the pthreads API

CS744 Design and Engineering of Computing Systems

Autumn 2024

Threads

e An independent ordering — —
of instructions pc— | = Program code)/ — Program code
e Another copy of a process Heap PC(T1 / Heap
fchat executes PC(T2)
independently Free
e Share same address Eree tack(T1
space (user-level threads) SP(T1)— stack(T1)
e Independent address free
spaces but map to same
physical addresses SP(T2)— stack(T2)
(kernel threads) SP— stack o
e Different PC and stack

(either on same process _
Or across processes) Single threaded

multi threaded
(2 threads)

Why threads?

Example:
1123 4|5 6
T71 T2
(sum1) (sum2)
Sum = sum1+sum?2
Parallelism
Efficient

pthreads

Thread API
To create and control threads

e To use pthread API, include pthread.h header in source code
e To compile, use -pthread flag:
gcc -0 prog prog.c -pthread

Thread creation

#include <pthread.h>

int pthread_create(pthread _t *thread,
const pthread_attr_t *attr,
void *(*start_routine)(void®),
void *arg);

thread: pointer to structure of type pthread t

attr: used to specify any attribute this thread might have.
start_routine: the function this thread start running in
Arg: argument to be passed to the function

Thread creation

Task 1: program to create threads

Why there is no output ?

Main() thread is exiting before other threads finishes

Thread Completion

int pthread_join(pthread _t thread, void **value_ptr);
wait for completion of thread
thread: to specify which thread to wait for

**value_ptr: Pointer to the return value you expect to get back
Pass NULL, if we don’t care about the return value

Task 2: Revisit Task 1 with pthread_join

Example: threads with shared data

static volatile int counter = 0;
void *mythread(void *arqg)
{

printf ("$s\n", (char *) arg);
int 1 ;
for (1=0; 1<1000000; i++)

{

Icounter = counter+l; I(_— Shared Variable
}

return NULL;

Task 3: threads with shared variable

Example: threads with shared data

Expected output: 2000000
Actual output: Smaller than 2000000

Why ?

Race condition
(simultaneous access to critical section)

Race condition

CS: counter = counter+1

Assemble code:

mov eax, [counter] ; Load the value of 'counter' from memory into EAX
inc eax ; Increment the value in EAX by 1

mov [counter], eax ; Store the updated value back to 'counter’

Race condition

OS Thread 1 Thread 2 eax counter
Before ... 0 20
mov eax,[counter] 20 20

inc eax 21 20

Race condition

OS Thread 1 Thread 2 eax counter
Before ... 0 20
mov eax,[counter] 20 20
inc eax 21 20
Interrupt
Save T1 state and 21 20

restore T2 state 0 20

Race condition

(O] Thread 1 Thread 2 eax counter
Before ... 0 20
mov eax,[counter] 20 20
inc eax 21 20
Interrupt

Save T1 state and 21 20
restore T2 state 0 20
mov eax,[counter] 20 20

inc eax 21 20

mov [counter], eax 21 21

Race condition

(O] Thread 1 Thread 2 eax counter

Before ... 0 20
mov eax,[counter] 20 20
inc eax 21 20

Interrupt

Save T1 state and

restore T2 state 0 20
mov eax,[counter] 20 20
inc eax 21 20
mov [counter], eax 21 21

Interrupt
Save T2 state and 21 21
restore T1 state 21 20

Race condition

(O] Thread 1 Thread 2 eax counter
Before ... 0 20
mov eax,[counter] 20 20
inc eax 21 20
Interrupt
Save T1 state and
restore T2 state 0 20
mov eax,[counter] 20 20
inc eax 21 20
mov [counter], eax 21 21
Interrupt
Save T2 state and 21 21
restore T1 state 21 20
mov [counter], eax 21 21

Race condition

(O] Thread 1 Thread 2 eax counter
Before ... 0 20
mov eax,[counter] 20 20
inc eax 21 20
Interrupt
Save T1 state and
restore T2 state 0 20
mov eax,[counter] 20 20
inc eax 21 20
mov [counter], eax 21 21
Interrupt
Save T2 state and 21 21
restore T1 state 21 20
mov [counter], eax 21 QDX 22

Race condition

Concurrent execution may lead to race condition

Solution: Mutual exclusion of critical section and
Atomicity of critical section

How to achieve it: Using locks

Locks

Provide mutual exclusion to a critical section

int pthread_mutex_lock(pthread _mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

code:

pthread _mutex t lock;

pthread _mutex_lock(&lock);

// critical section

pthread _mutex_unlock(&lock);

Locks

Initialize lock:
pthread mutex_t lock = PTHREAD MUTEX_INITIALIZER;

Another way to initialize:
int rc = pthread_mutex_init(&lock, NULL);

To destroy:
pthread mutex destroy(&lock);

Task 4: Revisit task 3 with locks

Condition Variables

e Useful when some kind of signaling must take place between threads
e A condition variable (CV) is a queue that a thread can put itself into when waiting on some
condition

int pthread_cond_wait(pthread _cond_t *cond, pthread _mutex_t *mutex);
e puts the calling thread to sleep, and waits for some other thread to signal it
e The responsibility of wait() is to release the lock and put the calling thread to sleep
(atomically); when the thread wakes up (after some other thread has signaled it), it must
re-acquire the lock before returning to the caller.

int pthread_cond_signal(pthread _cond_t *cond);

e unblock at least one thread blocked on the conditional variable
e Signal wakes up one thread, signal broadcast wakes up all waiting thread

Condition Variables

e Athread calling wait routine:

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t init = PTHREAD_COND_INITIALIZER;
pthread_mutex_lock(&lock) ;
(initialized == 0)
pthread_cond_wait(&init, &lock);
pthread_mutex_unlock(&lock);

e Athread calling signal routine:

pthread_mutex_lock(&lock) ;
initialized = 1;
pthread_cond_signal(&init);
pthread_mutex_unlock(&lock);

Task 5: Conditional variable

CS 744 Autumn 2024, CSE IIT Bombay

21

Condition Variables

while(initialized == 0);// spin

This will waste CPU cycle

Why lock is important?

e Athread calling wait routine: / Before calling wait context
switch happens

while (dinitialized == 0)
pthread_cond_wait(&init, &lock);

e Athread calling signal routine:

initialized = 1;
pthread_cond_signal(&init);

More About locks

Locks

How to build a lock?

Objective:
1. Mutual exclusion
2. Fairness

3. Performance

Locks: controlling interrupts

void lock() {
Disablelnterrupts();

}

void unlock() {
Enablelnterrupts();

}

e This technique is used to implement locks on single processor systems
inside the OS

e Disabling interrupts is a privileged instruction and program can misuse it
(e.g., run forever)

e Will not work on multiprocessor systems, since another thread on
another core can enter critical section

Locks: A simple flag

typedef struct __ lock t {int flag; } lock t;

void init(lock_t *mutex) {
mutex->flag = 0;

}

void lock(lock_t *mutex) {
while (mutex->flag == 1) ;
mutex->flag = 1;

}

void unlock(lock_t *mutex) {
mutex->flag = 0;

}

Locks: A simple flag

typedef struct __ lock t {int flag; } lock t;

void init(lock_t *mutex) {
mutex->flag = 0;

}

void lock(lock_t *mutex) {
while (mutex->flag == 1) ;
mutex->flag = 1;
}

void unlock(lock_t *mutex) {
mutex->flag = 0;

}

Context switch

Locks: A simple flag

Thread 1 Thread 2
call lock()
while (flag == 1)
Before setting flag
interrupt: switch to Thread 2
call lock()
while (flag == 1)
flag = 1;
interrupt: switch to Thread 1
flag = 1;

Not providing Mutual exclusion

Hardware Atomic Instructions

Continue in next class....

