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Threads
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Single threaded multi threaded  
(2 threads)

● An independent ordering 
of instructions

● Another copy of a process 
that executes 
independently

● Share same address 
space (user-level threads)

● Independent address 
spaces but map to same 
physical addresses
(kernel threads)

● Different PC and stack
(either on same process 
or across processes)
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Why threads?

Example: 

 

Parallelism
Efficient 

1 2 3 4 5 6

T1
(sum1)

T2
(sum2)

Sum = sum1+sum2
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pthreads 

Thread API
To create and control threads

● To use pthread API, include pthread.h header in source code
● To compile, use -pthread flag:

gcc -o prog prog.c -pthread
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Thread creation

#include <pthread.h>
int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,
void *(*start_routine)(void*),
void *arg);

thread: pointer to structure of type pthread_t 
attr: used to specify any attribute this thread might have. 
start_routine: the function this thread start running in
Arg: argument to be passed to the function
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Thread creation

Task 1:  program to create threads

Why there is no output ?

Main() thread is exiting before other threads finishes

6



CS 744 Autumn 2024, CSE IIT Bombay

Thread Completion

int pthread_join(pthread_t thread, void **value_ptr);

                                           wait for completion of thread
thread: to specify which thread to wait for
**value_ptr: Pointer to the return value you expect to get back
Pass NULL,  if we don’t care about the return value
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Task 2:  Revisit Task 1 with pthread_join
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Example: threads with shared data
static volatile int counter = 0;

void *mythread(void *arg)

{

   printf("%s\n", (char *) arg);

   int i ;

   for(i=0; i<1000000; i++)

{

counter = counter+1;

}

   return NULL;

}
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Shared variable

Task 3:  threads with shared variable
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Example: threads with shared data
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Expected output:  2000000

Actual output: Smaller than 2000000

Why ?

Race condition
(simultaneous access to critical section)  
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Race condition

CS: counter = counter+1

Assemble code:
mov eax, [counter] ; Load the value of 'counter' from memory into EAX
inc eax           ; Increment the value in EAX by 1
mov [counter], eax ; Store the updated value back to 'counter'
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Race condition

11

OS Thread 1 Thread 2 eax      counter

                                                                                                  

Before …
mov eax,[counter]
inc eax 

               

       0           20
      20          20
      21          20
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Race condition

12

OS Thread 1 Thread 2 eax      counter

Interrupt 
Save T1 state and 

restore T2 state

                                                                                                  

Before …
mov eax,[counter]
inc eax 

               

       0           20
      20          20
      21          20

      21         20
      0           20
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Race condition

13

OS Thread 1 Thread 2 eax      counter

Interrupt 
Save T1 state and 

restore T2 state

                                                                                                  

Before …
mov eax,[counter]
inc eax 

mov eax,[counter]
inc eax 
mov [counter], eax 

               

       0           20
      20          20
      21          20

      21         20
      0           20
      20         20
      21         20
      21         21
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Race condition

14

OS Thread 1 Thread 2 eax      counter

Interrupt 
Save T1 state and 

restore T2 state

Interrupt
Save T2 state and 

restore T1 state                                                                                                   

Before …
mov eax,[counter]
inc eax 

mov eax,[counter]
inc eax 
mov [counter], eax 

               

       0           20
      20          20
      21          20

      0           20
      20         20
      21         20
      21         21

      21         21
      21         20
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Race condition

15

OS Thread 1 Thread 2 eax      counter

Interrupt 
Save T1 state and 

restore T2 state

Interrupt
Save T2 state and 

restore T1 state                                                                                                   

Before …
mov eax,[counter]
inc eax 

mov [counter], eax

mov eax,[counter]
inc eax 
mov [counter], eax 

               

       0           20
      20          20
      21          20

      0           20
      20         20
      21         20
      21         21

      21         21
      21         20
      21          21
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Race condition

16

OS Thread 1 Thread 2 eax      counter

Interrupt 
Save T1 state and 

restore T2 state

Interrupt
Save T2 state and 

restore T1 state                                                                                                   

Before …
mov eax,[counter]
inc eax 

mov [counter], eax

mov eax,[counter]
inc eax 
mov [counter], eax 

               

       0           20
      20          20
      21          20

      0           20
      20         20
      21         20
      21         21

      21         21
      21         20
      21          21  ❌ 22 ✅
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Race condition

17

Concurrent execution may lead to race condition 

Solution:  Mutual exclusion of critical section and
                Atomicity of critical section

How to achieve it:  Using locks
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Locks

18

Provide mutual exclusion to a critical section

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

code:
pthread_mutex_t lock;
pthread_mutex_lock(&lock);
// critical section 
pthread_mutex_unlock(&lock);
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Locks

19

Initialize lock: 
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

Another way to initialize:
int rc = pthread_mutex_init(&lock, NULL);

To destroy:
pthread_mutex_destroy(&lock);

Task 4: Revisit task 3 with locks  
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Condition Variables

● Useful when some kind of signaling must take place between threads
● A condition variable (CV) is a queue that a thread can put itself into when waiting on some 

condition

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
● puts the calling thread to sleep, and waits for some other thread to signal it
● The responsibility of wait() is to release the lock and put the calling thread to sleep 

(atomically); when the thread wakes up (after some other thread has signaled it), it must 
re-acquire the lock before returning to the caller.

int pthread_cond_signal(pthread_cond_t *cond);
● unblock at least one thread blocked on the conditional variable
● Signal wakes up one thread, signal broadcast wakes up all waiting thread

20
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Condition Variables

● A thread calling wait routine:
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t init = PTHREAD_COND_INITIALIZER;
pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&init, &lock);
pthread_mutex_unlock(&lock);

● A thread calling signal routine:
pthread_mutex_lock(&lock);
initialized = 1;
pthread_cond_signal(&init);
pthread_mutex_unlock(&lock);

21

Task 5: Conditional variable 
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Condition Variables

while(initialized == 0); // spin

This will waste CPU cycle

Why lock is important? 

● A thread calling wait routine:
while (initialized == 0)

pthread_cond_wait(&init, &lock);

● A thread calling signal routine:
initialized = 1;
pthread_cond_signal(&init);

22

Before calling wait context 
switch happens



CS 744 Autumn 2024, CSE IIT Bombay

More About locks

23
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Locks

How to build a lock?

Objective: 
1. Mutual exclusion
2. Fairness
3. Performance
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Locks: controlling interrupts

void lock() {
DisableInterrupts();

}
void unlock() {

EnableInterrupts();
}
● This technique is used to implement locks on single processor systems 

inside the OS
● Disabling interrupts is a privileged instruction and program can misuse it 

(e.g., run forever)
● Will not work on multiprocessor systems, since another thread on 

another core can enter critical section

25
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Locks: A simple flag

typedef struct __lock_t { int flag; } lock_t;

void init(lock_t *mutex) {
mutex->flag = 0;
}
void lock(lock_t *mutex) {
while (mutex->flag == 1) ;
mutex->flag = 1; 
}
void unlock(lock_t *mutex) {
mutex->flag = 0;
}
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Locks: A simple flag

typedef struct __lock_t { int flag; } lock_t;

void init(lock_t *mutex) {
mutex->flag = 0;
}
void lock(lock_t *mutex) {
while (mutex->flag == 1) ;
mutex->flag = 1; 
}
void unlock(lock_t *mutex) {
mutex->flag = 0;
}
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Context switch
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Locks: A simple flag

Thread 1 Thread 2
call lock()
while (flag == 1)
Before setting flag 
interrupt: switch to Thread 2

call lock()
while (flag == 1)
flag = 1;
interrupt: switch to Thread 1

flag = 1; 
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Not providing Mutual exclusion
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Hardware Atomic Instructions

Continue in next class….
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