
CS 744 DECS Lecture 18
A Performance Analysis View of

Concurrency
(Multithreading and Locks)

Autumn 2024 Guest Lecture: Varsha Apte
Some images from the internet, copyright is not claimed

Recap: Multithreading: How? pthread library

2 Youjip Won

1 #include <stdio.h>
2 #include <pthread.h>
3 #include <assert.h>
4 #include <stdlib.h>
5
6 typedef struct __myarg_t {
7 int a;
8 int b;
9 } myarg_t;

10
11 typedef struct __myret_t {
12 int x;
13 int y;
14 } myret_t;
15
16

17 void *mythread(void *arg) {
18 myarg_t *m = (myarg_t *) arg;
19 printf(“%d %d\n”, m->a, m->b);
20 myret_t *r =

malloc(sizeof(myret_t));
21 r->x = 1;
22 r->y = 2;
23 return (void *) r;
24 }
25

Recap: Multithreading: How? pthread library (Cont.)

3 Youjip Won

25. int main(int argc, char *argv[]) {
26. int rc;
27. pthread_t p;
28. myret_t *m;
29.
30. myarg_t args;
31. args.a = 10;
32. args.b = 20;
33. pthread_create(&p, NULL, mythread, &args);
34. pthread_join(p, (void **) &m); // this thread has been

 // waiting inside of the
// pthread_join() routine.

35. printf(“returned %d %d\n”, m->x, m->y);
36. return 0;
37. }

Multithreading - why?

Why when Single-core -
One thread can use the CPU
while other waits for I/O

Why when multi-core -
Multiple threads can run
parallely

Multithreading - why?

Why when
Single-core

Why when
multi-core

To decrease
the time taken
for work or
increase the
‘rate’ at which
work is done
By making
better use of
resources

Suppose you are asked to build a server
Server gets some request from a client, does
some work, returns a response. You are to
build a server that will

● Give ‘good performance’
● ‘scale’

What do these words mean?

How will you use multithreading for “good
performance and scalability”?

How will you know your server is giving “good
performance and scalability”?

Server

Requests

Responses

First
Metrics for describing server Performance

Server

Requests

Responses

Throughput (responses per second)
Server Utilization
- average
fraction of time
the server
resource is busy
(eg, server CPU
utilization)

Performance delivered is a function of server properties and “load”
parameters

Load: Closed Loop view of a Client-server system

Server
Requests

Responses

{
Response
Time: t2-t1

Throughput
(responses per
second)

Server
Utilization

Think Time Clients

Clients are in a
closed
request-response loop
with the server - Each
Client issues
request, waits for
response ‘thinks’
then issues next
request
Load parameters:
Number of clients,
think time, the type
of requests

t1 t2

Performance questions that can be asked

Server

Requests

Responses

{
Response
Time:
t2-t1

Throughput
(responses per
second)

Server
Utilization

Think Time
Clients

● If there are M clients whose
average think time is 𝝲,
○ what is the total server

throughput?
○ What is the response time

experienced by clients?
○ What is the server utilization?

● What is the maximum number
M* of clients that this server can
‘support’?

● What is the maximum
throughput capacity of the
server?

t1 t2

Scalability questions that can be asked

Server

Requests

Responses

{
Response
Time:
t2-t1

Throughput (responses per
second)

Server
Utilization

Think Time
Clients

● How does the throughput
capacity of the server
improve if we give more
resources ?

● E.g. Multicore scalability
○ If I double the number of

cores in the server, will
throughput capacity
double?

t1 t2

Back to… Multithreading design options
● Listener thread that listens for new requests
● Accepts connection, starts `worker’ thread, gives

the connection to the worker thread
● Worker thread does the work, sends the response
● Options:

○ Thread per request - does entire request (easier, more
common)

○ Thread per ‘stage of work’ (needs some state
management across stages)

Number of worker threads
● Create-destroy approach: Create a

worker thread for each request,
thread exits after response is sent
○ Easier

● Thread pool model:
○ Maintain a ‘pool’ of threads.
○ Maintain a shared queue of requests
○ Thread remains after response is sent,

picks up the next available request in
the queue, or waits (idle) for the next
request

How can we
decide which
design is
good?

How many
threads to
configure?

And so on…

One way: Run ‘Load Tests’ and measure performance

Server

Requests

Responses

{
Response
Time:
t2-t1

Throughput (responses per
second)

Server
Utilization

Think Time
Clients

t1

● Set up a client-server test
bed

● Emulate multiple clients
○ M clients
○ Think time 𝝲

● Measure average
throughput, utilization,
response time as a
function of increasing load
- typically number of clients
M = 1 to some max

t2

Example throughput vs Number of Users
How do we know the
experiment is correct?

How do we know if this is
‘good’ or ‘bad’
performance?

Can we estimate other
metrics in other
scenarios based on this
much ?

Basic reasoning for Performance in Closed Loop Systems

Server

Requests

Responses

{
Response
Time:
t2-t1

Throughput (responses per
second)

Server
Utilization

Think Time
Clients

t1
Consider CPU-bound
requests, single core,
single thred

Processing time per request
is known = 𝞃

We can estimate asymptotes
of the performance graphs

t2

Performance metrics for closed loop experiments
Example: 𝞃 = 100 ms, single thread, single core. Think time of
clients = 1 sec (1000 ms)

Maximum throughput capacity of the server? How many clients
can be supported?
Throughput at M = 1? Throughput at M = 5? At M = 20?
Server Utilization at M = 1? At M = 5? At M = 20?
Response Time at M = 1? At M = 20?

Performance metrics for closed loop experiments
In general, if service time (of bottleneck resource) is 𝞃,
max throughput for one resource = 1/𝞃 requests/sec
Let Response Time when M clients = R(M)
Throughput Λ = M/(R(M) + 𝝲)
R(M) = M/Λ - 𝝲
As M increases Throughput Λ → 1/𝞃 requests/sec
R(M) → M𝞃 - 𝝲 (Slope is 𝞃)

Server utilization 𝛒 = Λ x 𝞃 → 1 as M increases

Number of clients that can be supported
Heuristic: 1 + Thinktime/servicetime per core (or thread)

Basic Reasoning: Multithreaded, multi core setup

Server

Requests

Responses

{
Response
Time:
t2-t1

Throughput (responses per
second)

Server
Utilization

Think Time
Clients

t1 t2

Consider CPU-bound
requests, multi core,
multi thread, NO LOCKS
required

Processing time per request
is known = 𝞃

We can estimate asymptotes
of the performance graphs

Performance metrics for closed loop experiments
(multithread, multicore)

Example: 𝞃 = 100 ms, four threads, four cores. Think time of
clients = 1 sec (1000 ms)
Maximum throughput capacity of the server? How many clients
can be supported?
Throughput at M = 1? Throughput at M = 5? At M = 100?
Server Utilization at M = 1? At M = 5? At M = 100?
Response Time at M = 1? At M = 100?

Performance metrics for closed loop experiments
In general, if service time is 𝞃, number of cores = c
max throughput= c/𝞃 requests/sec
Let Response Time when M clients = R(M)
Throughput Λ = M/(R(M) + 𝝲)
R(M) = M/Λ - 𝝲
As M increases Throughput Λ → c/𝞃 requests/sec
R(M) → M𝞃/c - 𝝲 (Slope is 𝞃/c)
Server utilization 𝛒 = Λ x 𝞃 / c → 1 as M increases
Max Number of clients: 𝝲 c / 𝞃

Case Study - 1 Experimental Performance
Measurement of a Web Server (closed
load)

https://docs.google.com/presentation/d/1TDCt38-fG8QqGI4-sGPMWD-3BcxmJ-X20tEgTpj2qT8/edit?usp=sharing
https://docs.google.com/presentation/d/1TDCt38-fG8QqGI4-sGPMWD-3BcxmJ-X20tEgTpj2qT8/edit?usp=sharing
https://docs.google.com/presentation/d/1TDCt38-fG8QqGI4-sGPMWD-3BcxmJ-X20tEgTpj2qT8/edit?usp=sharing

Basic Reasoning:
Multithreaded, multi core setup, sync bottleneck

Server

Requests

Responses

{
Response
Time:
t2-t1

Throughput (responses per
second)

Server
Utilization

Think Time
Clients

t1 t2

Processing time per request
is known = 𝞃 = 𝞃1 + 𝞃2
where 𝞃2 ms are executed
under a mutex lock.

Performance metrics for closed loop experiments
(multithread, multicore, some code under mutex)

Example: 𝞃 = 100 ms, eight threads, eight cores. Think time
of clients = 1 sec (1000 ms). 𝞃2 = 20 ms

Maximum throughput capacity of the server? How many clients
can be supported?
Maximum Server Utilization? Response time behavior?

Max throughput with any number of threads or cores : 1000/20 = 50 reqs/sec
At 50 requests/sec, server utilization = 50 x 100 / (8 * 1000) = 0.625
Slope of Response time asymptote will be 20 ms

Case Study - 2
Study of four versions of a “simple”

autograding server

https://www.dropbox.com/scl/fi/jn
929eapbmib7v975u4im/DECServe
r_23D0361.pdf?rlkey=3ia4omysij0r
0ozvz9d5dvk76&dl=0

Autograding server
● Functionality:

○ Accepts a C++ program for grading
○ Compiles, executes (if compiled successfully), checks output (if executed

successfully)
○ Sends back a pass/fail response to client

● Design:
○ V1: Single thread, single core
○ V2: Multithread, create-destroy, multi-core
○ V3: Multithread, thread-pool, multi-core
○ V4: ‘asynchronous design’

If results don’t actually
match ‘theoretical
expectations”, then why
bother with
estimates/predictions?

Moral of the story?

Server

Requests

Responses

{
Response
Time:
t2-t1

Throughput (responses per
second)

Server
Utilization

Think Time
Clients

t1 t2

Predicting a ‘baseline’ expected
metric helps

● Identifying errors in
experiments

● Isolate actual vs assumed
bottlenecks

● Idenity myriad other issues in
the server

Case Study - 3
Multicore Scalability Bottleneck Analysis

of a real Autograding server

https://docs.google.com/presenta
tion/d/1aHdJB7VsxlBVoCfcQM43YJ
YuCSC8VKzix_eMt4V7PYo/edit?us
p=sharing

Thank you

Laws to cover

Amdahl’s law

asymptotes

Throughput law

Utilization law

Little’s law

Response time graph

Saturation number

Multithreading -
RECAP

Two goals for
multithreading

1. Make use of the CPU
when a thread blocks
on I/O

2. Make use of multiple
cores

Thread vs Process
�

Stack (1)
16KB

15KB
(free)

Stack (2)

(free)

Heap

Program Code
0KB

1KB

2KB

Stack (1)
16K
B

15KB

(free)

Heap

Program Code
0KB

1KB

2KB

The code segment :
where instructions live
The heap segment :
contains malloc’d data
dynamic data structures
(it grows downward)

(it grows upward)
The stack segment :
contains local variables
arguments to routines,
return values, etc.

A Single-Threaded
Address Space

Two threaded
Address Space

� There will be one stack per

thread.

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAP
Virt Mem

(PageDir A)

IP IPSP SP

STACK 1 STACK 2

threads executing
different functions

need different stacks ⇒
Different stack pointers

Share code, but each thread may
be executing different code at
the same time ⇒
🡪 Different Instruction Pointers

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAP
Virt Mem

(PageDir A)

IP IPSP SP

STACK 1 STACK 2

When switching from running one (T1)
to running the other (T2),
The register state of T1 be saved.
The register state of T2 restored.
The address space remains the same.

⇒ Each thread has its own program
counter and set of registers.
One thread control blocks(TCBs)
per thread store the state

THREAD VS. Process
Multiple threads within a single
process share:

● Process ID (PID)
● Address space

○ Code (instructions)
○ Most data (heap)

● Open file descriptors
● Current working directory
● User and group id

Each thread has its own
○ Thread ID (TID)

○ Set of registers, including
Program counter and Stack
pointer

○ Stack for local variables and
return addresses
(in same address space)

Threads API

POSIX thread library

pthread_create

pthread_join

Thread Creation

� How to create and control threads?

⬥ thread: Used to interact with this thread.

⬥ attr: Used to specify any attributes this thread might have.

� Stack size, Scheduling priority, …

⬥ start_routine: the function this thread start running in.

⬥ arg: the argument to be passed to the function (start routine)

� a void pointer allows us to pass in any type of argument.

37 Youjip Won

#include <pthread.h>

int
pthread_create(pthread_t* thread,
 const pthread_attr_t* attr,
 void* (*start_routine)(void*),
 void* arg);

Return value:
0 if creation
is
successful,
Errnum if fail

Example: Creating a Thread

38 Youjip Won

#include <pthread.h>

typedef struct __myarg_t {

int a;
int b;

} myarg_t;

void *mythread(void *arg) {

myarg_t *m = (myarg_t *) arg;
printf(“%d %d\n”, m->a,

m->b);
return NULL;

}

int main(int argc, char *argv[]) {
pthread_t p;
int rc;

myarg_t args;
args.a = 10;
args.b = 20;
rc = pthread_create(&p, NULL,

mythread, &args);
…

}

Wait for a thread to complete

⬥ thread: Specify which thread to wait for

⬥ value_ptr: A pointer to the return value

� Because pthread_join() routine changes the value, you need to pass in a

pointer to that value.

39 Youjip Won

int pthread_join(pthread_t thread, void **value_ptr);

Example: Waiting for Thread Completion

40 Youjip Won

1 #include <stdio.h>
2 #include <pthread.h>
3 #include <assert.h>
4 #include <stdlib.h>
5
6 typedef struct __myarg_t {
7 int a;
8 int b;
9 } myarg_t;

10
11 typedef struct __myret_t {
12 int x;
13 int y;
14 } myret_t;
15
16

17 void *mythread(void *arg) {
18 myarg_t *m = (myarg_t *) arg;
19 printf(“%d %d\n”, m->a, m->b);
20 myret_t *r =

malloc(sizeof(myret_t));
21 r->x = 1;
22 r->y = 2;
23 return (void *) r;
24 }
25

Example: Waiting for Thread Completion (Cont.)

41 Youjip Won

25. int main(int argc, char *argv[]) {
26. int rc;
27. pthread_t p;
28. myret_t *m;
29.
30. myarg_t args;
31. args.a = 10;
32. args.b = 20;
33. pthread_create(&p, NULL, mythread, &args);
34. pthread_join(p, (void **) &m); // this thread has been

 // waiting inside of the
// pthread_join() routine.

35. printf(“returned %d %d\n”, m->x, m->y);
36. return 0;
37. }

Example: Dangerous code

� Be careful with how values are returned from a thread.

⬥ When the variable r returns, it is automatically de-allocated.

42 Youjip Won

1 void *mythread(void *arg) {
2 myarg_t *m = (myarg_t *) arg;
3 printf(“%d %d\n”, m->a, m->b);
4 myret_t r; // ALLOCATED ON STACK: BAD!
5 r.x = 1;
6 r.y = 2;
7 return (void *) &r;
8 }

Example: Simpler Argument Passing to a Thread

� Just passing in a single value

43 Youjip Won

1 void *mythread(void *arg) {
2 int m = (int) arg;
3 printf(“%d\n”, m);
4 return (void *) (arg + 1);
5 }
6
7 int main(int argc, char *argv[]) {
8 pthread_t p;
9 int rc, m;
10 pthread_create(&p, NULL, mythread, (void *) 100);
11 pthread_join(p, (void **) &m);
12 printf(“returned %d\n”, m);
13 return 0;
14 }

LOCKS and CONDITION
VARIABLES

Multithreaded
programming with

shared data

pthread_mutex_lock

pthread_mutex_unloc
k

pthread _cond

Example
1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <pthread.h>
4. #include "common.h"
5. #include "common_threads.h"
6.

7. int max;
8. volatile int counter = 0; // shared global
9.

10. void *mythread(void *arg) {
11. char *letter = arg;
12. int i; // stack (private per thread)
13. printf("%s: begin [addr of i: %p]\n", letter,

&i);
14. for (i = 0; i < max; i++) {
15. counter = counter + 1; // shared:

}
16.
17. printf("%s: done\n", letter);
18. return NULL;
19. }
20.

22. int main(int argc, char *argv[]) {
23. if (argc != 2) {
24. fprintf(stderr, "usage: main-first

<loopcount>\n");
25. exit(1);
26. }
27. max = atoi(argv[1]);
28.
29. pthread_t p1, p2;
30. printf("main: begin [counter = %d] [%x]\n",

counter,
31. (unsigned int) &counter);
32. Pthread_create(&p1, NULL, mythread, "A");
33. Pthread_create(&p2, NULL, mythread, "B");
34. // join waits for the threads to finish
35. Pthread_join(p1, NULL);
36. Pthread_join(p2, NULL);
37. printf("main: done\n [counter: %d]\n

[should: %d]\n",
38. counter, max*2);
39. return 0;
40. }

Critical Section. Need to ensure no
interleaving in the read-increment-store
sequence of commands. Only one
thread should execute all atomically.

Locks
� Provide mutual exclusion to a critical section

⬥ Interface

⬥ Usage (w/o lock initialization and error check)

⬥ No other thread holds the lock: the thread will acquire the lock and enter
the critical section.

⬥ If another thread hold the lock: the thread will not return from the call until
it has acquired the lock.

46 Youjip Won

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

pthread_mutex_t lock;
pthread_mutex_lock(&lock);
x = x + 1; // or whatever your critical section is
pthread_mutex_unlock(&lock);

Locks (Cont.)

� All locks must be properly initialized.

⬥ One way: using PTHREAD_MUTEX_INITIALIZER

⬥ The dynamic way: using pthread_mutex_init()

47 Youjip Won

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

int rc = pthread_mutex_init(&lock, NULL);
assert(rc == 0); // always check success!

NULL: mutex attributes field (advanced, skipping)

Locks (Cont.)

� Check errors code when calling lock and unlock

⬥ An example wrapper

� These two calls are used in lock acquisition

⬥ trylock: return failure if the lock is already held

⬥ timelock: return after a timeout

48 Youjip Won

 // Use this to keep your code clean but check for failures
 // Only use if exiting program is OK upon failure
 void Pthread_mutex_lock(pthread_mutex_t *mutex) {
 int rc = pthread_mutex_lock(mutex);
 assert(rc == 0);
 }

 int pthread_mutex_trylock(pthread_mutex_t *mutex);
 int pthread_mutex_timelock(pthread_mutex_t *mutex,
 struct timespec *abs_timeout);

Locks (Cont.)

� These two calls are also used in lock acquisition

⬥ trylock: return failure if the lock is already held

⬥ timelock: return after a timeout or after acquiring the lock

49 Youjip Won

 int pthread_mutex_trylock(pthread_mutex_t *mutex);
 int pthread_mutex_timelock(pthread_mutex_t *mutex,
 struct timespec *abs_timeout);

Condition Variables

� Condition variables are useful when some kind of signaling must

take place between threads.

⬥ pthread_cond_wait:

� Put the calling thread to sleep.

� Wait for some other thread to signal it.

⬥ pthread_cond_signal:

� Unblock at least one of the threads that are blocked on the condition variable

50 Youjip Won

int pthread_cond_wait(pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_signal(pthread_cond_t *cond);

Condition Variables (Cont.)

� A thread calling wait routine:

� The wait call releases the lock when putting said caller to sleep.

� Before returning after being woken, the wait call re-acquires the lock. (Lock
must be released later)

� A thread calling signal routine:

51 Youjip Won

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t init = PTHREAD_COND_INITIALIZER;
pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&init, &lock);
pthread_mutex_unlock(&lock);

pthread_mutex_lock(&lock);
initialized = 1;
pthread_cond_signal(&init);
pthread_mutex_unlock(&lock);

Condition Variables (Cont.)

� The waiting thread re-checks the condition in a while loop, instead
of a simple if statement.

� Sometimes a ‘spurious’ signal may get delivered (i.e.
pthread_cond_signal(&init) is called but ‘initialized’ has not changed)

� Without rechecking, the waiting thread will continue thinking that the
condition has changed even though it has not.

52 Youjip Won

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t init = PTHREAD_COND_INITIALIZER;
pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&init, &lock);
pthread_mutex_unlock(&lock);

Condition Variables (Cont.)

� Don’t ever to this.

⬥ A thread calling wait routine:

⬥ A thread calling signal routine:

⬥ It performs poorly in many cases. 🡪 Just wastes CPU cycles.

⬥ It is error prone.

53 Youjip Won

while(initialized == 0)
; // spin

initialized = 1;

Compiling and Running

� To compile them, you must include the header pthread.h

⬥ Explicitly link with the pthreads library, by adding the –pthread flag.

⬥ For more information,

54 Youjip Won

prompt> gcc –o main main.c –Wall -pthread

man –k pthread

