CS 333 Operating Systems Lab
Autumn 2023

Lab8: xv6 threads for world peace

The goal of this lab is to understand the kernel primitives and implementation details of library
functions related to threading. In the xv6-public directory accompanying this lab, look for the
comment WPTHREAD (World Peace Threads) for a starting point to add implementation details for
the tasks ahead.

Use git commands to navigate your way through the changes already implemented in the
codebase. Use: git status to check which files have been changed, since the last commit (the
default xv6 repository). Use git diff master:<filename> <filename> to check
differences between the specific file from latest commit and current changes to it. For example, to
see changes to proc.c, use git diff master:proc.c proc.c. Orjustuse the git extension
in VSCode. &

Task 1: clone and cloning

In this question, we will implement the clone() system call. This system call creates a new kernel
thread for a process. Kernel threads are independently schedulable entities like processes, all the
threads of a process share the same virtual address space and file descriptors.

In order to allow for multi-threading in xv6, we need to come up with a design for the Thread
Control Blocks (TCBs). For this lab, we will use struct proc itself as the PCB-cum-TCB for all the
threads. Study the different thread-relevant fields in the PCB:

e pid: Same as process is and is synonymous to thread_id
tgid: A thread-group-ID, which is the main (first calling processes) pid). All threads that
belong to a process have the same tgid

e thread count: number of threads of a process

e user stack: pointer to the user stack of the thread — each thread has its own user
stack and kernel stack (similar to a process).

The thread-group-id and pid for the main thread would be the same values, and for the other
spawned threads, the thread-group-id would be the same as the pid of the main thread. Threads
other than the main thread do not have to bother with the thread_count field. thread count is
assigned the value of 1 for each process (refer allocproc in proc.c) and the count
increments when a clone call is made from the main thread process.

Note that our current implementation of clone is not supposed to support multiple level of
threading (i.e., a thread spawning threads), because of how we maintain the difference between
a main and children threads.




The declaration of the clone system call is as follows:
int clone(void(*£fn) (int*), int *arg, wvoid *stack);

e fn : indicates the start point of execution of the thread
e arg : pointer to the argument of function fn
e stack : base address of the user stack allocated for the new thread

Note that we are designing the system call to work only with functions that take one argument.
On success, the clone call returns the thread-id of the new thread or -1 on error.

A wrapper function is to be used in user space for invoking the clone systems —
int create_thread(void(*£fn) (int*), int *argqg);

In this wrapper function, malloc (defined in umalloc.c) one page in user space, and then call
the clone system call with the malloc’ed page as the stack argument to start the thread. On
success, this call returns the thread-id of the new thread and if unsuccessful, it returns -1.

The above step is required, since each thread has its own user space stack (or user stack). All
the threads have a common address space and share the entire memory region, but operate
using separate user stacks, and per thread state (maintained within the kernel).

As an example, refer to implementation of exec() to understand how a user stack is set up.

Following are the implementation details of the clone system call:

1. The stack pointer is passed from the thread wrapper function (which allocates memory
on the virtual space of the calling process). This stack pointer (virtual address in main
process, pointing to a single page) will be used as the user stack of the cloned process.
Implement the wrapper function create_thread in the file ulib.c.

2. Following are the expectations around the system call:

a. All the threads of a process must have an identical virtual address space and
share the same physical pages (and hence share a single page table).

b. Every thread has its own user stack for user functions.

c. To initialize a thread, the instruction pointer and the stack pointer of the new
thread need to be initialized. The base pointer also needs to be initialized to the
bottom of the stack frame, since stack pointer grows relative to it.

d. A new thread once created and initialized, when scheduled, should start
executing at the user specified function.

e. Each thread function MUST end execution with an explicit call to exit().

Study the modification to the different system calls, and functions in the proc. ¢ source file. The
following parts of the implementation have been provided:



s

exit: If there are abandoned children or threads for the current process, then assign
initproc as their parent.

wait: Ensures that cleanup happens only for the parent thread, and not for any of the
children threads.

kill: If the parent thread is killed, all its threads must be killed.

Before the main process exits, it should kill and reap all its threads before exiting.

For a process to be reaped, all of its threads must have been reaped before (refer to the
join system call described in the next subsection).

THE OPTIONAL BOX

In our current implementation, we have ignored some details to keep things simple. Following
are some of the considerations which we need to pay attention to, in order to make a more
robust clone system call.

1.

All the threads of a process must share the same set of file descriptors. For this lab, we
are implementing it like the way fork does it (by copying over the FDs to the new proc
table entry) as opposed to sharing them. Irrespective, sharing of file descriptors requires
changes to the open and close system calls (or more) to keep fd state consistent across
all threads.

The children threads (non-main threads) in our implementation have to explicitly call
exit(). We can also allow the threads to call return. Think, how one’d handle the correct
termination of a thread?

Task 2: join the queue

As part of this task, implement the join system call that reaps an exited thread spawned by the
process calling join. The declaration of the join system call is as follows: int join() ;

Like wait, join is a blocking system call that returns the thread-ID of a reaped thread, when called
from the main thread. If none of the threads have exited, then the call waits for one of the threads
to exit. If there are no threads left to exit then join will return -1.

Reaping a thread involves cleaning up its TCB(-cum-PCB), and updating the PCB of the process,
which consists of steps like:

Freeing up the kernel-stack of the thread (we are not freeing the user-stack as explained
later on thread exit).



e Updating the TCB entries of the kernel thread to their respective default values, like in
the implementation of wait (for example, set the state field to UNUSED).
Decrementing the thread-count of the process.
Remember that threads share the same page table so we must not deallocate the page
table when a thread exits since other threads might be accessing the same. Deallocation
of the page table has to be done in wait when the process exits.

e A process should only be able to reap threads that it spawned, not the threads created
by other processes, this should be checked when iterating over the proc table.

Based on our design, the join may lead to a page-sized memory leak due to the stack memory
allocated earlier and not freed on thread termination. Our current design will keep things simple
and let this be. As an extension, think how to overcome these leaks cleanly.

Note: The create_thread wrapper function should be available as part of every program that runs
in xv6. Thus, we should add prototypes to user/user.h and the actual code to implement the library
routines in user/ulib.c.

We also have to make changes to the wait system call to implement the following:

e the wait system call must only consider the exit of child processes (and NOT the
threads of the child process, if any). So, wait should not unblock the parent when a
thread of a child process exits.

e All else (freeing the memory, setting the PCB to UNUSED,etc) proceeds as normal.

Use the test cases tc-var.c and tc-array.c to test the implementation.

tc-var.c
Spawns 20 threads each of which increments a global counter by 1. If done right, the
final value of VAR should be 20, but since we are trying to simulate race condition here, we may
not see the value 20 as output.

tc-array.c
Declares 2 arrays and then spawns 2 threads. The first thread sums the elements of the first
half of the first array and second half of the second array. The second thread sums up the
remaining elements (second half of the first array, first half of the second array). The program
then adds up these two values in the main function and prints the final sum.

Task3: semaphores cometh!

Next, we will work on a semaphore implementation. This would include implementing four system
calls, with the following declarations —



int semaphore_init(int value);
int semaphore_destroy(int sem);
int semaphore_down (int sem) ;
int semaphore up(int sem);

For this implementation, we’ll maintain a global array of 16 semaphores in the kernel space. Study
the fields of struct semaphore (in proc.c). The used field indicates if the semaphore is
currently in use or not. This field must be set while initializing the semaphore, and reset when
destroying. The locks used in each of the 16 semaphores in the global array are initialized by
calling the sinit function (defined in proc. c) when the kernel boots up.

e The semaphore init call should find an unused semaphore in the array, initialize its
value, and return its index.

e semaphore down and semaphore up should implement the typical functionality of a
semaphore down and up call. We must make sure that the down operation is blocking
and not busy-looping. Use sleep and wakeup?2 (provided in proc. c) functions for this
implementation.

e semaphore down should check the current value of semaphore. If it is less than or
equal to zero, it should put the calling process to sleep. Otherwise, it should reduce the
value of semaphore and return successfully with 0. In any other case, it should return -1
to indicate error.

e semaphore up should increment the value of semaphore, and check if there are any
blocked processes, and wake one of them up. If no thread is blocked on the semaphore,
it should just increment and return 0. In any other case, it should return -1 to indicate
error.

e semaphore destroy should clear the state of semaphore at the index passed, i.e.,
set the used field to zero.

Find the empty definitions of the above four functions in proc.c. and implement the four
functions.

The calls above will be used in conjunction with the above threading functions (create_thread and
join) to manage concurrent access to shared resources. Study the tc-semaphore.c source file to
understand a simple usage of semaphore.

tc-semaphore.c
Extends tc-var.c, and makes use of the semaphore implementation, to provide mutual exclusion
for the critical section.

Task 4: STOP RIGHT THERE!!!




Using the above defined semaphores, we can work on the implementation of a barrier
synchronization primitive in the user space.

A barrier is a synchronization primitive that blocks threads from progressing until a required
number of threads reach the barrier condition/point. When this happens, the last thread opens the
barrier allowing all blocked threads to proceed (we want all blocked threads to be released
simultaneously).

Synchronization Barriers

Process /

Barrier

Figure 2-37. Use of a barrier. (a) Processes approaching a barrier.
(b) All processes but one blocked at the barrier. (¢) When the
last process arrives at the barrier, all of them are let through.

ating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights d. 0-13-6006639

Here, we are using the barriers in a loop, and want it to be reset after it allows threads to be
passed so that it can be reused. So, when the required number of threads reach the barrier, the
barrier should let all threads through and then go back to its original state where it blocks all
threads till the required number of threads have reached the barrier.

Modify file te-barrier.c using the semaphore functionality to implement barriers at the
specified sections in the code. Functionality details.

e All threads should execute Section 1 of the code together and no thread should be
allowed to proceed to Section 2 till all threads have completed execution of Section 1.

e When all threads have executed Section 1, the last thread which reaches the barrier
should open it and allow all threads to start Section 2 execution (by looping or
otherwise).

e No thread should be allowed to loop back to Section 1 till all threads have completed
execution of Section 2.

e This process should repeat as long the loop is running, which would require barriers to
be reset once they are opened.

This would require 2 barriers, one for Section 1 and another for Section 2. The only
synchronization primitive that should be used are semaphores implemented in Task 3 (no
locks/mutexes allowed).




Submission instructions

e Submissions are on the assignment link via Moodle.
Name your submission as {rollnumber_1lab8}.tar.gz
tar -czvf {rollnumber_1lab8}.tar.gz {rollnumber_lab8}
(e.g., 200050183_lab8.tar.gz)

e The tar submission should contain all xv6 source files along with the test case files and
the makefile

e Run make clean before making a tar file for submission

Deadline: IS HEERGENEDD



