
CS 333: Operating Systems Lab
Autumn 2022, Lab 9

Implementing Synchronization to be used with the clone System Call

This lab explores the introduction of synchronization primitives in xv6. In this lab,
we will modify the xv6 code to create a lock and semaphore for synchronization
across threads.

Part 1: Locks For Cloned Processes

Skeleton Code Provided: You should copy the xv6 files provided to you to your xv6
directory for the starting point of your implementation. You have to write your code
in these files accordingly, wherever TODO is mentioned.

We have already provided the xv6 files which you have to copy and replace in the
original xv6 directory, in which clone and join system calls are implemented
according to Lab8. In this lab, you will have to implement locking system calls for
multi-threaded programs built using clone system calls. You have to implement three
system calls init_lock, acquire_lock, and release_lock for the same.

For this, use the given lock_t structure, shown below, that will contain the lock
variable (to be initialized to zero), which you can use later as an argument for the
functions required.

typedef struct lock_t {
uint locked;

} lock_t;

int init_lock(lock_t *);
int acquire_lock(lock_t *);
int release_lock(lock_t *);

All the structures are declared in ulock.h and system call declarations are in
multiple files, you have to code their definitions in proc.c and ulock.c. This is for
both parts of this Lab.

Implementation Instructions:

The init function initializes the lock. The lock function's internal logic is similar to
the kernel spinlock already present in xv6. You have to implement a spinlock, as



opposed to a sleeping lock. This will be a lighter version of kernel spinlock already
implemented in xv6.

You will have to use the atomic function xchg, in the user space which you will need
for lock logic, for releasing and acquiring the locks. The function is already a part of
kernel xv6 locking logic and can be found in the xv6.h file. You can directly use this
function in the userspace file after including “xv6.h”.

Acquire function will use the xchg function in a while loop and spin till the lock is
released. The release function will use asm volatile (a C function used for passing
assembly code, you can use the internet to look into this in detail). asm volatile

function is also used in kernel xchg implementation and kernel spinlock
implementation in xv6. You can refer to those functions for understanding their use
in releasing the lock.

Also, the C compiler and hardware may re-order loads and stores. To avoid this you
have to use a synchronize function in your user space lock implementation, which
can be found in kernel spinlock implementation.

Part 2: Semaphores

In this part you need to implement semaphores system calls for synchronization
amongst userthreads. You have to implement init_sem, up_sem, and down_sem for
the same.

typedef struct sem_t {
uint value;
lock_t lk;

} sem_t;

int init_sem(sem_t *, int);
int up_sem(sem_t *);
int down_sem(sem_t *);

The structure is declared in ulock.h and functions definitions should be coded in
ulock.c and proc.c in the TODO part.



Implementation Instructions:

● The init function initializes the semaphore. First argument is a pointer to
your semaphore object and the second argument is the positive value with
which your semaphore is to be initialized. The semaphore’s internal logic is
similar to the kernel sleeplock already present in xv6.

● To implement down_sem we need to check if the value is positive. If it's
positive we need to decrement it by 1 while holding the semaphore’s lock

● If the value is 0 we sleep on some identifier which indicates this thread is to
be resumed iff this semaphore is upped. This identifier can be the address of
semaphore’s lock or address of semaphore itself.

● You need to define a function block_sem in proc.c, for suspending the thread.
Skeleton is already provided, you just have to fill the logic. In the function,
chan is the identifier.

void block_sem(void* chan);

This function will acquire ptable lock, then release the semaphore lock, and
then call sleep with chan and second argument as &ptable.lock. Then release
ptable lock. (We acquire ptable lock as the sleep function expects the kernel
code to hold some kernel-spinlock before calling it and the sleep function
nonetheless acquires ptable lock so we do it earlier as we have no other
kernel-spinlock to acquire) Then again acquire semaphore lock.

Additional info: The ordering of acquiring/releasing of locks is like this to
avoid edge cases where a thread is interrupted before going to sleep and
during this time another thread comes and calls up_sem which will broadcast
resume signal to all the threads waiting on the semaphore. The thread which
got interrupted before sleeping will fail to receive this signal even though it
was supposed to wake up from the signal. It will instead sleep now.

● When we resume we again check the value and sleep if the value is still 0. Else
we can go ahead and decrement the value. You can refer to acquiresleep

function in sleeplock.c

● For implementing up_sem we need to increment the value by 1 and then
awaken the threads blocked on the semaphore. Resumption of threads is done
by calling signal_sem function which will resume all the threads waiting on
the channel (chan) passed as an argument. You can refer to releasesleep



function in sleeplock.c.signal_sem
void signal_sem(void* chan);

You need to implement signal_sem which calls wakeup to resume all the
processes waiting on chan.

Note: Make sure to release the semaphore’s lock before sleeping and acquire it
back after you awaken from sleep. In both signal_sem and block_sem chan is
passed which is the virtual address of semaphore/semphore’s lock. But we want
our threads to sleep on the physical address so as to avoid conflict with some
other process. So convert this va to pa before passing it to wakeup or sleep call.

Part 3: Testing Your Implementation

You can make sure that your lock mechanisms are properly implemented. Two test
case files are given with other xv6 files. Changes to MakeFile are already made for
compiling them.

For a test case named tc-<something>.c, run make and make qemu-nox. On the
command prompt of xv6, execute tc-<something> to run the test case.

1. Global Variable (tc-var.c)

This test case contains a global variable initialized to zero and the main
process creates N threads and each thread increments the global variable
value by 1000. The increment operation is protected by locks so that there
will be no interleaving. The print statement is not protected by locks, so it may
print thread_id differently. Finally, the main program prints the updated
variable, which should be N*1000 (We will check this only). For the given test
case, N is 5. To see the difference, you can run your implementation with Lab8
test cases, after removing the sleep statement where the thread is created.



2. Semaphore Basic (tc-sem.c)

This test case is similar to the above scenario, the only difference is we are
using semaphores for the lock mechanism. As stated earlier, printing can be
interleaved, but final value should be N*1000.

Submission Instructions

● All submissions are to be done on moodle only.

● Name your submission as <rollnumber>_lab9.tar.gz (e.g 190050004_lab9.tar.gz)

● The tar should contain the following files in the following directory structure:
<rollnumber>_lab9/

|__< all modified files in xv6 such as

syscall.c, syscall.h, sysproc.c, user.h, usys.S, proc.c, trap.c, defs.h,
proc.h, . . . >

|__Makefile

Please adhere to it strictly.

● Your modified code/added code should be well commented on and readable.

● tar -czvf <rollnumber>_lab9.tar.gz <rollnumber>_lab9



Deadline:Friday, 28th October 2022, 11:55 PM via moodle.


