CS 333 Operating Systems Lab
Autumn 2023

Lab7: to share, or not to share?

The goal of this lab is to understand race conditions with multiple instances of execution and
shared data objects, and implement solutions to overcome the same.
Our work platform remains xv6.

Task 1: Blast from the past

Implement a system call called smalloc with declaration charx smalloc(void)
which increases the size of the process (virtual) space by one page (4096 bytes), and maps it to a
physical page. The virtual address of the process if to be kept page aligned.

The characteristic of this system call is that while every call changes the process (virtual) address
space usage (size) the same physical page is used for mapping the virtual address range (in effect
providing a shared memory region). Note that smalloc is a system call and can be invoked from
across processes or multiple times in a single process and sets up multiple instances of execution
with a shared physical page.

Implementation notes:

e Needs logic to store and reuse a reserved physical page for multiple mappings.

e Needs careful handling of freeing memory mappings to a shared page. By default xv6 has no
support for page sharing and frees pages whenever a process exits.
Support needs to be added to make sure that pages are not freed on page table cleanup or on
any other action when the physical page may still be shared via other mappings.

e xv6 functions of interest —
growproc, allocuvm, deallocuvm, freevm, mappages, kalloc,

Uncomment the lines corresponding to counter1 and final, compile and execute the file t1.c to test
your implementation.

Usage: t1 <number of processes to fork>

Sampe usage:

Now, uncomment the two lines corresponding to counter2 present in t1.c to observe that different
smalloc() calls return the same shared area even though the virtual addresses differ




p.s.: PID values, Total Ticks taken need not match.

Task 2: race to the bottom

This task depends on and uses the smalloc system call.

Understand the program specified in the file t2.c and execute it in xv6 to observe its outputs.
Uncomment all the lines present in t2.c before compiling

Usage: t2 <number of processes>

Sample usage

Do we have a race condition yet?



Task3: Where is the lock?

To solve the above problem we need a synchronization mechanism to provide mutual exclusion for
read-modify-update operations.

Task 3a: spin with tension

Implement a spin lock synchronization primitive for updates to shared memory. A spinlock causes
a process trying to acquire it to simply wait in a loop (called spinning) while repeatedly checking
whether the lock is available. This is also known as a busy-wait approach as the process keeps
spinning until the lock is available (Can you observe the downside of this approach?)

To achieve this locking mechanism, implement the two system calls
void acquirespinlk(void) — System call to acquire the spin lock
void releasespinlk(void) — System call to release the spin lock

Hint: You can look at the xv6’s spinlock implementation present in spinlock.c to understand the
use of the atomic xchg instruction.

Understand the program specified in the file t3.c and execute it in xv6 to observe its outputs.
Uncomment all the lines present in t3.c before compiling

Usage: t3 <number of processes>

Sample usage

p.s.: Total Ticks taken need not match, but the final count values should match.



Task 3b: one does not simply sleep

Implement the mutex synchronization primitive, we will call it the sleeplock. sleeplock causes the
process to move into a waiting/blocked state and transfers control back to the cpu scheduler when
the lock is held by another process. On release of the lock, all processes waiting on the lock are
contenders for the lock and moved to the RUNNABLE (Ready) state, before transferring control to
the scheduler.

Can you reason about the benefits of sleep lock over spin lock!?
In which cases does a spinlock perform better than a sleeplock, are there any?

To achieve this mutex based synchronzation mechanism, implement the two system calls
void acquiresleeplk(void): System call to acquire the sleep lock
void releasesleeplk(void): System call to release the sleep lock

Hints:
Look up xv6’s sleeplock implementation present in sleeplock.c and the sleep and wakeup
functions in proc.c
Observe how xv6'’s sleeplock makes use of spinlock for implementing the sleeplock.
You should use the spinlock implemented in the previous part as the spinlock required by the
sleeplock.

Understand the program specified in the file t4.c and execute it in xv6 to observe its outputs.
Uncomment all the lines present in t4.c before compiling

Usage: t4 <number of processes>

Sample usage

p.s.: Total Ticks taken need not match, but the final count values should match.

Can you observe the benefits of sleep lock over spin lock!?
Why are the Total Ticks Taken provided with the test cases?



Submission instructions

e Submissions are on the assignment link via Moodle.
Name your submission as {rollnumber_1lab7}.tar.gz
tar -czvf {rollnumber_1lab7}.tar.gz {rollnumber_lab7}
(e.g., 200050183_lab7.tar.gz)

e The tar submission should contain all xv6 source files along with the test case files and
the makefile

e Run make clean before making a tar file for submission

Deadline: 6th October, Friday, 17:00



