
CS 744 Autumn 2024, CSE IIT Bombay

the pthreads API

CS744 Design and Engineering of Computing Systems

Autumn 2024

CS 744 Autumn 2024, CSE IIT Bombay

Threads

Program code

Heap

Free

stack(T1)

free

stack(T2)

free

PC(T1)

PC(T2)

SP(T1)

SP(T2)

Program code

Heap

Free

stack

PC

SP

Single threaded multi threaded
(2 threads)

● An independent ordering
of instructions

● Another copy of a process
that executes
independently

● Share same address
space (user-level threads)

● Independent address
spaces but map to same
physical addresses
(kernel threads)

● Different PC and stack
(either on same process
or across processes)

2

CS 744 Autumn 2024, CSE IIT Bombay

Why threads?

Example:

Parallelism
Efficient

1 2 3 4 5 6

T1
(sum1)

T2
(sum2)

Sum = sum1+sum2

3

CS 744 Autumn 2024, CSE IIT Bombay

pthreads

Thread API
To create and control threads

● To use pthread API, include pthread.h header in source code
● To compile, use -pthread flag:

gcc -o prog prog.c -pthread

4

CS 744 Autumn 2024, CSE IIT Bombay

Thread creation

#include <pthread.h>
int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,
void *(*start_routine)(void*),
void *arg);

thread: pointer to structure of type pthread_t
attr: used to specify any attribute this thread might have.
start_routine: the function this thread start running in
Arg: argument to be passed to the function

5

CS 744 Autumn 2024, CSE IIT Bombay

Thread creation

Task 1: program to create threads

Why there is no output ?

Main() thread is exiting before other threads finishes

6

CS 744 Autumn 2024, CSE IIT Bombay

Thread Completion

int pthread_join(pthread_t thread, void **value_ptr);

 wait for completion of thread
thread: to specify which thread to wait for
**value_ptr: Pointer to the return value you expect to get back
Pass NULL, if we don’t care about the return value

7

Task 2: Revisit Task 1 with pthread_join

CS 744 Autumn 2024, CSE IIT Bombay

Example: threads with shared data
static volatile int counter = 0;

void *mythread(void *arg)

{

 printf("%s\n", (char *) arg);

 int i ;

 for(i=0; i<1000000; i++)

{

counter = counter+1;

}

 return NULL;

}

8

Shared variable

Task 3: threads with shared variable

CS 744 Autumn 2024, CSE IIT Bombay

Example: threads with shared data

9

Expected output: 2000000

Actual output: Smaller than 2000000

Why ?

Race condition
(simultaneous access to critical section)

CS 744 Autumn 2024, CSE IIT Bombay

Race condition

CS: counter = counter+1

Assemble code:
mov eax, [counter] ; Load the value of 'counter' from memory into EAX
inc eax ; Increment the value in EAX by 1
mov [counter], eax ; Store the updated value back to 'counter'

10

CS 744 Autumn 2024, CSE IIT Bombay

Race condition

11

OS Thread 1 Thread 2 eax counter

Before …
mov eax,[counter]
inc eax

 0 20
 20 20
 21 20

CS 744 Autumn 2024, CSE IIT Bombay

Race condition

12

OS Thread 1 Thread 2 eax counter

Interrupt
Save T1 state and

restore T2 state

Before …
mov eax,[counter]
inc eax

 0 20
 20 20
 21 20

 21 20
 0 20

CS 744 Autumn 2024, CSE IIT Bombay

Race condition

13

OS Thread 1 Thread 2 eax counter

Interrupt
Save T1 state and

restore T2 state

Before …
mov eax,[counter]
inc eax

mov eax,[counter]
inc eax
mov [counter], eax

 0 20
 20 20
 21 20

 21 20
 0 20
 20 20
 21 20
 21 21

CS 744 Autumn 2024, CSE IIT Bombay

Race condition

14

OS Thread 1 Thread 2 eax counter

Interrupt
Save T1 state and

restore T2 state

Interrupt
Save T2 state and

restore T1 state

Before …
mov eax,[counter]
inc eax

mov eax,[counter]
inc eax
mov [counter], eax

 0 20
 20 20
 21 20

 0 20
 20 20
 21 20
 21 21

 21 21
 21 20

CS 744 Autumn 2024, CSE IIT Bombay

Race condition

15

OS Thread 1 Thread 2 eax counter

Interrupt
Save T1 state and

restore T2 state

Interrupt
Save T2 state and

restore T1 state

Before …
mov eax,[counter]
inc eax

mov [counter], eax

mov eax,[counter]
inc eax
mov [counter], eax

 0 20
 20 20
 21 20

 0 20
 20 20
 21 20
 21 21

 21 21
 21 20
 21 21

CS 744 Autumn 2024, CSE IIT Bombay

Race condition

16

OS Thread 1 Thread 2 eax counter

Interrupt
Save T1 state and

restore T2 state

Interrupt
Save T2 state and

restore T1 state

Before …
mov eax,[counter]
inc eax

mov [counter], eax

mov eax,[counter]
inc eax
mov [counter], eax

 0 20
 20 20
 21 20

 0 20
 20 20
 21 20
 21 21

 21 21
 21 20
 21 21 ❌ 22 ✅

CS 744 Autumn 2024, CSE IIT Bombay

Race condition

17

Concurrent execution may lead to race condition

Solution: Mutual exclusion of critical section and
 Atomicity of critical section

How to achieve it: Using locks

CS 744 Autumn 2024, CSE IIT Bombay

Locks

18

Provide mutual exclusion to a critical section

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

code:
pthread_mutex_t lock;
pthread_mutex_lock(&lock);
// critical section
pthread_mutex_unlock(&lock);

CS 744 Autumn 2024, CSE IIT Bombay

Locks

19

Initialize lock:
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

Another way to initialize:
int rc = pthread_mutex_init(&lock, NULL);

To destroy:
pthread_mutex_destroy(&lock);

Task 4: Revisit task 3 with locks

CS 744 Autumn 2024, CSE IIT Bombay

Condition Variables

● Useful when some kind of signaling must take place between threads
● A condition variable (CV) is a queue that a thread can put itself into when waiting on some

condition

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
● puts the calling thread to sleep, and waits for some other thread to signal it
● The responsibility of wait() is to release the lock and put the calling thread to sleep

(atomically); when the thread wakes up (after some other thread has signaled it), it must
re-acquire the lock before returning to the caller.

int pthread_cond_signal(pthread_cond_t *cond);
● unblock at least one thread blocked on the conditional variable
● Signal wakes up one thread, signal broadcast wakes up all waiting thread

20

CS 744 Autumn 2024, CSE IIT Bombay

Condition Variables

● A thread calling wait routine:
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t init = PTHREAD_COND_INITIALIZER;
pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&init, &lock);
pthread_mutex_unlock(&lock);

● A thread calling signal routine:
pthread_mutex_lock(&lock);
initialized = 1;
pthread_cond_signal(&init);
pthread_mutex_unlock(&lock);

21

Task 5: Conditional variable

CS 744 Autumn 2024, CSE IIT Bombay

Condition Variables

while(initialized == 0); // spin

This will waste CPU cycle

Why lock is important?

● A thread calling wait routine:
while (initialized == 0)

pthread_cond_wait(&init, &lock);

● A thread calling signal routine:
initialized = 1;
pthread_cond_signal(&init);

22

Before calling wait context
switch happens

CS 744 Autumn 2024, CSE IIT Bombay

More About locks

23

CS 744 Autumn 2024, CSE IIT Bombay

Locks

How to build a lock?

Objective:
1. Mutual exclusion
2. Fairness
3. Performance

24

CS 744 Autumn 2024, CSE IIT Bombay

Locks: controlling interrupts

void lock() {
DisableInterrupts();

}
void unlock() {

EnableInterrupts();
}
● This technique is used to implement locks on single processor systems

inside the OS
● Disabling interrupts is a privileged instruction and program can misuse it

(e.g., run forever)
● Will not work on multiprocessor systems, since another thread on

another core can enter critical section

25

CS 744 Autumn 2024, CSE IIT Bombay

Locks: A simple flag

typedef struct __lock_t { int flag; } lock_t;

void init(lock_t *mutex) {
mutex->flag = 0;
}
void lock(lock_t *mutex) {
while (mutex->flag == 1) ;
mutex->flag = 1;
}
void unlock(lock_t *mutex) {
mutex->flag = 0;
}

26

CS 744 Autumn 2024, CSE IIT Bombay

Locks: A simple flag

typedef struct __lock_t { int flag; } lock_t;

void init(lock_t *mutex) {
mutex->flag = 0;
}
void lock(lock_t *mutex) {
while (mutex->flag == 1) ;
mutex->flag = 1;
}
void unlock(lock_t *mutex) {
mutex->flag = 0;
}

27

Context switch

CS 744 Autumn 2024, CSE IIT Bombay

Locks: A simple flag

Thread 1 Thread 2
call lock()
while (flag == 1)
Before setting flag
interrupt: switch to Thread 2

call lock()
while (flag == 1)
flag = 1;
interrupt: switch to Thread 1

flag = 1;

28

Not providing Mutual exclusion

CS 744 Autumn 2024, CSE IIT Bombay

Hardware Atomic Instructions

Continue in next class….

29

