not
block while waiting for this process to end.

● The shell MUST block and hence wait for the foreground process (commands without an
ampersand).

● Make sure to remove/replace with NULL the ampersand(&) sign from the tokens array in case of
background commands, before passing it to “execvp”.

● Verify your code by executing “sleep 10” and “sleep 10 &”.

You can observe the working of foreground and background processes respectively as:

Optional optional:
Reap the background process (zombies) when going back to the main shell loop to wait for a new
command at the prompt.
Hint: waitpid, WNOHANG

To submit (optional): Build upon the code you have written in the Question 3 (shell) to implement the
above mentioned functionality and submit the new file as shell_3e.c

Q3f Generating signals

As now you’re familiar with suppressing signals, let’s learn to generate signals. The “kill” function in C
can be used to send signals to other processes or to itself, its syntax is provided below:

● int kill(pid_t pid, int sig); // int can also be used on the place of pid_t
● Here, pid is the Process ID of the process to whom the signal is sent, and sig is the

CS 333 Operating Systems Lab (Autumn 2023)

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

number/name of the signal to be sent. Some of these names are given in Q3 above.

The task is to implement a functionality where, when we give the user-defined command “end <pid>”,
where <pid> is the process ID of one of the background children process, that background process is
terminated.

● Hint: To test this functionality, execute a long running background command like “sleep 60 &”.
Open a new terminal tab and use “watch -n 1 ps -au” to monitor and get the PID of that process.
Finally, pass that PID as an argument to the “end” command to your shell and see the status of
that background process.

● Hint: Use atoi(tokens[1]) to convert the PID passed as an argument from char array to int
● Assume that only 1 argument with the correct PID is provided

The expected outputs before and after executing the “end” command are as follows:

To submit (optional): Build upon the code you have written in the Question 3 (shell) to implement the
above mentioned functionality and submit the new file as shell_3f.c

CS 333 Operating Systems Lab (Autumn 2023)

