
Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 744 Design and Engineering of Computing Systems
Autumn 2024

Lab 2: stay calm and trust the process

Instructions
● This course is on a no-plagiarism diet. All parties involved in plagiarism harakiri will be penalized

referred to DADAC and penalized to the maximum extent.
● The Moss Detective Agency has agreed to conduct all investigations.

https://theory.stanford.edu/~aiken/moss/
Byomkesh, Sherlock, Phryne, Marple, and Hercule are on standby.

● Hardcoding expected output of execution in source code will yield negative marks.
● Generative AI (ChatGPT, Gemini, etc.) is your friend, but is not you!

Analytical, critical and creative thinking are learning outcomes of this course and source code or
any content via GenAI tools cannot be part of your submissions.

● Note: Submission guidelines to be strictly followed; otherwise, your submission will not count.
● Login with username your CSE LDAP ID or labuser on software lab machines for this lab.
● This file is part of the lab2.tar.gz archive which contains multiple directories with programs

associated with the exercise questions listed below.
● Most questions of this lab are tutorial style and are aimed to provide an introduction to tools and

files related to system and process information and control.

Required reading/reference: https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-api.pdf

1.0.1 WARM UP

The fork() system call creates a new process by duplicating the calling process. The new process is
referred to as the child process, and the calling process is referred to as the parent process. Please
refer to the man pages for more information about fork: fork() man page
Listed below is a program using the fork system call —
#include<stdio.h>
#include<unistd.h>
int main(){

fork();
fork();
fork();
fork();
printf("Hello world\n"); return 0;

}

a. How many times would the string Hello world be printed?
b. How many new processes would be created other than the original/first process?
c. Draw the process hierarchy of all the processes during execution, i.e., parent-child relationships.

Verify your answers by compiling and executing the program.

https://theory.stanford.edu/~aiken/moss/
https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-api.pdf
https://man7.org/linux/man-pages/man2/fork.2.html

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 744 Design and Engineering of Computing Systems
Autumn 2024

1.0.2 WARM UP

Listed below is a program using the fork system call —
#include<stdio.h>
#include<unistd.h>

int main(){
int a=10;
int pid=fork();
if(pid==0){

a++;
}else{

a--;
}
printf("%d\n, a");
return 0;

}

a. On execution, how many times will the value of variable a be printed?
b. What do the value(s) of the variable a printed by this program infer (regarding data of parent and child
processes)?

1.a.
Write a program 1a.c which creates a child process using fork and prints the PID (process id) of the
parent process id and its own process id, for both the parent and child processes.

Sample Output:
user@users-linux:~$./1a
P1 PID: 190498, PPID: 190235
P2 PID: 190499, PPID: 190498

Which process is the parent of the process corresponding to the program 1a.

1.b.
Write a program 1b.c which takes an integer k as command line argument and creates k child
processes, with each printing its kth-index and its PID.

Sample Output:
user@users-linux:~$./1b 4
Child process 1, PID: 190247
Child process 2, PID: 190248
Child process 3, PID: 190249
Child process 4, PID: 190250

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 744 Design and Engineering of Computing Systems
Autumn 2024

1.c.
Write a program 1c.c which takes an integer k as command line argument and creates k child
processes, with the parent process terminating only after all its child processes terminate. Each
child process should sleep for 5 seconds while the parent has no sleep statement.

New system calls — wait, waitpid

Sample Output:
user@users-linux:~$./1c 3
190401: Parent process, PID: 190401
190402: Child process 1, PID: 190402, PPID: 190401
190403: Child process 2, PID: 190403, PPID: 190401
190404: Child process 3, PID: 190404, PPID: 190401
190401: PID: 190402 exited
190401: PID: 190403 exited
190401: PID: 190404 exited

Note: The exit messages should be printed from the parent process after the child process terminates.
Each print statement starts with PID of the process printing the message.

1.d
Write a program 1d.c that takes an integer k as a command-line argument and creates k nested child
processes. As shown in the diagram below, a child process(C2) created by another child process(C1) is
said to be a nested child of the main process(P).
Each child process should terminate before its parent process, ensuring the parent process waits for its
child to finish before it exits.

The diagram visually represents the hierarchy, with
arrows pointing from parent to child implying a fork
by the parent process, and shows the process IDs
to track the lineage of processes.

References: fork() man page, wait() man page

https://man7.org/linux/man-pages/man2/fork.2.html
https://man7.org/linux/man-pages/man2/waitpid.2.html

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 744 Design and Engineering of Computing Systems
Autumn 2024

Sample Output:
user@users-linux:~$./1d 3
38828: Number of children: 3
38828: Main Process’s PID is: 38828
38829: PID: 38829 PPID: 38828 created
38830: PID: 38830 PPID: 38829 created
38831: PID: 38831 PPID: 38830 created

38830: PID: 38831 PPID: 38830 exited
38829: PID: 38830 PPID: 38829 exited
38828: PID: 38829 PPID: 38828 exited

38828: Main Process(PID: 38828) exiting

Note: Each print statement starts with PID of the process printing the message.

1.e
Write a program 1e.c that acts as a simple command-line calculator. The calculator program should
prompt the user for a command (min, max or sum), and for each command instance create a child
process using fork() to execute the command, and wait for the child process to complete. The child
process should have logic to execute these 3 commands. If the command cannot be found then it should
display Command not found message and continue to prompt the user for another command. The
calculator should be able to exit with command exit.

Format of the arguments given to the calculator:
>>> command N arg1 arg2 arg3 ... argN // N is the number of arguments

References: fork() man page, wait() man page

Sample Output:
user@users-linux:~$./1e
>>> max 5 1 2 3 4 5
5
>>> min 3 9 6 10
6
>>> sum 2 15 17
32
>>> invalid_command
Command not found
>>> exit
user@users-linux:~$

Note: To parse input arguments to the calculator, you may want to use the C string library.

https://man7.org/linux/man-pages/man2/fork.2.html
https://man7.org/linux/man-pages/man2/waitpid.2.html

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 744 Design and Engineering of Computing Systems
Autumn 2024

1.f
Write a program 1f.c that takes an executable-file-name at command line argument, then it creates a
child process using fork(), the child process then calls exec system call (e.g., execv or
execp) to execute the file taken as command line argument. If the file does not exist then the program
should print “Executable file not found” to the output terminal.

In the given example, executable-file-name is hello, and is in the same directory as the executable 1f
and prints a Hello, World! message.

References: exec() man page

Sample Output:
user@users-linux:~$./1f hello
1f PID: 38929
PID: 38931, PPID: 38929
Hello, World!
user@users-linux:~$./1f invalid_name
1f PID: 38963
Executable file not found

Note: execv() returns only if an error has occurred, else the statements after execv() will not be
executed.

1.g
Redo task 1.e using the exec system call.
Create 3 executable files min, max and sum which take command line arguments in the given format.
user@users-linux:~$./max N arg1 arg2 arg3 ... argN
user@users-linux:~$./min N arg1 arg2 arg3 ... argN
user@users-linux:~$./sum N arg1 arg2 arg3 ... argN

Write a program 1g.c by modifying the 1e.c such that after creating a child process using the fork()
system call, the child process should use the exec system call with proper arguments. For any command
other than min, max and sum the program should print a “Command not found message” and prompt
again for another command. The command exit should quit the program..

Example execv() invocation of the program name sum
char *args[] = {“sum”, “3”, “1”, “2”, “3”};
execv(“sum”, args);

Sample Output:
user@users-linux:~$./1g
>>> max 5 1 2 3 4 5
5
>>> min 3 9 6 10

https://man7.org/linux/man-pages/man3/exec.3.html

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 744 Design and Engineering of Computing Systems
Autumn 2024

6
>>> sum 2 15 17
32
>>> invalid_command
Command not found
>>> exit
user@users-linux:~$

A file descriptors detour

References: link1 link2

In UNIX-based OSes, each process has a per-process file descriptor table as part of the OS state to
keep track of all the open files of the process (The fd table is an array of pointers to the global file table,
and the fd is an index to an array element in this array). Further, each entry in the file descriptor table
points to a global file table. The global file table contains actual metadata about the file (an example
would be where the file is actually located on disk, the current offset for file operations, the number of
file descriptor references to the file, etc.).

Entries at index 0, 1, and 2 in each process’s file descriptor table normally point to the STDIN or
standard input (input from your terminal/console), STDOUT or standard output (output to your
terminal/console), and STDERR or standard error (output to your terminal/console) files respectively.
These file descriptors are known as standard file descriptors.

But why? Why do standard file descriptors exist in UNIX systems’ processes, and where are they
typically used in a program's execution?

As it turns out, the first process that is created (init process) opens these files, and then on these file
descriptors are inherited from parent processes upon fork(). Interestingly, all interactions that are
done with routines such as printf(), scanf(), which in turn use the write and read system calls,
happen through these files.

Consider the following sample program

int main(){
char buffer1[100];
int fd = open("file.txt", O RDONLY);
read(fd, buffer1, 100);19401:
close(fd);
return 0;

}
The diagram shows the state of the file
descriptor table and global file table after the
read system call has been performed and
before the file is closed using the close system call.

https://man7.org/tlpi/download/TLPI-04-File_IO_The_Universal_IO_Model.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/file-intro.pdf

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 744 Design and Engineering of Computing Systems
Autumn 2024

2.0.1WARM UP

To gain a better understanding of the file descriptor table's dynamics, let's walk through a simple example.
We will use the warmup.txt file (10 bytes in size), which is included with the lab's auxiliary files.

The sample program provided opens the warmup.txt file twice using the open() system call, storing
the file descriptors in fd1 and fd2, respectively. The program then reads the contents of the file into
three memory regions — buffer1, buffer2, and buffer3, using the read() system call.

Additionally, the program closes the file descriptor associated with standard input (indexed at 0) using the
close() system call, and subsequently reopens warmup.txt storing this new file descriptor in fd3.
After completing all operations, the program closes all open files using the close() system call.

References: open() man page, close() man page, read() man page

#include<stdio.h>
#include<unistd.h>
int main(){

char buffer1[10], buffer2[10], buffer3[10];

int fd1 = open("warmup.txt", O RDONLY);
int fd2 = open("warmup.txt", O RDONLY);

read(fd1, buffer1, 5);
read(fd1, buffer2, 5);
read(fd2, buffer3, 10);

close(0); // Closing STDIN
int fd3 = open("file.txt", O RDONLY);

close(fd1);
close(fd2);
close(fd3);
return 0;

}

a.What will be the values of fd1, fd2, and fd3?
b.What will be the contents of buffer1, buffer2, and buffer3?
c. Draw a picture similar to the one in the box above to show the state before the close(fd1) statement
is called.

You can verify your answers by compiling and executing the program via gdb.

https://man7.org/linux/man-pages/man2/open.2.html
https://man7.org/linux/man-pages/man2/close.2.html
https://man7.org/linux/man-pages/man2/read.2.html

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 744 Design and Engineering of Computing Systems
Autumn 2024

2.0.2 WARM UP

This program shows how a fd table is shared when a parent process creates a child process via the fork
system call. In the program, the parent first opens a file and stores the file descriptor in fd1, it then
creates a child process, opens the file again, for which it stores the file descriptor in fd2, and then waits
for it to complete. The child process adjusts the current offset via a call to lseek() and then exits.
Finally, the parent process, after waiting for the child process, checks the current offset and prints out its
value.

#include<stdio.h>
#include<unistd.h>
int main(){

int fd1 = open("abc.txt", O_RDONLY);
int rc = fork();
if (rc == 0) {
rc = lseek(fd1, 10, SEEK_SET);
printf("child: offset %d\n", rc);
} else if (rc > 0) {
int fd2 = open("abc.txt", O_RDONLY);
(void) wait(NULL);
printf("parent: offset %d\n", (int) lseek(fd1, 0, SEEK_CUR));
}
return 0;

}

a.What do you think will be the value of fd1 in parent and child?
b.What will be the value of fd2 in the parent?
c.What will be the output of the printf() statements and why?
d. Draw a picture similar to the one in the box above to show the state before the wait(NULL) statement
is called.
Hint: There will be two file descriptor tables and one global table. Some of the entries will be shared.

You can verify your answers by compiling and executing the program via gdb.

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 744 Design and Engineering of Computing Systems
Autumn 2024

2.a.
Implement a simplified version of the cat command (name it 2a.c) using the fork system call
to create the child process that reads contents from STDIN or a file and writes them to STDOUT
using system calls read and write (NOT printf and scanf). If the program is run with no
arguments, it should read from standard input (STDIN) till a new line character and output to
standard output (STDOUT), if a filename is mentioned at the command line, the program should
read from till the end of the file and write to STDOUT.
Do not use the shell’s cat command from within your program.

Sample Output:
abc.txt : abc (content of abc.txt file)

user@users-linux:~$./2a abc.txt
The only true limit is the one you set for yourself – Master Shifu

user@users-linux:~$./2a
>>> OS is critical for world peace!
OS is critical for world peace!
>>>

Press ctrl+d to signal to close the program.

2.b.
Following a similar approach to the cat command implementation, implement a simplified
version of the cp command that copies the contents of a source file to a destination file using
system calls like open, read, write, and close.

The program (2b.c) should read and write only to file descriptors 0 and 1 (similar to the cat
program), but the fd’s should be set up such that read/write happens on the files specified.

Hint:
The close system call deletes a file descriptor from the per-process fd table and a subsequent
call to open system call use and return the smallest available value of file descriptor index.

user@users-linux:~$./2b abc.txt xyz.txt
user@users-linux:~$./2a abc.txt
The only true limit is the one you set for yourself – Master Shifu
user@users-linux:~$./2a xyz.txt
The only true limit is the one you set for yourself – Master Shifu

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 744 Design and Engineering of Computing Systems
Autumn 2024

2.c.
Write a program 2c.c which performs the following tasks:

● Use the dup system call to duplicate the file descriptor for standard output
(STDOUT_FILENO) and standard input (STDIN_FILENO)

● Use the duplicated file descriptor for standard input to read the input and output the read
content to the terminal.

● Use the dup2 system call to redirect standard output to a file (dup.txt).
Note that this involves opening the file dup.txt, closing STDOUT_FILENO and using
dup2.
Write "I am re-directed output!" to the file using the STDOUT_FILENO.

● Again use dup2 to restore the original standard output and write "I am original
output!" to the terminal using the STDOUT_FILENO.

References: dup man page

Sample Output
user@users-linux:~$./2c
>>> DECS
you have entered: DECS
I am original output!
user@users-linux:~$./2a dup.txt
I am re-direction output!

There is a next page to this document!

https://man7.org/linux/man-pages/man2/dup.2.html

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 744 Design and Engineering of Computing Systems
Autumn 2024

pipes — plumbing for the flow of information between processes

A pipe is a mechanism for inter-process communication using file descriptors.
man page of the pipe system call is here.

int pipe(int pipefd[2]);

This above call initializes a pipe and allocates two file descriptors via the arguments passed to the call.

The pipe system call initializes the 0th file descriptor pipefd[0] as the read end of the pipe and
pipefd[1] as the write end of the pipe as shown in the figure.

After the pipe is set up, all writes using via fd[1] are connected to an in-kernel pipe (i.e., queue) and
can be read using the fd[0] file descriptor.

When used along with the fork system call, pipes enable Inter-Process Communication (IPC).

2.d.
Write a program 2d.c that creates two child process and connects the standard output of the first child to
the standard input of the second child using the pipe() system call. The first child should take an input
from the standard input and find the square of the value, which should be written to the standard output
(the pipe’s write end). The second child should take the squared value from the standard input (the pipe’s
read end), find the square root of the same, and print the original value in the standard output.

Sample Output:
user@users-linux:~$./2d
Process A (pid: 1234): Input value of x: 4
Process B (pid: 1235): Got value from A: 16
Process B (pid: 1235): Original value of x: 4

https://man7.org/linux/man-pages/man2/pipe.2.html

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 744 Design and Engineering of Computing Systems
Autumn 2024

2.e.
Write a program to process the file bigdata.txt and determine how many times the following words
appear, regardless of the case: the, of, and, a, to in the data file.

A basic approach would be to write a program that sequentially scans the entire file and counts each
word's occurrences. However, a more efficient method involves parallel processing using multiple
processes. Write a program named 2e.c that takes a number as a command-line to specify the number
of parallel processes the main process will set up to process the data file (bigdata.txt). Each of the
child processes works on a part of the file, if there are n child processes each of them is assigned 1/nth
of the data file for processing.

The parent process which part of the data file a child process is responsible for via a dedicated pipe, by
sending a message in the following format:
<start-offset>,<size of data chunk>

For example, if there are two child processes and the file is 10 bytes long, the message format for each of
the chile processes will be —
0, 5 — for one child process and
5, 5 — for the second child process

Each child process will seek to its designated position in the file and read the assigned portion of the file
to perform the word count. Each process should maintain a histogram for the occurrences of the specified
words. Once the computation is complete, the child processes should send the computed values back to
the parent process through the same pipe.

A child process will convey the count values for each of the words in the following format:
<the-count>,<of-count>,<and-count>,<a-count>,<to-count>

After receiving the results from all child processes, the parent process should aggregate the word counts
and display the final histogram. Additionally, the program should measure and print the total time taken for
the computation. Experiment with different numbers of child processes (1, 2, 4, 8) and observe the impact
on performance.

All inter-process communication must be done using the pipe system call.
Sample Output:
user@users-linux:~$./2e 2
the: 4354
of: 6235
and: 1234
a: 5598
to: 7824
Computation time: 12s

Note: If a process tries to read before something is written to the pipe, the process is blocked until
something is written and is available in the pipe.

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 744 Design and Engineering of Computing Systems
Autumn 2024

Submission Guidelines

● All submissions via Moodle.
● Place all the files in your submission directory, with the directory name being your roll number.
● Warmup’s questions should be answered in a text of pdf file named warmup.txt or

warmup.pdf
● Tar and gzip the directory using the command

$ tar -zcvf <rollno_lab2>.tar.gz <rollno_lab2>
Please use this command for creating your submission!

For example; if your roll number is 123456789, then the directory name will be
123456789_lab2, and submission will be 123456789_lab2.tar.gz

Everything should be in lower case. And use only Only .tar.gz (.tar.xz, .zip, .gz, .xz, etc.)

● The tar should contain the following files in the following directory structure:

<rollnumber_lab2>/
|____1a.c
|____1b.c
|____1c.c
|____1d.c
|____1e.c
|____1f.c
|____1g.c
|____2a.c
|____2b.c
|____2c.c
|____2d.c
|____2e.c
|____warmup.txt

● Deadline: 21 August 2024, 11.59 pm. (via Moodle)

