
CS 333: Operating Systems Lab
Autumn 2023

Lab5: dipping in the pensieve

This lab explores xv6’s memory management magic.

To setup xv6 refer to the installation guide.

Following is a partial list of important files for the lab:
syscall.c, syscall.h, sysproc.c, user.h, usys.S, vm.c, proc.c, trap.c, defs.h, mmu.h,
memlayout.h, kalloc.c

● sysproc.c, syscall.c, syscall.h, user.h, usys.S link user system calls to system call
implementation code in the kernel.

● mmu.h, memlayout.h and defs.h are header files with various useful definitions
pertaining to memory management.

● vm.c contains most of the logic for memory management in the xv6 kernel, and
proc.c contains process-related system call implementations.

● trap.c contains trap handling code for all traps including memory access related
exceptions (page faults).

Task1: what is your address?—virtual and physical !

1. is the virtual address space real? 🔢

Write a system call getvasize() that returns the size of the virtual memory used by a
process. Specifically, the system call should have the following interface:

int getvasize(int pid); // pid is argument to the call and amount of virtual memory
// used by the process as return value.

Hints:
(i) Look up and understand implementation of the sbrk system call in proc.c.

Also, check the struct proc data structure in proc.h
(ii) Refer to Sheet 38 of xv6 source code booklet for sbrk() system call in xv6.
(iii) Refer to discussion on Page 34 of the xv6 book .
(iv) To count up the virtual address space in the user part of the memory, check struct
proc declaration and also the PAGESIZE constant.

https://docs.google.com/document/d/1e_qZJQDQXiGUJoLnz7kyvUc9MVr5tCR81WMLHmEvFzI/edit
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/book-rev10.pdf


Figure 1. After calling
sbrk(1024) to increase the
process size by 1024.

The sbrk(n) system call is
implemented in the
function sys_sbrk() in
sysproc.c that allocates
physical memory and maps
it into the process’s virtual
address space. The sbrk(n)
system call grows the
process’s memory size by n
bytes, and then returns the
start of the newly allocated
region (i.e., the old size).

A sample program t_getvasize.c is
available for testing.

2. What is your postal address?

Write a system call va2pa that returns the virtual address to physical address
mapping from the page table of the current process. Specifically, the system call
should have the following interface:

uint va2pa(uint virtual_addr); // virtual address is the argument
// corresponding physical address is the return value

Hints:
(i) Lookup and understand the walkpgdir() function and understand usage of this
function in the system calls implemented in vm.c
(ii) Refer to Sheet 17 of xv6 source code booklet for sbrk() system calls in xv6.

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf


Figure 1: Page table layout Figure 2: Virtual to physical address mapping

(iii) Refer to discussion on Page 29-32 of the xv6 book.

Figure 1. A page table is stored in physical memory as a two-level tree. The root of
the tree is a 4096-byte page directory that contains 1024 PTE references to page
table pages. Each page table page is an array of 1024 32-bit PTEs. The paging
hardware uses the top 10 bits of a virtual address to select a page directory entry. If
the page directory entry is present, the paging hardware uses the next 10 bits of the
virtual address to select a PTE from the page table page that the page directory entry
refers to. If either the page directory entry or the PTE is not present, the paging
hardware raises a fault.

Figure 2. A process’s address space starts at virtual address zero and can grow up to
KERNBASE, allowing a process to address up to 2 GB of memory. The file
memlayout.h declares the constants for xv6’s memory layout, and macros to convert
virtual to physical addresses. When a process asks xv6 for more memory, xv6 first
finds free physical pages from the free page list and then adds PTEs to the process’s
page table that point to the new physical pages. xv6 sets the PTE_U, PTE_W, and
PTE_P flags in these PTEs. xv6 includes all mappings needed for the kernel to run in
every process’s page table; these mappings all appear above KERNBASE.

https://pdos.csail.mit.edu/6.828/2017/xv6/book-rev10.pdf


Use the above information to traverse the page table of a process and convert virtual
address to physical address.

Sample programs t_va2pa.c and t_va2pa2.c are provided for testing.

Sample usage:

Q. Can you see what is interesting in the two outputs?

3. enter the page table!

Implement the following system calls to get details of the page table of a process.

int get_pgtb_size();
The system call has no arguments and returns the number of page table pages
allocated to the current process.

int get_usr_pgtb_size();
The system call has no arguments and returns the number of page table pages
allocated for user space memory for the current process.

int get_kernel_pgtb_size();
The system call has no arguments and returns the number of page table pages
allocated for kernel space memory for the current process. Recall kernel pages are
mapped for virtual addresses above KERNBASE.

A user-level program t_getpgtablesz.c is provided for testing. This program will call
all the above system calls before and after multiple sbrk() system calls.



Hint:
Walk the page table of a process by using the walkpgdir function and consider only
those entries which indicate mapping that are present (the present bit is set).

Sample usage

4. no escape from reality!

Next, report the physical memory (in pages) allocated for a process via a system call

int getpasize(int pid)

The call takes pid as an argument and prints the number of physical pages mapped to
the virtual addresses of a process (process virtual addresses).

NOTE: Count the number of mapped pages by walking the process page table and
counting the number of page table entries that have a valid physical address
assigned.

You are provided with t_getpasize.c for testing,

Sample usage

We will use these system calls to test your implementation of Task2 of this lab.



Hints:
(i) You can walk the page table of the process by using the walkpgdir function which
is present in vm.c. You can look up loaduvm and deallocuvm in vm.c to see how to
invoke the walkpgdir function. To compute the number of physical pages in a
process, you can write a function that walks the page table of a process in vm.c and
invoke this function from the system call handling code.

(ii) xv6 has a 2-level page table organization. You need to calculate the size of the
page table (total level 0 and level 1 pages). You need to iterate over the Page Directory
Entries (PDEs) to check if a page is assigned for storing Page Table Entries (PTEs) for
that PDE.

Task2: the scam revealed🛌

Step 1: faulting page, page faulting, who is handling?

The default xv6 distribution does not handle the page fault trap explicitly.
Extended implementation of trap handler function in trap.c to explicitly handle a
page fault. The handler should print details of the page fault — pid of the process and
faulting address which was accessed for the trap.
The page fault trap defined in traps.h is T_PGFLT.

Refer to Sheet 34 of xv6 source code booklet for trap() handler in xv6.

Sample program t_pagefault.c is provided for testing.

Sample usage

Hints:

● Look at the arguments to the cprintf statements in trap.c to figure out how one
can find the virtual address that caused the page fault.

● Once you correctly handle the page fault, do break or return in order to avoid the
cprintf and the add proc->killed = 1 statement.

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf


Step 2: mmap()🗺️

Implement a simple version of the mmap system call in xv6. The mmap system call
should take one argument: the number of bytes to add to the size of the process. The
process size in this context refers to the heap size. The mmap call grows the size of
the process (virtual) address space and expects a mapped physical address.
However, mapping from a virtual to physical address is required only when the
virtual address is accessed!.

Figure 3: Virtual and physical addresses before and after mmap().

The figure shows the working of mmap system call. when user call say mmap(1024)
the virtual address space of the process increases however the physical address space
remains the same.

Assume that the number of bytes is a positive number and is a multiple of the page
size. The system call should return a value of 0 if any invalid inputs are provided.

In the valid case, the system call should expand the process's size by the specified
number of bytes, and return the starting virtual address of the newly added memory
region.

However, the system call should NOT allocate any physical memory corresponding
to the new virtual pages. When the user accesses a memory-mapped page, a page
fault will occur, and physical memory should only be allocated as part of the page
fault handling (lazy page allocation and mapping) … this Step 3.



Hints:
(i) mmap() system call is similar to sbrk() (with code related to memory allocation and
mapping pages … kalloc, growproc, allocuvm, mappages etc.)
(ii) Understand the implementation of the sbrk system call and mmap() system call
will follow a similar logic.
(iii) Refer to Sheets 19, 25, 38 of xv6 source code booklet for the related system calls.
(iv) Refer to Page 34 of the xv6 book.

Source file t_mmap.c is provided for testing.

Sample usage:

Step 3: the big reveal

Next, modify the page fault handler logic, to allocate memory on demand for the
page (need to check if the page faulting address is a valid address!). Once a physical
page is allocated and mapped for the virtual address being accessed, the handler
returns and the access is re-attempted and should not result in a page fault.
Hints:

● Look at the arguments to the cprintf statements in trap.c to figure out how one
can find the virtual address that caused the page fault.

● Use PGROUNDDOWN(va) to round the faulting virtual address down to the start
of a page boundary.

● You may invoke allocuvm (or write another similar function) in vm.c in order to
allocate physical memory upon a page fault.

● You can add your page fault handler in vm.c and call it from trap.c.
● Check whether the page fault was actually due to a lazy allocated page or an

actual page fault (For example - illegal memory access).

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/book-rev10.pdf


Note: it is important to call switchuvm to update the CR3 register and TLB every
time you change the page table of the process. This update to the page table will
enable the process to resume execution when you handle the page fault correctly
A user program t_lazy.c is provided for testing.

Sample usage:

Submission Instructions

● Submission is via moodle.

● Name your submission as <rollnumber>_lab5.tar.gz,
e.g., 190050096_lab5.tar.gz

● The tar should contain the all the files in the xv6_public directory structure:

○ Run make clean

○ tar -czvf 190050096_lab5.tar.gz xv6-public/

● Your modified code/added code should be well commented and readable.

Deadline: 08th September Friday 2023, 11:59 PM via moodle.



Task3 : to be lazy is human, to share is humane!
(Optional task)
note: solving this question is optional, rest is not optional.

xv6 does not support shared memory by default in this Part. We would like you to
implement a mechanism for Shared Memory. For this part we want you to implement
Shared Memory support for xv6. You will need to implement 4 System Calls namely

uint attach_shm(uint key); → Allocated one page shared memory identified
by KEY to process address space.

uint create_shm(uint key); → Attaches Shared memory identified by KEY to
process add space.

int detach_shm(uint key); → Deattaches Shared memory from process add space.

int destroy_shm(uint key); → Destroy Shared memory identified by KEY

The program in t_shm_client.c is provided for testing.

Hints:

(i) need to maintain some form of table in the kernel in order to keep track of all the
shared memory identified by key and when you do call attach this table can be used
to give you PA associated with the shared memory identified by key.

(ii) need to call mappages() from trap.c in order to map the physical address in shared
memory table to virtual address for the shared memory in attach_shm() .In order to
do this, you’ll need to delete the static in the declaration of mappages() in vm.c, and
you’ll need to declare mappages() in the trap.c. Add this declaration to the trap.c
before any call to mappages(): int mappages(pde_t *pgdir, void *va, uint size, uint pa,
int perm);


