CS 333: Operating Systems Lab
Autumn 2023
Lab4: accio, xv6!

In this lab we will learn how to use the xv6 operating system, learn how system calls are
implemented and explore examples of OS metadata and actions.

Task 0: Setting up xv6

Follow the instructions given below for xv6 installation.
Run the following commands to get the xv6 source (if you are using lab machine)

wget https://www.cse.iitb.ac.in/~puru/courses/xvbo-public.tar.gz
tar -xf xvé6-public.tar.gz
cd xvoe-public

make
If you are using a Linux environment on a personal machine, you will need a set of other tools
as well for xv6 ... use the following commands to install required packages.

® sudo apt-get update

e sudo apt -y install build-essential gdb coreutils util-linux

sysstat procps wget tar gemu

The booklet describing/listing all source files is available here. (also after make in the xv6 dir)

Xv6 runs on an x86 emulator called QEMU that emulates x86 hardware on your local machine.
In the xv6 folder, run the following command sequence to boot xv6 on an emulated machine.
QEMU boots the machine and if all goes well drops to a user space shell program.

e make clean

® make gemu
Build everything and start gemu with the VGA console in a new window and the serial
console in your terminal. To exit, either close the VGA window or press Ctrl-c or Ctrl-a x
in your terminal.

e make gemu-nox
Like make gemu, but run with only the serial console. To exit, press Ctrl-a x. This is
particularly useful over SSH connections.

CtrlI+A X = First press Ctrl + A (A is just key a, not the alt key), 2. then release the
keys and press X.

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

At the shell start with Is to list available programs and then execute a few of them.

Look up the implementation of these programs. For example, cat.c is the source code for
the cat program. Execute and lookup the following: Is, cat, wc, echo, grep etc.
Understand how the syntax in some places is different from normal C syntax.

Check the makefile to see how the program wc is set up for compilation.

Hola, fellow OS enthusiasts! We are absolutely

T stoked that we have the xv6 setup ready. It's time
& to roll up our sleeves, dive into the xv6 code, and
l—J | 7 7
JJ_ Jf JJ_ JJ f ‘J‘J get our hands dirty. Our journey begins with the
T Hnn = task of adding a simple program to xv6, and then

BE"I"D“DI we'll take it up a notch by introducing some brand
® new system calls. This is where the real fun begins!
& ©

Task 1: Adding new programs to the xv6 environment

(a) pingpong with xv6

Write a program named pingpong which reads a text file as an input argument and outputs
‘pong” to the standard output every time it finds the word “ping” in the input text file.

Additions to the Makefile will be needed to add new programs for compilation and also to
be included as part of the xv6 viewable disk image (to read/write files e.g., abc.txt,
hello.txt) via fs.img.

Look for the following keywords in the makefile.

UPROGS=\

Lists names of all user programs which are available after xv6 boot up.

EXTRA=\

List of all files (source programs and other scripts and data files) available after xv6
bootup.

fs.img

List of files to be added to the xv6 startup disk (imagefile).

xv6 OS itself does not have a text editor or compiler support, all source code of
programs has to be written and compiled on the host machine, all its references added
to the makefile and then via fs.img and xv6.img be used via QEMU emulator.

You will need to include input text files for e.g., “pingpong.txt” or any other files in the xv6
OS image that you will use for running the program.

Refer to the README included in xv6 image.

Sample input file pingpong.txt is provided as part of this lab archive file.

Consider using wc.c, source code of the we program as a starting point for this task.

Hello this is the first occurence of ping.

A proc C eMm check network
In the xv6 operatir e em C t as the bridge en user-level applications and the kernel.
A proc ould use : 0 z 5

¢ pingpong pingpong.tx
ong

(b) inception (shell in a shell)

Write a program emd. c that creates a child process — the child process executes a program,
and the parent process waits till completion of the child process before terminating. This
program should use the fork and exec system calls of xv6. The program to be executed by the
child process can be any of the sample xv6 programs and should be specified at the command
line.

Refer to Sheet 66,85 of xv6 source code booklet for fork (), exec () system calls in xv6.

Sample usage

% cﬁd lé

P B B B B

2
2
2
2
p.
2
>
2
p.
.
5
2

9 14036
20 0@
vG o5 1!

o w

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

Task 2: Adding new system calls to xv6

To understand and work with system calls and process related information and action, the

following files of the xv6 OS are important —
usys.S, user.h, defs.h, sysproc.c, syscall.h, syscall.c, proc.h, proc.c

user.h contains the xv6 system call declarations

usys.S contains a list of system calls exported by the kernel, and the corresponding
invocation of the trap instruction

syscall.h contains the mapping of system call name to system call number

syscall.c contains helper functions to handle the system call entry, parse arguments,
and pointers to the actual system call implementations

sysproc.c contains the implementations of process related system calls

defs.h is a header file with function declarations in the xv6 kernel

proc.h contains the process abstraction related variable definitions

proc.c contains implementations of various process related system calls, functions and
the scheduler, also contains the declaration of ptable, and several examples of functions
traversing/using the process list

e System call related functions are also listed in sysfile.c

All or most of these files will have to be used/updated to implement new system calls.
New files, new programs, new data files need to be added to xv6 via the xv6 Makefile.
All changes are to be followed by a clean compile and build, followed by executing xv6.

Note that xv6 itself does not have a text editor or compiler support, so all xv6 source code
changes are on the host machine then xv6.img and fs.img are used as inputs to QEMU.

(a) hello, system calls!

Implement a system call, with the following declaration worldpeace(), which prints the message
“Systems are vital to world peace !!” in the kernel mode.

The function cprintf is used for printing in the kernel mode (refer to sheet 30 line 3026 of xv6
source code booklet for usage).
A simple test program worldpeace.c is also provided to test your implementation.

ChatGPT'’s take on systems + world peace is here.

Sample usage
$ test-message
Systems are vital to world peace !!

5 1

https://medium.com/@lakshyagour10/systems-are-vital-to-world-peace-662f63bc7b88
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://medium.com/@lakshyagour10/systems-are-vital-to-world-peace-662f63bc7b88

(b) who all are ready?

Implement a system call, with the following declaration numberofprocesses() which returns the
total number of processes in READY(xv6 naming is RUNNABLE) state to the user program.

Refer to the PCB structure defined on line 2336 sheet 23 of xv6 source code booklet and lines
10-14 in proc.c in the given source code to refer to struct ptable.

Refer to sheet 24 Line 2480 to understand how to iterate through the process table and sheet
23 Line 2334 to for the process state enum of xv6 source code booklet .

A simple test program nump.c is also provided to test your implementation.

Sample usage

est-numberofprocesses
Yy proce : 2

(c) status check

Implement a system call, with the following declaration whatsthestatus(int pid), which returns
the parent pid, prints the name of the parent process and the current state of the process
given the pid of the process.

The function cprintf is used for printing in the kernel mode (refer to sheet 30 line 3026 of xv6
source code booklet for usage).

Please refer to the PCB structure defined on line 2336 sheet 23 of xv6 source code booklet
and lines 10-14 in proc.c in the given source code to refer to ptable struct.

Refer to sheet 24 Line 2480 to understand how to iterate through the process table and sheet
23 Line 2334 to understand the process enum structure of xv6 source code booklet .

Refer to sheet 36 line 3631-3632 to refer argint usage of xv6 source code booklet
Note: argint, argstr, argptr are helper functions for handling system calls arguments.

A simple test program status.c is also provided to test your implementation.
Input should be in the format status 3 0 1 2 when “3” denotes the number of children to fork
and 0 signifies Sleeping, 1 signifies Runnable and 2 signifies Zombie states.

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

Output should be in the format <pid> <status> <ppid> <parent_name> where pid represents
the pid of the child process for which status needs to be checked, ppid represents the parent
pid and parent_name represents the name of the parent.

Sample usage

4 test-whatsthestatus 3 0 1 2
04 SLEEPING 3 test-whatsthest

5 RUNNABLE 3 test-whatsthest
©7 ZOMBIE 3 test-whatsthest

(d) spawn — one call, many processes!

Implement a system call, with the following declaration int spawn (int n, int* pids)
which creates n child processes with a single system call.
e The system call must return O to the child processes and number of children created to
the parent process.
e Additionally, the pids array should contain the pids of the spawned children after the
spawn system call. The parent should gracefully reap all the child processes which are
present in the pids array.

A simple test program spawn.c is also provided to test your implementation.

Note: argint, argstr, argptr are helper functions for handling system calls arguments.
(Refer to sheet 65 line 6557 of xv6 source code booklet for argptr usage)

Refer to fork() system call implementation in proc.c to understand how a child process is
created and how the call handles return values for parent and child processes.

Sample usage test'-spax-.rn B

] Child PID list: 8 9 10

] Spawned child pid 8

] Spawned child pid 9

] Spawned child pid 10

] reaped process with id 9

] reaped process with id 10
]

P
C
C
C
P
P
P] reaped process with id 8

$
[
[
[
[
[
[
[

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

Submission Instructions

e All submissions have to be done via moodle. Name your submission as
<rollnumber_lab4>.tar.gz

(e.g 190050096 _lab4.tar.gz)

e The tar should contain the xv6 source code files in the following
directory structure: <rollnumber_lab4>/xv6

e The directory must contain the new programs pingpong.c and
cmd.c which you will implement as a part of 1a and 1b respectively
and the entire xv6 source code with necessary changes to it.
Your code should be well commented and readable.
tar -czvf <rolinumber_lab4>.tar.gz <rollnumber_lab4>

Deadline: Thursday 31st August 2023 5:00 PM via moodle.

More Exercises (Optional)
1. you got siblings?

Implement a system call int get_sibling()

to print the details of siblings of the calling process to the console and to return the number of
siblings of the calling process. A sibling is all processes with the same parent process.

The output should be in the format of:

<pid> <process status>

<pid> <process status>

Sample usage

$ my siblings6121020
4 RUNNABLE

5 ZOMBIE

6 RUNNABLE

7 SLEEPING

8 ZOMBIE

9 SLEEPING

Sample user program my_siblings.c is provided. The program takes an integer n, followed by a
combination of 0, 1 and 2 of length n, as command line arguments— 0/1/2 specify the process
state of the n child processes. The (n+1) th child process executes the get_sibling() system call
and displays the output.

Hint: You need to find the process ID of the calling process, and process ID of its parent and
traverse all the PCBs and compare their parent PID with the parent of the calling process.

Sample usage
¢ mysiblings 6 0 122 10

SLEEPING
RUNNABLE
ZOMBIE

ZOMBIE

RUNNABLE
SLEEPING
O RUNNING

4
5
6
7
8
9
1

2. entrypoint 2.0

Implement a new type of system_call_handler which instead of handling TRAP NUMBER 64
handles trap number say 65. You should implement a new type of system call fork2() that uses
a different trap number (65) instead of the commonly used trap number 64 (which corresponds
to the traditional int $0x64 instruction for making system calls in x86 assembly). Using a
different trap number, such as 65 in this exercise, allows you to define and handle your custom
system calls independently from the standard ones.

In order to achieve this you should first need to look at how system calls are handled in xv6.
List of files you will need to refer to:
sysc.all.c syscall.h defs.h user.h proc.c sysproc.c proc.h trap.c trap.h usys.S

Note: First you need to write a trap handler and after that you can implement a new type of
system call. (TRAP NUMBER for SYSCALL is 64 but the actual system call number of

system call like fork in xv6 is 1).

Refer to sheet 32 33 and 34 of xv6 source code booklet

Hint: usys.s has the entry point from where int n is called. :)

One way to implement this is to change only the entry point to the trap handler and use the
same underlying system call implementation for all system calls.

A simple test program userfork2.c is provided to test your implementation.

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

Sample usage:

README
hello.txt
pingpong.txt
cat

head

cmd

pingpong

echo

357
15800
16244

= O LA W B =

face]

grep
init
kKill

1n

1s

mkdir

rm

sh
stressfs
usertests
.ll"ll C

zombie

15300
14764
14664

Pod Pod Pud Pod Pod Pod Pod Pud Pod Pod Pod P Pud Pod Pod Bod B Pod Pd Pod Bl =2 2

