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Recap: Multithreading: How? pthread library

2 Youjip Won

1  #include <stdio.h>
2  #include <pthread.h>
3  #include <assert.h>
4  #include <stdlib.h>
5  
6  typedef struct __myarg_t {
7      int a;
8      int b;
9  } myarg_t;

10  
11  typedef struct __myret_t {
12      int x;
13      int y;
14  } myret_t;
15  
16

17  void *mythread(void *arg) {
18      myarg_t *m = (myarg_t *) arg;
19      printf(“%d %d\n”, m->a, m->b);
20      myret_t *r = 

malloc(sizeof(myret_t));
21      r->x = 1;
22      r->y = 2;
23      return (void *) r;
24  }
25  



Recap: Multithreading: How? pthread library (Cont.)

3 Youjip Won

25.  int main(int argc, char *argv[]) {
26.      int rc;
27.      pthread_t p;
28.      myret_t *m;
29.      
30.      myarg_t args;
31.      args.a = 10;
32.      args.b = 20;
33.      pthread_create(&p, NULL, mythread, &args);
34.      pthread_join(p, (void **) &m);  // this thread has been

   // waiting inside of the    
// pthread_join() routine.

35.      printf(“returned %d %d\n”, m->x, m->y);
36.      return 0;
37.  }



Multithreading - why?

Why when Single-core -
One thread can use the CPU 
while other waits for I/O

Why when multi-core -
Multiple threads can run 
parallely 



Multithreading - why?

Why when 
Single-core

Why when 
multi-core

To decrease 
the time taken 
for  work or 
increase  the 
‘rate’ at which 
work is done 
By making 
better use of 
resources



Suppose you are asked  to build a server
Server gets some request from a client, does 
some work, returns a response. You are to 
build a server that will

● Give ‘good performance’
● ‘scale’

What do these words mean?

How will you use multithreading for “good 
performance and scalability”?

How will you know your server is giving “good 
performance and scalability”?

Server

Requests

Responses



First
Metrics for describing server Performance 

Server

Requests

Responses

Throughput (responses per second)
Server Utilization 
- average 
fraction of time 
the server 
resource  is busy 
(eg, server CPU 
utilization)

Performance delivered is a function of server properties and “load” 
parameters



Load: Closed Loop view of a Client-server system 

Server
Requests

Responses

{
Response
Time: t2-t1

Throughput 
(responses per 
second)

Server 
Utilization

Think Time Clients

Clients are in a 
closed 
request-response loop 
with the server - Each 
Client issues 
request, waits for 
response ‘thinks’ 
then issues next 
request
Load parameters: 
Number of clients, 
think time, the type 
of requests 

t1 t2



Performance questions that can be asked 

Server

Requests

Responses

{
Response
Time: 
t2-t1

Throughput 
(responses per 
second)

Server 
Utilization

Think Time
Clients

● If there are M clients whose 
average think time is 𝝲,
○  what is the total server 

throughput?
○  What is the response time 

experienced by clients?
○ What is the server utilization?

● What is the maximum number 
M* of clients that this server can 
‘support’?

● What is the maximum 
throughput capacity of the 
server?

t1 t2



Scalability  questions that can be asked 

Server

Requests

Responses

{
Response
Time: 
t2-t1

Throughput (responses per 
second)

Server 
Utilization

Think Time
Clients

● How does the throughput  
capacity of the server 
improve  if we  give more 
resources ?

● E.g. Multicore scalability
○ If I double the number of 

cores in the server, will 
throughput capacity 
double?

t1 t2



Back to… Multithreading design options
● Listener thread that listens for new requests
● Accepts connection, starts `worker’ thread, gives 

the connection to the worker  thread
● Worker thread does the work, sends the response
● Options:

○ Thread per request - does entire request (easier, more 
common)

○ Thread per ‘stage of work’ (needs some state 
management across stages)



Number of worker threads
● Create-destroy approach: Create a 

worker thread for each request, 
thread exits after response is sent
○ Easier

● Thread pool model: 
○ Maintain a ‘pool’ of threads.
○ Maintain a shared queue of requests
○ Thread remains after response is sent, 

picks up the next available request in 
the queue, or waits (idle) for the next 
request

How can we 
decide which 
design is 
good? 

How many 
threads to 
configure?

And so on…



One way:  Run ‘Load Tests’ and measure performance

Server

Requests

Responses

{
Response
Time: 
t2-t1

Throughput (responses per 
second)

Server 
Utilization

Think Time
Clients

t1

● Set up a client-server test 
bed

● Emulate multiple clients
○ M clients
○ Think time 𝝲

● Measure average  
throughput, utilization, 
response time as a 
function of increasing load 
- typically number of clients 
M = 1 to  some max

t2



Example throughput vs Number of Users
How do we know the 
experiment is correct?

How do we know if this is 
‘good’ or ‘bad’ 
performance?

Can we estimate other 
metrics in other 
scenarios based on this 
much ?

 



Basic reasoning for Performance in Closed Loop Systems

Server

Requests

Responses

{
Response
Time: 
t2-t1

Throughput (responses per 
second)

Server 
Utilization

Think Time
Clients

t1
Consider CPU-bound 
requests, single core, 
single thred 

Processing time per request 
is known =  𝞃

We can estimate asymptotes 
of the performance graphs

t2



Performance metrics for closed loop experiments
Example:  𝞃  = 100 ms, single thread, single core. Think time of 
clients = 1 sec (1000 ms)

Maximum throughput capacity of the server? How many clients 
can be supported? 
Throughput at M = 1?   Throughput at M = 5?  At M = 20?
Server Utilization at M = 1?   At M = 5?  At M = 20?
Response Time at M = 1?  At M = 20?



Performance metrics for closed loop experiments
In general, if service time (of bottleneck resource) is 𝞃, 
max throughput for one resource  =  1/𝞃    requests/sec  
Let Response Time when M clients =  R(M)
Throughput Λ   =   M/(R(M) + 𝝲)
R(M) = M/Λ   - 𝝲
As M  increases  Throughput    Λ  →    1/𝞃  requests/sec  
R(M) → M𝞃   - 𝝲    (Slope is 𝞃)

Server utilization 𝛒  =  Λ   x  𝞃   →  1 as M increases



Number of clients that can be supported
Heuristic:   1 + Thinktime/servicetime per core (or thread)



Basic Reasoning: Multithreaded, multi core setup

Server

Requests

Responses

{
Response
Time: 
t2-t1

Throughput (responses per 
second)

Server 
Utilization

Think Time
Clients

t1 t2

Consider CPU-bound 
requests, multi core, 
multi thread, NO LOCKS 
required 

Processing time per request 
is known =  𝞃

We can estimate asymptotes 
of the performance graphs



Performance metrics for closed loop experiments 
(multithread, multicore)

Example:  𝞃  = 100 ms, four threads, four cores. Think time of 
clients = 1 sec (1000 ms)
Maximum throughput capacity of the server? How many clients 
can be supported? 
Throughput at M = 1?   Throughput at M = 5?  At M = 100?
Server Utilization at M = 1?   At M = 5?  At M = 100?
Response Time at M = 1?  At M = 100?



Performance metrics for closed loop experiments
In general, if service time is 𝞃, number of  cores = c
max throughput=  c/𝞃    requests/sec  
Let Response Time when M clients =  R(M)
Throughput Λ   =   M/(R(M) + 𝝲)
R(M) = M/Λ   - 𝝲
As M  increases  Throughput    Λ  →    c/𝞃  requests/sec  
R(M) → M𝞃/c   - 𝝲   (Slope is 𝞃/c)
Server utilization 𝛒  =  Λ   x  𝞃 / c   →  1 as M increases
Max Number of clients: 𝝲 c / 𝞃 



Case Study - 1 Experimental Performance 
Measurement of a Web Server (closed 
load)

https://docs.google.com/presentation/d/1TDCt38-fG8QqGI4-sGPMWD-3BcxmJ-X20tEgTpj2qT8/edit?usp=sharing
https://docs.google.com/presentation/d/1TDCt38-fG8QqGI4-sGPMWD-3BcxmJ-X20tEgTpj2qT8/edit?usp=sharing
https://docs.google.com/presentation/d/1TDCt38-fG8QqGI4-sGPMWD-3BcxmJ-X20tEgTpj2qT8/edit?usp=sharing


Basic Reasoning: 
Multithreaded, multi core setup, sync bottleneck

Server

Requests

Responses

{
Response
Time: 
t2-t1

Throughput (responses per 
second)

Server 
Utilization

Think Time
Clients

t1 t2

Processing time per request 
is known =  𝞃 = 𝞃1 + 𝞃2 
where 𝞃2  ms are executed 
under a mutex lock.



Performance metrics for closed loop experiments 
(multithread, multicore, some code under mutex)

Example:  𝞃  = 100 ms, eight threads, eight  cores. Think time 
of clients = 1 sec (1000 ms). 𝞃2  = 20 ms

Maximum throughput capacity of the server? How many clients 
can be supported? 
Maximum Server Utilization?  Response time behavior?

Max throughput with any number of threads or cores : 1000/20 = 50 reqs/sec
At 50 requests/sec, server utilization = 50  x 100 / (8 * 1000) = 0.625
Slope of Response time asymptote will be  20 ms



Case Study - 2
Study of four versions of a “simple” 

autograding server

https://www.dropbox.com/scl/fi/jn
929eapbmib7v975u4im/DECServe
r_23D0361.pdf?rlkey=3ia4omysij0r
0ozvz9d5dvk76&dl=0



Autograding server
● Functionality:

○ Accepts a C++ program for grading
○ Compiles, executes (if compiled successfully), checks output (if executed 

successfully)
○ Sends back a pass/fail response to client

● Design:
○ V1: Single thread, single core
○ V2: Multithread, create-destroy,  multi-core
○ V3: Multithread, thread-pool, multi-core
○ V4: ‘asynchronous design’



If results don’t actually 
match ‘theoretical 
expectations”, then why 
bother with 
estimates/predictions?

Moral of the story?

Server

Requests

Responses

{
Response
Time: 
t2-t1

Throughput (responses per 
second)

Server 
Utilization

Think Time
Clients

t1 t2

Predicting a ‘baseline’ expected 
metric helps

● Identifying errors in 
experiments

● Isolate actual vs assumed 
bottlenecks

● Idenity myriad other issues in 
the server



Case Study - 3
Multicore Scalability Bottleneck Analysis 

of a real Autograding server

https://docs.google.com/presenta
tion/d/1aHdJB7VsxlBVoCfcQM43YJ
YuCSC8VKzix_eMt4V7PYo/edit?us
p=sharing



Thank you



Laws to cover

Amdahl’s law

asymptotes

Throughput law

Utilization law

Little’s law

Response time graph

Saturation number



Multithreading - 
RECAP

Two goals for 
multithreading

1. Make use of the CPU 
when a thread blocks 
on I/O

2. Make use of multiple 
cores



Thread vs Process 
�

Stack (1)
16KB

15KB
(free)

Stack (2)

(free)

Heap

Program Code
0KB

1KB

2KB

Stack (1)
16K
B

15KB

(free)

Heap

Program Code
0KB

1KB

2KB

The code segment :
where instructions live
The heap segment : 
contains malloc’d data 
dynamic data structures 
(it grows downward)

(it grows upward)
The stack segment : 
contains local variables 
arguments to routines, 
return values, etc.

A Single-Threaded
Address Space

Two threaded
Address Space

� There will be one stack per 

thread.



CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAP
Virt Mem

(PageDir A)

IP IPSP SP

STACK 1 STACK 2

threads executing 
different functions 

need different stacks ⇒ 
Different stack pointers

Share code, but each thread may 
be executing different code at 
the same time ⇒
🡪 Different Instruction Pointers



CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAP
Virt Mem

(PageDir A)

IP IPSP SP

STACK 1 STACK 2

When switching from running one (T1) 
to running the other (T2),
The register state of T1 be saved.
The register state of T2 restored.
The address space remains the same.

⇒ Each thread has its own program 
counter and set of registers.
One thread control blocks(TCBs) 
per thread  store the state 



THREAD VS. Process
Multiple threads within a single 
process share:

● Process ID (PID) 
● Address space

○ Code (instructions) 
○ Most data (heap) 

● Open file descriptors 
● Current working directory 
● User and group id 

Each thread has its own 
○ Thread ID (TID) 

○ Set of registers, including 
Program counter and Stack 
pointer 

○ Stack for local variables and 
return addresses 
(in same address space)



Threads API

POSIX thread library

pthread_create

pthread_join



Thread Creation

� How to create and control threads?

⬥ thread: Used to interact with this thread.

⬥ attr: Used to specify any attributes this thread might have.

� Stack size, Scheduling priority, …

⬥ start_routine: the function this thread start running in.

⬥ arg: the argument to be passed to the function ( start routine)

� a void pointer allows us to pass in any type of argument.

37 Youjip Won

#include <pthread.h>
 
int
pthread_create(      pthread_t*      thread,
               const pthread_attr_t* attr,
                     void*           (*start_routine)(void*),
                     void*           arg);

Return value:
0 if creation 
is 
successful,
Errnum if fail



Example: Creating a Thread
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#include <pthread.h>
 
typedef struct __myarg_t {

int a;
int b;

} myarg_t;
 
void *mythread(void *arg) {

myarg_t *m = (myarg_t *) arg;
printf(“%d %d\n”, m->a, 

m->b);
return NULL;

}
 

int main(int argc, char *argv[]) {
pthread_t p;
int rc;

 
myarg_t args;
args.a = 10;
args.b = 20;
rc = pthread_create(&p, NULL, 

mythread, &args);
…

}



Wait for a thread to complete

⬥ thread: Specify which thread to wait for

⬥ value_ptr: A pointer to the return value

� Because pthread_join() routine changes the value, you need to pass in a 

pointer to that value.

39 Youjip Won

int pthread_join(pthread_t thread, void **value_ptr);



Example: Waiting for Thread Completion

40 Youjip Won

1  #include <stdio.h>
2  #include <pthread.h>
3  #include <assert.h>
4  #include <stdlib.h>
5  
6  typedef struct __myarg_t {
7      int a;
8      int b;
9  } myarg_t;

10  
11  typedef struct __myret_t {
12      int x;
13      int y;
14  } myret_t;
15  
16

17  void *mythread(void *arg) {
18      myarg_t *m = (myarg_t *) arg;
19      printf(“%d %d\n”, m->a, m->b);
20      myret_t *r = 

malloc(sizeof(myret_t));
21      r->x = 1;
22      r->y = 2;
23      return (void *) r;
24  }
25  



Example: Waiting for Thread Completion (Cont.)

41 Youjip Won

25.  int main(int argc, char *argv[]) {
26.      int rc;
27.      pthread_t p;
28.      myret_t *m;
29.      
30.      myarg_t args;
31.      args.a = 10;
32.      args.b = 20;
33.      pthread_create(&p, NULL, mythread, &args);
34.      pthread_join(p, (void **) &m);  // this thread has been

   // waiting inside of the    
// pthread_join() routine.

35.      printf(“returned %d %d\n”, m->x, m->y);
36.      return 0;
37.  }



Example: Dangerous code

� Be careful with how values are returned from a thread.

⬥ When the variable r returns, it is automatically de-allocated.

42 Youjip Won

1  void *mythread(void *arg) {
2      myarg_t *m = (myarg_t *) arg;
3      printf(“%d %d\n”, m->a, m->b);
4      myret_t r; // ALLOCATED ON STACK: BAD!
5      r.x = 1;
6      r.y = 2;
7      return (void *) &r;
8  }



Example: Simpler Argument Passing to a Thread

� Just passing in a single value

43 Youjip Won

1  void *mythread(void *arg) {
2      int m = (int) arg;
3      printf(“%d\n”, m);
4      return (void *) (arg + 1);
5  }
6  
7  int main(int argc, char *argv[]) {
8      pthread_t p;
9      int rc, m;
10      pthread_create(&p, NULL, mythread, (void *) 100);
11      pthread_join(p, (void **) &m);
12      printf(“returned %d\n”, m);
13      return 0;
14  }



LOCKS and CONDITION 
VARIABLES

Multithreaded 
programming with 

shared data

pthread_mutex_lock

pthread_mutex_unloc
k

pthread _cond



Example
1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <pthread.h>
4. #include "common.h"
5. #include "common_threads.h"
6.

7. int max;
8. volatile int counter = 0; // shared global 
9.

10. void *mythread(void *arg) {
11.     char *letter = arg;
12.     int i; // stack (private per thread) 
13.     printf("%s: begin [addr of i: %p]\n", letter, 

&i);
14.     for (i = 0; i < max; i++) {
15. counter = counter + 1; // shared:    

}
16.
17.     printf("%s: done\n", letter);
18.     return NULL;
19. }
20.

22. int main(int argc, char *argv[]) {                    
23.     if (argc != 2) {
24. fprintf(stderr, "usage: main-first 

<loopcount>\n");
25. exit(1);
26.     }
27.     max = atoi(argv[1]);
28.
29.     pthread_t p1, p2;
30.     printf("main: begin [counter = %d] [%x]\n", 

counter, 
31.    (unsigned int) &counter);
32.     Pthread_create(&p1, NULL, mythread, "A"); 
33.     Pthread_create(&p2, NULL, mythread, "B");
34.     // join waits for the threads to finish
35.     Pthread_join(p1, NULL); 
36.     Pthread_join(p2, NULL); 
37.     printf("main: done\n [counter: %d]\n 

[should: %d]\n", 
38.    counter, max*2);
39.     return 0;
40. }

Critical Section. Need to ensure no 
interleaving in the read-increment-store 
sequence of commands. Only one 
thread should execute all atomically.



Locks
� Provide mutual exclusion to a critical section

⬥ Interface

⬥ Usage (w/o lock initialization and error check)

⬥ No other thread holds the lock: the thread will acquire the lock and enter 
the critical section.

⬥ If another thread hold the lock: the thread will not return from the call until 
it has acquired the lock.

46 Youjip Won

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

pthread_mutex_t lock;
pthread_mutex_lock(&lock);
x = x + 1; // or whatever your critical section is
pthread_mutex_unlock(&lock);



Locks (Cont.)

� All locks must be properly initialized.

⬥ One way: using PTHREAD_MUTEX_INITIALIZER

⬥ The dynamic way: using pthread_mutex_init()

47 Youjip Won

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

int rc = pthread_mutex_init(&lock, NULL);
assert(rc == 0); // always check success!

NULL: mutex attributes field (advanced, skipping)



Locks (Cont.)

� Check errors code when calling lock and unlock

⬥ An example wrapper

� These two calls are used in lock acquisition

⬥ trylock: return failure if the lock is already held

⬥ timelock: return after a timeout

48 Youjip Won

 // Use this to keep your code clean but check for failures
 // Only use if exiting program is OK upon failure
 void Pthread_mutex_lock(pthread_mutex_t *mutex) {
     int rc = pthread_mutex_lock(mutex);
     assert(rc == 0);
 }

 int pthread_mutex_trylock(pthread_mutex_t *mutex);
 int pthread_mutex_timelock(pthread_mutex_t *mutex,
                            struct timespec *abs_timeout);



Locks (Cont.)

� These two calls are also used in lock acquisition

⬥ trylock: return failure if the lock is already held

⬥ timelock: return after a timeout or after acquiring the lock

49 Youjip Won

 int pthread_mutex_trylock(pthread_mutex_t *mutex);
 int pthread_mutex_timelock(pthread_mutex_t *mutex,
                            struct timespec *abs_timeout);



Condition Variables

� Condition variables are useful when some kind of signaling must 

take place between threads.

⬥ pthread_cond_wait:

� Put the calling thread to sleep.

� Wait for some other thread to signal it.

⬥ pthread_cond_signal:

� Unblock at least one of the threads that are blocked on the condition variable

50 Youjip Won

int pthread_cond_wait(pthread_cond_t *cond,
                       pthread_mutex_t *mutex);
int pthread_cond_signal(pthread_cond_t *cond);



Condition Variables (Cont.)

� A thread calling wait routine:

� The wait call releases the lock when putting said caller to sleep.

� Before returning after being woken, the wait call re-acquires the lock. (Lock 
must be released later)

� A thread calling signal routine:

51 Youjip Won

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t init = PTHREAD_COND_INITIALIZER;
pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&init, &lock);
pthread_mutex_unlock(&lock);

pthread_mutex_lock(&lock);
initialized = 1;
pthread_cond_signal(&init);
pthread_mutex_unlock(&lock);



Condition Variables (Cont.)

� The waiting thread re-checks  the condition in a while loop, instead 
of a simple if statement.

� Sometimes a ‘spurious’ signal may get delivered (i.e. 
pthread_cond_signal(&init) is called but ‘initialized’ has not changed)

� Without rechecking, the waiting thread will continue thinking that the 
condition has changed even though it has not.
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pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t init = PTHREAD_COND_INITIALIZER;
pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&init, &lock);
pthread_mutex_unlock(&lock);



Condition Variables (Cont.)

� Don’t ever to this.

⬥ A thread calling wait routine:

⬥ A thread calling signal routine:

⬥ It performs poorly in many cases. 🡪 Just wastes CPU cycles.

⬥ It is error prone.

53 Youjip Won

while(initialized == 0)
; // spin

initialized = 1;



Compiling and Running

� To compile them, you must include the header pthread.h

⬥ Explicitly link with the pthreads library, by adding the –pthread flag.

⬥ For more information,

54 Youjip Won

prompt> gcc –o main main.c –Wall -pthread

man –k pthread


