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ABSTRACT

Elasticity—where systems acquire and release resources in response
to dynamic workloads, while paying only for what they need—is
a driving property of cloud computing. At the core of any elas-
tic system is an automated controller. This paper addresses elastic
control for multi-tier application services that allocate and release
resources in discrete units, such as virtual server instances of pre-
determined sizes. It focuses on elastic control of the storage tier, in
which adding or removing a storage node or “brick” requires rebal-
ancing stored data across the nodes. The storage tier presents new
challenges for elastic control: actuator delays (lag) due to rebalanc-
ing, interference with applications and sensor measurements, and
the need to synchronize the multiple control elements, including
rebalancing.

We have designed and implemented a new controller for elas-
tic storage systems to address these challenges. Using a popular
distributed storage system—the Hadoop Distributed File System
(HDFS)—under dynamic Web 2.0 workloads, we show how the
controller adapts to workload changes to maintain performance ob-
jectives efficiently in a pay-as-you-go cloud computing environ-
ment.
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1. INTRODUCTION

Web-based services frequently experience rapid load surges and
drops. Web 2.0 workloads, often driven by social networking, pro-
vide many recent examples of the well-known flash crowd phe-
nomenon. One recent Facebook application that “went viral” saw
an increase from 25,000 to 250,000 users in just three days, with
up to 20,000 new users signing up per hour during peak times [1].

There is growing commercial interest and opportunity in automat-
ing the management of such applications and services. Automated
surge protection and adaptive resource provisioning for dynamic
service loads has been an active research topic for at least a decade.
Today, the key elements for wide deployment are in place. Most
importantly, a market for cloud computing software and services
has emerged and is developing rapidly, offering powerful new plat-
forms for elastic services that grow and shrink their service capac-
ity dynamically as their request load changes.

Cloud computing services manage a shared “cloud” of servers
as a unified hosting substrate for guest applications, using various
technologies to virtualize servers and orchestrate their operation. A
key property of this cloud hosting model is that the cloud substrate
provider incurs the cost to own and operate the resources, and each
customer pays only for the resources it demands over each interval
of time. This model offers economies of scale for the cloud pro-
vider and a promise of lower net cost for the customer, especially
when their request traffic shows peaks that are much higher than
their average demand. Such advantageous demand profiles occur
in a wide range of settings. In one academic computing setting, it
was observed that computing resources had less than 20% average
utilization [18], with demand spikes around project deadlines. This
paper focuses on another driving example: multi-tier Web services,
which often show common dynamic request demand profiles (e.g.,
[9]). Figure 1 depicts this target environment.

Mechanisms for elastic scaling are present in a wide range of ap-
plications. For example, many components of modern Web service
software infrastructure can run in clusters at a range of scales; and
can handle addition and removal of servers with negligible inter-
ruption of service. This paper deals with policies for elastic scaling
based on automated control, building on the foundations of previ-
ous works [24, 34, 23, 22, 16] discussed in Section 7. We focus
on challenges that are common for a general form of virtual cloud
hosting, often called infrastructure as a service, in which the cus-
tomer acquires virtual server instances from a cloud substrate pro-
vider, and selects or controls the software for each server instance.
Amazon’s Elastic Compute Cloud (EC2) is one popular example:
the EC2 API allows customers to request, control, and release vir-
tual server instances on demand, with pay-as-you-go pricing based
on a per-hour charge for each instance. A recent study [2] reported
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Figure 1: A multi-tier application service (guest) hosted on vir-
tual server instances rented from an elastic cloud provider. An
automated controller uses cloud APIs to acquire and release
instances for the guest as needed to serve a dynamic workload.

that the number of Web-sites using Amazon EC2 grew 9% from
July to August 2009, and has an annual growth rate of 181%.

We address new challenges associated with scaling the storage
tier in a data-intensive cluster-based multi-tier service in this set-
ting. We employ an integral control technique called proportional
thresholding to modulate the number of discrete virtual server in-
stances in a cluster. Many previous works modulate a continuous
resource share allotted to a single instance [34, 23, 22]; cloud sys-
tems with per-instance pricing like EC2 do not expose this actuator.
We also address new challenges of actuator lag and interference
stemming from the delay and cost of redistributing stored data on
each change to the set of active instances in the storage tier.

While the discussion and experiments focus on cloud infrastruc-
ture services with per-instance pricing, our work is also applica-
ble to multiplexing workloads in an enterprise data center. Some
emerging cloud services offer packaged storage APIs as a service
under the control of the cloud provider, instead of or in addition to
raw virtual server instances for each customer to deploy a storage
tier of their choice. In that case, our work applies to the problem
faced by the cloud provider of controlling the elastic cloud storage
tier shared by multiple customers.

We have implemented a prototype controller for an elastic stor-
age system. We use the Cloudstone [27] generator for dynamic
Web 2.0 workloads to show that the controller is effective and effi-
cient in responding to workload changes.

2. SYSTEM OVERVIEW

Figure 1 gives an overview of the target environment: an elastic
guest application hosted on server instances obtained on a pay-as-
you-go basis from a cloud substrate provider. In this example, the
guest is a three-tier Web service that serves request traffic from a
dynamic set of clients.

Since Web users are sensitive to performance, the guest (service
provider) is presumed to have a Service Level Objective (SLO) to
characterize a target level of acceptable performance for the ser-
vice. An SLO is a predicate based on one or more performance
metrics, typically response time quantiles measured at the service
edge. For any given service implementation, performance is some
function of the workload and servers that it is deployed on; in this
case, the resources granted by the cloud provider.

The purpose of controlled elasticity is to grow and shrink the
active server instance set as needed to meet the SLO efficiently
under the observed or predicted workload. Our work targets guest
applications that can take advantage of this elasticity. When load
grows, they can serve the load effectively by obtaining more server
instances and adding them to the service. When load shrinks, they
can use resources more efficiently and save money by releasing
instances.

This paper focuses on elastic control of the storage tier, which
presents challenges common to the other tiers, and additional chal-
lenges as well: state rebalancing, actuator lag, interference, and co-
ordination of multiple interacting control elements. Storage scaling
is increasingly important in part because recent Web 2.0 workloads
have more user-created content, so the footprint of the stored data
and the spread of accesses across the stored data both grow with
the user community. Our experimental evaluation uses the Cloud-
stone [27] application service as a target guest. Cloudstone mimics
a Web 2.0 events calendar application that allows users to browse,
create, and join calender events.

2.1 Controller

We implement a controller process that runs on behalf of the
guest and automates elasticity. The controller drives actuators (e.g.,
request/release instances) based on sensor measures (e.g., request
volume, utilization, response time) from the guest and/or cloud pro-
vider. Our approach views the controller as combining multiple
control elements, e.g., one to resize each tier and one for rebal-
ancing in the storage tier, with additional rules to coordinate those
elements. Ideally, the control policy is able to handle unanticipated
changes in the workload (e.g., flash crowds), while assuring that the
guest pays the minimum necessary to meet its SLO at the offered
load.

For clouds with per-instance pricing, the controller runs outside
of the cloud provider and is distinct from the guest application
itself. This makes it possible to implement application-specific
control policies that generalize across multiple cloud providers.
(RightScale takes this approach.)

In general, these clouds present a problem of discrete actuators.
As Figure 1 shows, the controller is limited to elasticity actuators
exposed by the cloud provider’s API. Cloud infrastructure provi-
ders such as Amazon EC2 allocate resources in discrete units as vir-
tual server instances of predetermined sizes (e.g., small, medium,
and large). Most previous work on provisioning elastic resources
assume continuous actuators such as a fine-grained resource en-
titlement or share on each instance [24, 34]. We develop a pro-
portional thresholding technique for stable integral control with
coarse-grained discrete actuators, and apply it to elastic control of
the storage tier in a cloud with per-instance pricing. A controller
may use the same technique for the application tier of a multi-tier
service [20]. It is necessary to coordinate these controllers across
tiers for an integrated multi-tier solution.

Our approach to integrated elastic control assumes that each tier
exports a control API that the controller may invoke to add a newly
acquired storage server to the group (join) and remove an arbitrary
server from the group (leave). These operations may configure the
server instances, install software, and perform other tasks necessary
to attach new server instances to the guest application, or detach
them from the application. We also assume a mechanism to balance
load across the servers within each tier, so that request capacity
scales roughly with the number of active server instances.

2.2 Controlling Elastic Storage

The storage tier is a distributed service that runs on a group
of server instances provisioned for storage and allocated from the



cloud provider. It exports a storage API that is suitable for use
by the middle tier to store and retrieve data objects. We make the
following additional assumptions about the architecture and capa-
bilities of the storage tier.

e It distributes stored data across its servers in a way that bal-
ances load effectively for reasonable access patterns, and re-
distributes (rebalances) data in response to join and leave
events.

e It replicates data internally for robust availability; the repli-
cation is sufficient to avoid service interruptions across a se-
quence of leave events, even if a departing server is released
back to the cloud before leave rebalancing is complete.

e The storage capacity and I/O capacity of the system scales
roughly linearly with the size of the active server set. The
tiers cooperate to route requests from the middle tier to a
suitable storage server.

The design of robust, incrementally-scalable cluster storage ser-
vices with similar goals has been an active research topic since
the early 1990s. Many prototypes have been constructed including
block stores [19, 25] and file systems [29, 12], key-value stores [11,
3], database systems [10], and other “brick-based” architectures.
For our experiments, we chose the Hadoop Distributed File System
(HDFS), which is based on the Google File System [12] design and
is widely used in production systems.

As we have framed the problem, elastic control for a cloud in-
frastructure service presents a number of distinct new challenges.

Data Rebalancing: Elastic storage systems store and serve per-
sistent data which imposes additional constraints on the controller.
On adding a new node, a clustered Web server gives immediate
performance improvements because the new node can quickly start
serving client requests. In contrast, adding a new storage node does
not give immediate performance improvements to an elastic storage
system because the node does not have any persistent data to serve
client requests. The new node must wait until data has been copied
into it. Thus, rebalancing data across storage nodes is a necessary
procedure, especially if the elastic storage system has to adapt and
handle changes in client workloads.

Interference to Guest Service: Data rebalancing consumes re-
sources that can otherwise be used to serve client requests. The
amount of resources (bandwidth) to allocate to the rebalancing pro-
cess affects its completion time as well as the degree of adverse
impact on the guest application’s performance during rebalancing.

Note that overall improvement to system performance can be achieved

only through data rebalancing. It may not be advisable to allocate
a small bandwidth for rebalancing since it can take hours to com-
plete, causing a prolonged period of performance problems due to
suboptimal data placement. It may be better to allocate more band-
width to complete rebalancing quickly while suffering a bigger in-
termediate performance hit. Finding the right balance automati-
cally is nontrivial.

Actuator Delays: Regardless of the bandwidth allocated for rebal-
ancing, there will always be a delay before performance improve-
ments can be observed. The controller must account for this delay,
or else it may respond too late or (worse) become unstable.

3. COMPONENTS OF THE CONTROLLER
Our automated controller for the elastic storage tier, which we
call the elasticity controller, has three components:
e Horizontal Scale Controller (HSC), responsible for growing
and shrinking the number of storage nodes.
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Figure 2: Cloudstone response time and average CPU utiliza-
tion of the storage nodes, under a light load and a heavy load
that is bottlenecked in the storage tier. CPU utilization in the
storage tier correlates strongly with overall response time (the
coefficient is .88), and is a more stable feedback signal.

e Data Rebalance Controller (DRC), responsible for control-
ling the data transfers to rebalance the storage tier after it
grows or shrinks.

e State machine, responsible for coordinating the actions of the
HSC and the DRC.

We present each of these components in turn and discuss how they
address the challenges listed in Section 2.

3.1 Horizontal Scale Controller (HSC)

Actuator: The HSC uses cloud APIs to change the number of ac-
tive server instances. Each storage node in the system runs on a
separate virtual server instance.

Sensor: The HSC bases its elastic sizing choices on a feedback
signal incorporating one or more system metrics. A good choice
of metric for the target environment satisfies the following proper-
ties: (i) the metric should be easy to measure accurately without
intrusive instrumentation because the HSC is external to the guest
application, (ii) the metric should expose the tier-level behavior or
performance, (iii) the metric should be reasonably stable, and (iv)
the metric should correlate to the measure of level of service (e.g,
the service’s average response time) as specified in the client’s ser-
vice level objective (SLO).

Our experiments use CPU utilization on the storage nodes as the
sensor feedback metric because it satisfies these properties. The
CPU utilization can be obtained from the operating system or the
virtual machine without instrumenting application code. More-
over, tier-level metrics, such as CPU utilization, allow the con-
troller to pinpoint the location of the performance bottleneck. Fig-
ure 2 shows that CPU utilization in the storage tier is strongly corre-
lated to overall response time when the bottleneck is in the storage
tier, even if the bottleneck is on the disk arms rather than the CPU.
Figure 2 also shows that CPU utilization is a more stable signal
than response time. We chose this metric for convenience: other
metrics could be used instead of or in addition to CPU utilization.

Control Policy: We selected classical integral control as a start-
ing point because it is self-correcting and provably stable in a wide
range of scenarios, and has been used successfully in related sys-
tems [23, 24, 34]. Classical integral control assumes that the actu-
ator is continuous and can be defined by the following equation.

U1 = Uk + Ki X (Yrer — Yi) (1)



Here, ux and ug1 are the current and new actuator values. K;
is the integral gain parameter [24]. y; is the current sensor mea-
surement. Y.y is the desired reference sensor measurement. Intu-
itively, integral control adjusts the actuator value from the previous
time step proportionally to the deviation between the current and
desired values of the sensor variable in the current time step. Since
average CPU utilization is the sensor variable in HSC, y,.c s is a ref-
erence average CPU utilization corresponding to a reference (target
SLO) value of average response time. In our experiments, we chose
a reference average response time of 3 seconds, which empirically
gives a Yres of 20% average CPU utilization.

Equation 1 assumes that the actuator w is a continuous variable.
We show that directly applying this equation to discrete actuators
can cause instability [20, 36]. Suppose u represents the number of
virtual server instances allocated as storage nodes. For a change in
the workload that causes y;, to increase, Equation 1 may set uxy1
to 1.5 virtual server instances from u; = 1. Since the HSC cannot
request half a virtual server instance from the cloud provider, it
allocates one full virtual server.

However, yx+1 may now drop far below y,.y because two vir-
tual server instances are more than what is needed for the new
workload. At the next time step, the controller may then decrease
the number of virtual servers back to one, which raises back yx2
above y,es. This oscillatory behavior can continue indefinitely.

One solution is to transform y,..y into a target range specified a
pair of high (yr) and low (y;) sensor measurements.

up + Ki X (yn —yr) ifyn <yr
Uk+1 = § Uk + K; x (yl - yk) ifyl > Yk 2
Uk otherwise

The HSC will react only if ¥y, < yx (under-provisioned system)
or y; > yi (over-provisioned system). However, setting y5 and
y; statically can either lead to resource inefficiency (if the range
is large) or to instability (if the range is small). The reason is the
following: if the cluster size is IV, then adding or removing a node
affects capacity by amount % For example, adding a node when
N =1 cuts average CPU utilization by 50%, but adding a node to
N = 100 reduces utilization by less than 1%.

To address these problems, we developed proportional thresh-
olding that combines Equation 2 with dynamic setting of the tar-
get range. We set yn, = Yrey, and vary y; to vary the range.
Since the performance impact of adding or removing a node be-
comes smaller as the size N of the system increases, the target
range should have the following Property I to ensure efficient use
of resources: imN_—co Y1 = Yref = Yn.

Furthermore, to avoid oscillations as y; is varied, the following
Property II should hold: when the tier shrinks by one node due to
the sensor measurement falling below y;, the new sensor measure-
ment that results should not exceed yy,.

To capture these properties in our setting, we empirically model
the relationship between the Cloudstone workload and average CPU
utilization (sensor values) in the storage tier, under conditions in
which the storage tier is the bottleneck.

CPU = f(workload); thus, workload = f~"(CPU) 3)

The per-node workload workload), corresponding to the target y;, =
Yres is: workload,=f""(ys). Any per-node workload greater than
workloady, will result in a sensor measurement that exceeds yy,. Let
workload; be the per-node workload at the point where HSC de-
cides to reduce the current number of storage node instances (V)
by one. To ensure that Property II holds, we should have:
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Figure 3: Delivered bandwidth of the HDFS rebalancer (ver-

sion 0.21) for b=15MB/s. Although the bandwidth peaks at the

configured setting b, the average bandwidth is only 3.08MB/s.

We tuned the control system for the measured behavior of this

actuator.

-1

workload; = workloady X

_ N—-1
Yy = f(workloadl) = f (f 1(yh) X N )
We parameterized the trigger condition by fitting a function to
empirical measurements of the CPU utilization of HDFS datanodes
at various load levels.

3.2 Data Rebalance Controller (DRC)

When the number of storage nodes grows or shrinks, the storage
tier must rebalance the layout of data in the system to spread load
and meet replication targets to guard against service interruption or
data loss. The DRC uses a rebalancer utility that comes with HDFS
to rebalance data across the storage nodes. Rebalancing is a cause
of actuator delay and interference. For example, a new storage node
added to the system cannot start serving client requests until some
of the data to be served has been copied into it; and the performance
of the storage tier as a whole is degraded while rebalancing is in
progress.

Actuator: The tuning knob of the HDFS rebalancer—i.e., the ac-
tuator of the DRC—is the bandwidth b allocated to the rebalancer.
The bandwidth allocation is the maximum amount of outgoing and
incoming bandwidth that each storage node can devote to rebal-
ancing. The DRC can select b to control the tradeoff between
lag—i.e., the time to completion of the rebalancing process—and

interference—i.e., performance impact on the foreground application—

for each rebalancing action. Nominally, interference is proportional
to b and lag is given by s/b where s is the amount of data to be
copied.

We discovered empirically that the time to completion of rebal-
ancing given by the current version of the HDFS rebalancer is in-
sensitive to b settings above about 3 MB/s. The reason is that the
rebalancer does not adequately pipeline data transfers, as illustrated
in Figure 3. However, since HDFS and its tools are used in pro-
duction deployments, and unreliable actuators are a fact of life in
real computer systems, we decided to use the HDFS rebalancer “as
is” for now and adapt to its behavior in the control policy.

Figure 4 shows the interference or performance impact (Impact)
of rebalancing on Cloudstone response time, as a function of the
bandwidth throttle (b) and the per-node load level (1). Impact is
defined as the difference between the average response time with
and without the rebalancer running. As expected, Impact increases
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Figure 4: The impact of HDFS rebalancing activity on Cloud-

stone response time, as a function of the rebalancer’s band-

width cap and the client load level. The effect does not depend

on the cluster size /N because the cap b is on bandwidth con-

sumed at each storage node.

as b and [ increase. Running the rebalancer with b=1MB/s gives
negligible impact on average response time.

Sensor and Control Policy: We conducted a set of experiments to
model the following relationships using multi-variate regression:

e The time to completion of rebalancing (Time) as a function
of the bandwidth throttle (b) and size of data to be moved (s):
Time = f+(b, s).
e The impact of rebalancing on service response time (Impact)
as a function of the bandwidth throttle (b) and per-node work-
load (1): Impact = f;(b,1).
The goodness of fit is high (R? > 0.995) for both models. Values
of s and [ are used as sensor measurements by the DRC, and b is
the tuning knob whose value has to be determined. The choice of
b represents a tradeoff between Time and Impact. As previously
stated, the controller must consider the lag (7ime) to complete an
adjustment and restore a stable service level, and the magnitude
of the degradation in service performance (/mpact) during the lag
period.

To strike the right balance between actuator lag and interfer-
ence, the DRC poses the choice of b as a cost-based optimiza-
tion problem. Given a cost function Cost = f.(Time,Impact) =
fe(fe(b,s), fi(b, 1)), DRC chooses b to optimize Cost given the
observed values of s and [. The cost function is a weighted sum:
Cost = aTime + (SImpact. The ratio of % can be specified by the
guest based on the relative preference towards Time over Impact.
Another alternative is to choose b such that Time is minimized sub-
ject to an upper bound on Impact. These choices are useful in ad-
justing to significant load swings. The controller may also use the
Impact estimate to drive “just in time” responses to more gradual
load changes without violating SLO, but we do not evaluate that
alternative in this paper.

3.3 State Machine

To preserve stability during adjustments, the HSC and DRC must
coordinate to manage their mutual dependencies. The first depen-
dency arises from the DRC’s actuator lag. After a storage node has
been added by the HSC, the service obtains the full benefit of the
node only after rebalancing completes. The second dependency is
due to noise introduced into the sensor measurements that a con-
troller relies on, while the actions of the other controller are being
applied. For example, the data copying and additional computa-
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Figure 5: Block diagram of the control elements of a multi-
tier application. This diagram shows the internal state machine
of the elasticity controller of the storage tier, but depicts the
application tier as a black box.

tions done during rebalancing impact the CPU utilization measure-
ments seen by the HSC.

Ignoring these dependencies can lead to poor control decisions,
or much worse, unstable behavior due to oscillation. Consider a
scenario where the HSC does not take the DRC’s actuator lag into
account. After adding a new storage node, the HSC may not see any
changes in its sensor measurements, or the sensor measurements
may show a decline in performance. This observation will cause
the HSC to allocate more storage nodes unnecessarily to compen-
sate for the lack of improvement in system performance. In turn,
the completion time and impact of rebalancing could deteriorate
further.

The elasticity controller uses the state machine shown in Figure
5 to coordinate the actions of the HSC and DRC. Figure 5 also
illustrates how the elasticity controller fits as an element of an inte-
grated control solution for a multi-tiered application. In this paper,
we focus on the storage tier and treat the control elements for other
tiers as a black box, since there has already been previous work
on controlling other tiers (e.g., [20]). Section 6.3 provides further
discussion on the problem of coordinating multiple per-tier control
elements.

When the elasticity controller starts up, it goes from the Init State
to the Steady State. In this state, only the HSC is active. It re-
mains in this state until the HSC triggers an adjustment to the ac-
tive server set size. When nodes are added or removed, the state
machine transitions to the Rebalance State. The HSC is dormant in
the Rebalance State to allow the previous change to stabilize and to
ensure that it does not react to interference in its sensor measure-
ments caused by data rebalancing.

The DRC, as described in Section 3.2, enters the Rebalance State
after a change to the active server set size. It remains in this state
until data rebalancing completes, after which the state machine re-
turns to the Steady State. A form of rebalancing, called decommis-
sioning, occurs on removal of a storage node to maintain config-
ured replication degrees. HDFS stores n (a configurable parameter)
replicas per file block, one of which may be on a node identified for
removal. The replica of a block on a decommissioned node can be
replaced by reading from any of the n — 1 remaining copies. HDFS
has an efficient internal replication mechanism that triggers when
the replica count of any block goes below its threshold. Currently,
the DRC does not regulate this process because HDFS does not ex-
pose external tuning knobs for it. In any case, we observed that this
process has minimal impact on the foreground application.



4. IMPLEMENTATION
4.1 Cloudstone Guest Application

CloudStone: We modified and configured Cloudstone to run with
GlassFish as the front-end application server tier, PostgreSQL as
the database tier for structured data, and HDFS as a distributed stor-
age tier for content objects such as PDF documents and image files.
This required adding an HDFS class abstraction to Cloudstone to
enable it to use HDFS storage APIs. We also added new parame-
ter types to Cloudstone’s configuration file so that users can easily
configure and switch between different file systems without having
to recompile the source code. In all, this involved adding 200 lines
of code to Cloudstone. The experiments use a block size in the
storage tier of 800KB, which is the maximum size of binary files
generated by Cloudstone. The HDFS replica count is set to three
following best practices from production deployments.

HDFS: HDFS distributes the content objects (files) across an elas-
tic set of IV storage nodes, called datanodes. A namenode tracks
metadata including replica counts and locations for each file.

With its current implementation, HDFS does not ensure that stor-
age nodes are request-balanced, since its internal policy is based on
disk usage capacity. However, Cloudstone’s workload generator is
designed such that structured data and content objects are accessed
in a uniform distribution, which naturally balances requests across
all HDFS datanodes.

Finally, we modified HDFS to expose the rebalancer’s bandwidth
throttle b as an actuator to the external controller. We created an
RPC interface in the HDFS namenode that notifies all HDFS datan-
odes of changes to the bandwidth limit.

4.2 Cloud Provider

We use a local ORCA [14, 8] cluster as our cloud infrastruc-
ture provider. ORCA is a resource control framework developed
at Duke University. It provides a resource leasing service which
allows guests to lease resources from a resource substrate provider,
such as a cloud computing provider. The test cluster exports an in-
terface to instantiate Xen virtual machine instances [7] on a shared
pool of 30 host servers.

4.3 Elasticity Controller

The controller is written in Java and contains 1500 lines of code.
ORCA allows guests to use the resource leasing mechanisms through
a controller plug-in module written to various toolkit APIs [35].
The control policy is clocked by periodic upcalls from the ORCA
leasing core to a tick method in the controller. The controller plug-
in module also installs event handlers that trigger notifications from
the leasing core at specific points of a lease’s life cycle. We use
the onBeforeExtendTicket and onLeaseComplete handlers that are
triggered just before a lease expires and after a new lease reserva-
tion is complete (e.g., a new datanode is instantiated).

Each new lease request is attached with a guest application con-
trol handler that installs, configures, and launches the guest soft-
ware (Cloudstone and/or HDFS) on the leased server instances after
they start. Our handler installs and configures the HDFS datanode
software package when a new storage node is instantiated and also
performs the necessary shutdown sequence, such as shutting down
the HDFS datanode, when the controller decides to decommission
a storage node. The control system includes two other important
components, described next.

Instrumentation: To get the sensor measurements mentioned in
Section 3, we modified the HDFS datanode to gather system-level
metrics such as CPU utilization. We included the Hyperic SIGAR
library with each HDFS datanode. At periodic intervals, the HDFS
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Figure 6: The performance of Cloudstone with static allocation
(a,b) and our control policy (c,d), under a 10-fold increase in
workload volume. The time periods with high volume of work-
load is labeled as “WH”.

datanode uses SIGAR to gather the system-level metrics and pig-
gybacks this information on the regular heartbeat messages of the
HDFS datanode to the HDFS namenode. We also modified the
HDFS namenode and implemented a remote procedure call (RPC)
that allows the controller to get the sensor measurements of all
HDFS datanodes in a single call. With this implementation, the
controller only needs to contact the HDFS namenode to get the
sensor measurements for all storage nodes.

The controller has a separate thread that periodically obtains
these measures: the sensor interval is set to 10 seconds. The con-
troller then processes the sensor measures and applies the control
policy as described. It computes the average CPU utilization of the
HDEFS datanodes, and applies an exponential moving average filter
of six time periods to the average CPU utilization.

Subcontroller Modules: The controller has two subcontroller mod-
ules, corresponding to HSC and DRC, as described in Section 3.
Each of these modules runs on a separate thread. As mentioned in
Section 3, the coordination between these two subcontroller mod-
ules is guided by a finite state machine interlock. Since the feed-
back subcontrollers and the leasing mechanism run asynchronously
on separate threads, they synchronize through a common state vari-
able accessed by the upcall handlers. This state variable activates
and deactivates the subcontroller modules according to the state of
the controller’s finite state machine.

5. EVALUATION
5.1 Experimental Testbed

Our experimental service cluster consists of a group of servers
running on a local network. To focus on the storage tier, the front-
end application tier and database tier of Cloudstone are statically
over-provisioned: the database server (PostgreSQL) runs on a pow-
erful server with 8GB of memory and 3.16 GHz dual-core CPU,
while the forward tier (GlassFish) runs in a fixed six-node sub-
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Figure 7: The performance of Cloudstone with static alloca-
tion (a,b) and our control policy (c,d), under a small increase in
workload volume. The time periods with low and high volume
of workload are labeled as “WL” and “WH?”, respectively.

cluster, where each node has 1GB of memory and a 2.8GHz CPU.
The storage tier nodes are dynamically allocated virtual machine
instances, with fixed settings of resource configuration, based on
the control policy discussed in Section 3. We used weak virtual
machine instances for the storage nodes to trigger responses from
the controller at a smaller scale of workloads. The virtual machine
instances have 30GB disk space, 512MB of memory, a single disk
arm, and a 2.8GHz CPU, with a CPU cap set at 20%. Before each
experiment, the HDFS tier is preloaded with at least 36GB worth of
data (i.e., images and binary files used by Cloudstone). The Cloud-
stone workload generator is running on separate well-provisioned
machines, and is never bottlenecked.

5.2 Controller Effectiveness

Internet workloads are known to show predictable long-term vari-
ations and highly unpredictable short-term fluctuations [31]. Long-
term variations, usually predictable through models of past obser-
vations, can be handled by pre-provisioning resources in anticipa-
tion of the changes in workload behavior. However as mentioned
in Section 1, unpredictable changes to the workload, such as flash
crowds, happen often in practice. These changes cannot be antici-
pated by simply observing past observations, and are hard to deal
with. We are interested in evaluating the effectiveness and adapt-
ability of our controller under such unanticipated workload behav-
ior. We first use Cloudstone to subject HDFS to dynamic work-
loads that represent sudden increases in load. We want to evaluate
whether our controller is able to dynamically provision more re-
sources to handle the client workload and to fix the SLO violations
that arise.

In our first experiment, we programmed the load signal to first
generate a small workload (load factor of 1.0). At around 600 sec-
onds, the load factor is increased by a factor of 10. We set the target
response time to be three seconds, which corresponds to 20% CPU
utilization of the storage nodes. The storage system is set-up run-

ning with minimum number (three) of HDFS datanodes to handle
the initial workload.

Figure 6 shows the performance of Cloudstone with static re-
source provisioning and our control policy. With static provision-
ing, the system becomes under-provisioned for the increase in work-
load (see Figures 6(a) and (b)). Since resources are statically pro-
visioned, the performance will continue to have SLO violations in-
definitely until the workload goes back down. With our control
policy, the controller detects the impact on performance of the in-
crease in workload and decides to increase the storage cluster size
by nine (see Figures 6(c) and (d)). Figure 6(c) also shows the pe-
riod, marked with an arrow and labeled as “Rebalance", when the
rebalancing process is taking place. By the ¢ = 7800 seconds, the
average response time and CPU utilization have dropped back be-
low the target limit due to the successful addition and integration
of new HDFS datanodes.

With our controller, although there is an impact of up to ten sec-
onds in response time due to the rebalancing process, the system is
able to adapt to the new workload and fix the SLO violations (Fig-
ure 6(d)). As discussed in Section 3.2, the noisy behavior of the
response time is unavoidable due to the current implementation of
the HDFS rebalancer. Furthermore, Figure 6(d) shows what hap-
pens when the cost of data rebalancing is paid under bursty work-
loads.

In our next experiment, we programmed the load signal to gener-
ate a workload factor of 7.0. The storage system is initially provi-
sioned with ten HDFS datanodes to handle the running workload.
At around 600 seconds, a small increase (35%) in the workload
volume is introduced.

Similarly, Figure 7 shows the performance of Cloudstone with
static resource provisioning (Figures 7(a) and (b)) and with the
elastic control policy (Figures 7(c) and (d)). At around the 700"
second, the controller decides to add one more storage node. The
rebalancing process incurs an average impact of four seconds. By
the ¢ = 2450 seconds, the rebalancing process has completed and
the SLO violation has been eliminated.

In both experiments, we picked a rebalance policy that has a bal-
anced tradeoff between the data rebalancer’s completion time and
impact. In section 5.4, we discuss how the o and (3 parameters of
the cost function can be tuned by the guest to get the desired ratio
of impact to completion time. The tuning will be done based on
how much rebalance cost a guest is willing to absorb to fix SLO
violations rapidly.

5.3 Resource Efficiency

In the next experiment, we subject Cloudstone to a sudden de-
crease in workload from an initial load factor of 5.0 to a load fac-
tor of 3.5. The system is initially provisioned to handle the initial
workload without any SLO violations. We are interested to see
whether our controllable elastic storage system meets our resource
efficiency goal mentioned in Section 2. Figure 8 shows the behav-
ior of our controller.

Similar to the previous experiment, we compare the performance
of static thresholding with our control policy. In this experiment,
the workload is decreased after 370 seconds. Figures 8(a) and (b)
show the CPU utilization and response time graph of the system
with static provisioning. Since the resource configuration does not
change in static provisioning, we also see a decrease in response
time that is two seconds below the threshold for SLO violation.
However under a prolonged decrease in workload, static provi-
sioning will incur unnecessary resource costs because it is over-
provisioned for the current workload, with utilization well below
the target.
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Figure 8: The performance of Cloudstone with static provision-
ing (a,b) and our control policy (c,d), under a decrease in work-
load volume. The time periods with low and high volume of
workload are labeled as “WL” and “WH?”, respectively.

With our control policy, on the 420" second, our controller is
able to detect and determine that the system is over-provisioned.
The controller then releases the excess HDFS datanode and returns
the resources to the cloud provider (see Figure 8(c)). As shown in
Figure 8(d), even with a decrease in the size of the storage cluster,
there still are no SLO violations.
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Figure 9: The response time of Cloudstone under different re-
balance policies: Aggressive policy, our controller’s rebalance
policy, and conservative policy.

5.4 Comparison of Rebalance Policies

For illustrative purposes, we compared our rebalance policy with
two other policies: aggressive and conservative. An aggressive
policy allocates as much bandwidth as possible to the data rebal-
ancer. On the other hand, a conservative policy allocates minimal
bandwidth so that there is minimal impact on the response time of
Cloudstone during rebalancing.

In this experiment, we drive a heavy workload to Cloudstone and
then let the controller allocate a new storage node and start the re-
balancing process. Figure 9 shows the response time of Cloudstone
when the rebalancer is triggered. For each policy in the figure, the
period reflecting the running time of the rebalancer is marked with
an arrow and labeled as “Rebalance". An aggressive rebalance pol-
icy gives the shortest time to completion but also severely impacts
the response time of Cloudstone. However, compared to our pol-
icy, it only gives around five minutes of improvement to the rebal-
ancer’s time to completion. Moreover, our policy gives 15 seconds
less impact on the response time of Cloudstone than an aggressive
rebalance policy. A conservative policy gives minimal impact on
response time but takes more than twice as long to complete; which
is also not good because it prolongs the period of SLO violations.
Our controller’s rebalance policy shows a balance between time to
completion and the impact on Cloudstone. It should be noted that
a conservative and aggressive rebalance policy can be attained by
setting the o and 3 parameters respectively to zero.

6. DISCUSSION AND FUTURE WORK
6.1 Other Cloud Computing Models

In this paper, we focused on the infrastructure-as-a-service model
of cloud computing (like Amazon EC2) where each guest runs a
private storage service on virtual server instances leased from the
cloud provider. Software-as-a-service is another popular model on
the cloud (like Amazon S3) where the cloud provider offers a soft-
ware service using a pay-as-you-go pricing model; rather than leas-
ing out virtual resources. In this case, the control problem of stor-
age elasticity does not arise for the guests because they don’t con-
trol the storage infrastructure. However, the control problem has
simply moved to the cloud provider. Our overall approach can be
used by the cloud provider, but an additional challenge arises. The
storage service will now be used and shared among multiple guests,
each with its own performance objectives and data. The controller
needs to make sure that there is performance isolation and differen-
tiation across guests. It is worth noting a recent paper that discusses
the problem of massive resource inefficiencies in emerging parallel
systems [4]. Someone has to pay for this inefficiency—the cloud
provider will have to pay in the software-as-a-service model unless
they leverage elastic storage.

6.2 Data Rebalancing

Automated data rebalancing is a critical ingredient of a control-
lable elastic storage system. The kinds of rebalancing needed is
specific to the storage system and application needs. In our target
guest, for example, data rebalancing entails moving files to new
storage nodes, replicating files for availability, and ensuring that
the load is balanced across all nodes. On the other hand, collocat-
ing multiple data items is a crucial need during data rebalancing in
a database system, e.g., collocating indexes along with the indexed
data records. An ideal rebalancer should hide system-specific de-
tails, and expose appropriate tuning knobs so that the elasticity con-
troller can invoke the rebalancer to meet service-specific needs on
completion time and performance impact. The best way to imple-
ment a rebalancer is a nontrivial question.

HDFS Rebalancer: The current implementation of the HDFS re-
balancer limits the performance of the elasticity controller. The
bursty data transfer rates observed in Figure 3 and the noisy re-
sponse time values in Figure 6(d) are unfortunate side-effects of
this implementation. The implementation also causes high compu-
tational overhead. For example, the HDFS rebalancer creates sep-
arate socket connections between HDFS datanodes for each sched-
uled block transfer. Small block sizes can cause many open socket
connections between datanodes. It should be noted that the issues



with the HDFS rebalancer are tangential to the main point of this
paper, which is addressing the challenges of automated control of
an elastic storage tier.

6.3 Dealing with Multiple Actuators

One issue with having multiple actuators is that there will be sen-
sor data interference and dependency. For example, we have shown
that the data rebalancing process has an impact on sensor measure-
ments. Thus, there is a need for coordination and synchronization
among multiple actuators. In this paper, we used a hierarchical
coordination scheme to coordinate between two actuators: cluster
resizing and data rebalancing. This policy treats the two actuators
as mutually exclusive, and data rebalancing always gets triggered
after cluster resizing. One limitation of this policy is that if the
workload changes while in the Rebalance State, the elasticity con-
troller waits until the rebalancing process finishes before making
another decision regarding the size of the cluster. In this situation,
the controller can potentially be less responsive, i.e., longer time to
adapt to workload changes.

As future work, we are looking into alternative policies for co-

ordination between the two actuators. One possible approach is
to run both actuators concurrently. We could develop techniques
to filter out the impact of the rebalancing process on the sensor
measurements. While the data rebalancer is running, the horizontal
scale controller can then use the filtered measurements to determine
whether further changes to the cluster configuration are necessary.
These enhancements may make the controller more agile, which
may be useful in rapid dynamic change of workloads, but we must
balance stability and agility. Our current solution is simple and
provably stable in that the controllers can never work at cross pur-
poses.
Multi-tier Applications: We focused on controlling the storage
tier of a multi-tier application, which is active only when the con-
troller has determined that the bottleneck is in the storage tier. We
can consider controlling a multi-tier application as dealing with
multiple actuators. In this case, each tier can have an elastic number
of resources (e.g., virtual server machines).

We are interested in finding the minimum amount of coordina-
tion among multiple actuators that still results in an effective and ef-
ficient control system. Treating each tier as an independent actuator
with its own control policy can cause shifting of the performance
bottleneck between tiers. Our proposed solution involves using an
interlock to coordinate between tiers. A tier can only release re-
sources when the interlock is not being held by the other tiers. The
interlock is acquired by a tier when it detects that its resources are
being overutilized. In our previous work [20], we have designed a
controller for the front-end tier of Web applications. However we
leave as a future work, the evaluation of the coordination policy
between the front-end tier controller and our storage controller.

6.4 Adapting to Expected Load Changes

Currently, this paper only addresses the case of unpredictable
workloads, in which the cost of rebalancing has to be paid by guests
in order to fix SLO violations. As mentioned in Section 5.2, for the
other type of workloads that exhibit reasonable load changes, the
HSC controller can perform pre-provisioning of resources. With
a predictable workload signal, we can use our models of time to
completion of rebalancing (7ime) and the impact of rebalancing
(Impact) (refer to Section 3) to find when to trigger the actuators
so that no SLO violations happen. The control policy then turns
into a constrained optimization problem that minimizes the chosen
bandwidth allocated to the rebalancer, while ensuring Time is ear-
lier than the projected time of SLO violation and the sum of the
projected growth in workload and Impact is smaller than the SLO
threshold.

7. RELATED WORK

To our knowledge, we are the first to address the problem of

automated control for elastic storage in the context of cloud com-
puting. Specifically, no other work has focused on the combination
of issues regarding discrete actuators, interference of the data rebal-
ancing process on guest services, and actuator delays when design-
ing a controller for elastic storage systems. SCADS [6] is a closely
related work that deals with the problem of dynamically scaling a
storage system. Its design uses machine learning to determine and
predict resource requirements. Our controller employs a reactive
policy. Moreover, we automate the data rebalancing process which
is necessary for scaling the storage system.
Control of Computing Systems: There has been work on feed-
back control of computing systems [24, 34, 23, 22]. These works
assume the availability of continuous actuators. Moreover, these
works address the issue of control for non-clustered systems. For
example, Wang et al. [34] dynamically adjust the CPU capacity of a
guest virtual machine. This paper extends their work by designing
a controller for clustered services. Specifically, our work uses the
cluster mechanism of incrementally-scalable systems to dynami-
cally provision cluster nodes.

In terms of automated control of computing systems in the con-
text of cloud computing, Padala et al. [23] have also considered a
decoupled architecture (between the guest and cloud provider) in
the design of their control system. However, our work differs in
that our control system also takes into account actuator constraints,
which are inherent in all commercial cloud providers. For example,
rather than adjusting CPU allocation, which commercial providers
do not provide, our work regulates the number of instantiated vir-
tual machines.

There has also been work addressing the problem of control of

Web applications [30, 31, 16]. Urgaonkar et al. [30] use queuing
theory to analytically model a multi-tier Internet application, and
use this model to determine how many servers are needed in each
tier. One difference with our work is that they use a centralized
control architecture, which may not be feasible in the cloud context
when the provider and guests are separate business entities. Yak-
sha [16] does not perform resource provisioning, rather it performs
admission control to improve a Web application’s performance.
Data Rebalancing: Previous works have addressed the data rebal-
ancing problem in a storage system [21, 5, 26]. In these works,
rebalancing data is performed in a way that it does not cause any
violations to the foreground application’s SLOs. Aqueduct [21]
uses a feedback controller that throttles its bandwidth usage to en-
sure that the quality of service of the foreground application is not
affected while data transfers (e.g., backups) are performed in the
storage system; and only unused bandwidth is used. If there is only
limited unused bandwidth, then this approach can take a long time
to complete; which may not be acceptable in the context of control-
lable elastic storage systems. For our controller, rebalancing data
is not treated as an optional procedure, but as a required procedure
to fix SLO violations.
Actuator Delays: Soundararajan et al. [28] address the issue of
actuator delays for a different control problem. They present a con-
trol policy for database replication on a static-sized cluster. Their
controller waits for the replication process to complete before mak-
ing a new decision. Our work addresses the problem of automated
control of elastic storage systems while accounting for the delays
brought by data rebalancing. Aside from waiting for the data re-
balancing process to complete, our controller also finds the right
balance between the time to completion and impact of data rebal-
ancing. The use of proportional thresholding further distinguishes
our work from [28].



Performance Differentiation for Storage Systems: There has
been a long line of work that uses scheduling policies and admis-
sion control schemes to ensure performance guarantees and dif-
ferentiation in storage systems [32, 13, 33]. For example, Jin et
al. [15] present a share-based scheduling algorithm that enforces
desired shares of resources for a storage service. Triage [17] uses
a feedback controller to perform admission control by throttling
client request rates to the storage system. These control schemes
complement our work because we deal with allocating the right
amount of resources to handle client workloads, while the afore-
mentioned control schemes ensure that there is performance isola-
tion between different sets of clients.

8. CONCLUSION

In this paper, we presented an automated controller for elastic
storage systems in the context of cloud computing. The design
addresses several challenges that exist due to the nature of the stor-
age system and the cloud infrastructure. To address the issue of
discrete actuators, our controller uses proportional thresholding to
determine the size of the storage cluster. Moreover, the controller
must treat data rebalancing as a first-class actuator. The controller
uses a cost-optimization-based approach to determine the amount
of bandwidth to use for rebalancing data as the cluster size grows
or shrinks. A cost function is used to find the best tradeoff between
the impact on the guest service and the time to completion of the
rebalancing process. Finally, the controller uses a state machine to
coordinate between multiple actuators and to be robust to actuator
delays.

We evaluated our controller using a Web 2.0 benchmark applica-
tion running on an experimental testbed that consists of a variable
number of Xen virtual machines instantiated from an inventory of
physical servers. The experimental results confirmed that our con-
troller is able to dynamically provision coarse-grained resources
(i.e., virtual machines) under unanticipated changes in the client
workload. Our rebalance policy balances the performance impact
and time to fix SLO violations. Furthermore, our controller main-
tains client SLOs while being very resource efficient.
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