
InSight: A Framework for Application Diagnosis using
Virtual Machine Record and Replay

Senthilkumaran R and Purushottam Kulkarni
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
{kumaran, puru}@cse.iitb.ac.in

ABSTRACT
Non-deterministic execution poses several challenges toward
diagnosis—debugging, profiling and execution state mining,
of software systems (user-level applications and operating
systems). While several techniques using modified libraries,
library wrappers, binary instrumentation and memory shad-
owing techniques exist, we aim to exploit the record and re-
play technique enabled by virtualization to provide a gener-
alized diagnosis framework. Our solution, is motivated by
the requirements of reproducibility of execution, no applica-
tion source code modification and no or minimal binary in-
strumentation overheads—all of which are seldom provided
by existing techniques. InSight , our diagnosis framework,
consists of two stages—the first which records execution
state of applications and the virtual machine and the sec-
ond that replays and analyses the recorded execution. We
implement InSight on the Linux kernel-based virtual ma-
chine (KVM) platform and as contributions implement an
efficient record and replay substrate for KVM and a diagno-
sis framework using this substrate. This paper describes the
design and implementation of these components and devel-
ops a set of diagnosis tools—potential deadlock detection,
lock usage profiling and function profiling. We also present
experiments to demonstrate correctness, the low overheads
of InSight and the related diagnosis outcomes.

Keywords
Virtual machine record and replay, application diagnosis

1. INTRODUCTION
An important activity for correct and efficient working of
software systems—user-space applications and the operat-
ing system, is diagnosis. Diagnosis of different varieties—
debugging, profiling and execution state mining, is often
used for this purpose. Diagnosis services come with differ-
ent levels of benefits (in terms of information for diagnosis)
and costs incurred for the same.
Tools like gdb [1] and gprof [2] require binaries to be com-
piled with the debug information option for stateful stepped
execution. Other tools like ftrace [3], systemtap [4] and
PinPlay [5] require enabler scripts for extract information
on desired events. Diagnosis tools like valgrind [6] use

heavy-weight instrumentation to extract information and in-
cur high overhead because of online diagnosis. Further, pro-
filing tools like OProfile [7] exploit hardware counters to
sample runtime execution state and need to be executed along
with applications of interest. Each tool provides a subset
of diagnosis functionalities and requires different degrees of
execution overhead and user interventions (in terms of set-
ting up the diagnosis environment). The “finer” the diagno-
sis, higher are the costs (in terms of execution time). For
example, consider a write-protected memory region used to
track all writes from processes/threads. Since, each memory
write is trapped, applications can seldom execute at native
speeds. Where as, for coarser diagnosis setups all desired in-
formation cannot be retrieved, e.g., profiling tools only pro-
vide quantitative analysis of execution state, call graphs etc.
Another diagnosis requirement is to track multiple entities
(process/threads) to capture a chronology of interactions be-
tween them, e.g., inter-process calls etc. Such requirements
are usually met using fine grained trapped execution of all
entities involved and potentially increasing the execution over-
heads.
Further, diagnosis tools are often required when the source
of trouble is not known, e.g., bugs are non-deterministic,
deadlock is dependent on inter-leaving order of threads etc.
Runtime diagnosis using profiling and debuggers cannot cap-
ture conditions that do not occur. A useful requirement is to
be able to log execution state of the system and, either peri-
odically or when events of interest occur, treat it with varied
diagnosis tools to uncover required information.
As part of this work, we aim to provide a framework for di-
agnosis of applications with the following aims—reproducibility
of non-deterministic execution state, minimize execution over-
heads and instrumentation requirements. InSight , our diagnosis-
as-a-service framework, exploits the record and replay fea-
ture available in virtualized environments. The framework
provides a generic and quickly configurable service for di-
agnosis while minimizing interference to application execu-
tion. The virtual machine record feature, enables record-
ing of the non-deterministic state of virtual machines—guest
operating system and applications, to be replayed in a de-
terministic manner. The execution can be replayed several
times for different types of diagnosis requirements. A sim-

1

ilar approach is used in Crosscut [8], where multi-stage
replay is used to extract execution state for focussed time in-
tervals and for selected processes. The extracted state can be
replayed on a diagnosis tool valgrind or on a perl execu-
tion environment.
As part of the diagnosis framework, we instrument the guest
operating system to coordinate with the host machine (the
hypervisor) to exchange state information regarding events.
An advantage of the modified guest is that the applications
to be diagnosed need not worry about the basic instrumen-
tation related to state collection and with a small amount of
configuration can quickly use the diagnosis service. While
guest instrumentation is required to provide event state infor-
mation (e.g., instruction pointer to process mapping, symbol
tables etc.), the generation of events itself relies on existing
operating system facilities.
An important requirement of providing this service is min-
imal distortion—low overhead state collection and faithful
reproduction of execution state for diagnosis. We exploit the
record and replay facility with instrumentation to meet the
above requirements and via InSight , our diagnosis-as-a-
service framework, make the following contributions:

• Design and implement an optimized record and replay
substrate for the Linux-based Kernel Virtual Machine
(KVM) platform. Our substrate supports network traf-
fic replay and always DMA-based disk accesses.

• Instrument the record and replay system to obtain re-
producible state for diagnosis.

• Empirically validate the correctness and overheads of
the diagnosis framework.

• Present a set of diagnosis tools, lock contention ana-
lyzing, potential deadlock detection and function-level
profiling, to demonstrate the applicability and usability
of InSight .

2. THE INSIGHT ARCHITECTURE AND IM-
PLEMENTATION

InSight consists of various components to achieve execu-
tion trace collection with reproducibility and negligible over-
head/distortion. In this section, we describe various compo-
nents of InSight and how these components work together.
This section also describes the implementation of InSight
components.

2.1 Architecture
As shown in Figure 1, InSight consists of two major com-
ponents: (i) a record and replay enabled hypervisor, and (ii)
a diagnosis subsystem. In coordination with the hypervisor,
the virtual machine acts as a platform to execute applica-
tions and facilitates extraction of execution event trace. The
diagnosis subsystem uses the event trace stored in an event
database to answer interesting queries about the execution.

R&R Hypervisor

Host

Application
LIB Probes

Guest OS OS Probes

Guest VM

User Query
 Interface

Events
DB

Diagnosis Tools

Potential Deadlock

Lock Contention

Function Profiler

Figure 1: InSight architecture and it’s components.

In the InSight framework, guest VMs execute in record
mode—the application execution stage. In this stage no di-
agnosis information is collected, only information regarding
external (non-deterministic) events which are necessary for
reproducibility are recorded. At a later point in time, the
recorded state of the virtual machine (and it’s applications)
can be replayed for diagnosis—the diagnosis stage. During
replay, all external events are injected correctly for identical
execution the applications and the OS. Further, event probes
notify the InSight system about the occurrence of events
The set of event probes we implemented is described in Sec-
tion 3.
The InSight framework uses a instrumented guest virtual
machine, i.e., the guest virtual machine stores and exposes
state information regarding events to the hypervisor. For ex-
ample, on a lock acquire event the virtual machine reveals
the thread that acquired the lock. Since InSight and probes
are aware of the pre-defined structure for information ex-
change, InSight collects the information prepared by event
probes and stores them in an event database for diagnosis.
All state information is stored in an event specific pre-defined
structure to be consumed by the hypervisor. During diagno-
sis, the hypervisor progressively captures state information
of all events of interest and stores them in a events database.
The events database is further consumed by diagnosis tools
for analysis of the applications execution.
The InSight architecture allows multiple diagnosis stages
to be executed in parallel enabling efficient analysis of long
test scenarios. For example, data race analysis can be done
in parallel with potential deadlock analysis.

2.2 Record and replay implementation
The first of the two major components of InSight is the
virtual machine record and replay substrate. The record and
replay feature enables reproducibility of a virtual machine’s
execution. InSight’s virtual machine record and replay
is designed to enable faithful play back and minimize log-
ging overheads. The record and replay system follows stan-
dard implementation techniques of non-deterministic exter-
nal event recording [9, 10]. As part of InSight we designed
and implemented record and replay of network events and
DMA-based disk IO. Based on our literature survey, we have
not come across documentation of record and replay which
considers both these factors.

2

Efficient record and replay implementation of DMA-based
IO and network events is important for faithful execution of
applications which are IO bound (both disk and network).
The InSight record and replay substrate is implemented
on the Linux Kernel Virtual Machine (KVM). The substrate
records non-deterministic external events such as data read
from external devices (keyboard, mouse, disks), external in-
terrupts injected to the virtual machine and data copied to
VM’s memory by external devices (DMA read, network packet
receive). Replay is achieved by re-injecting these events to
the guest virtual machine at the same instance at which the
events occurred during record stage. A time stamp which
serves as a reference for event injection is recorded with ex-
ternal events. We use the <branch counter, instruc-

tion pointer, ECX value> tuple as timestamp which iden-
tifies any point in execution as discussed in [9].
Next, we briefly describe our main contributions (as part of
InSight) to the record and replay technique in the follow-
ing sections.

2.2.1 Deterministic replay of network events
In order to enable stand-alone1 record and replay for virtual
machines with network connections, we record state regard-
ing the incoming packets. The challenge in replaying ar-
rival of network packets is that the packet consumption by
guest is non-deterministic. A guest device driver operating
in polling mode can consume a received packet any time af-
ter a complete-bit is set. The complete-bit indicates whether
a packet is received (present) in the receive buffer.
To record state of the packets, we modified the Intel eepro100
network device emulation in QEMU [11] The emulation is
implemented based on the device specification provided in
the [12].
During replay, to ensure that packets are read at the same
time instance as during record, we associate setting of the
complete bit (of a received packet) with a well-defined event
of the guest. For example, setting the complete bit of a re-
ceived packet is delayed by QEMU until a timestamped event
(interrupts) or a guest VM event (port/mmio based IO event)
is raised. Instead of setting the complete bit at packet re-
ception, if the complete bit is set when a well-defined event
occurs, we ensure that guest reads of received packets are
associated with a recorded event.
The example in Figure 2 shows arrival of packets pkt1, pkt2,
pkt3 and pkt4 during guest execution. But the complete
bit of these packets is not set till a well defined event E.
This technique creates a happened-before relationship be-
tween the well defined event and the set of packets received.
In our example, the guest VM can see the packets only after
it receives the event E (so the packets are indirectly tied to
event E). During recording, every time a well defined event
occurs, all buffered packets (i.e., packets received by the de-
vice but whose complete bit is not yet set) are recorded in a

1A virtual machine to be replayed does not require a network con-
nection for application traffic

trec=0

pkt1 pkt2 pkt3

trec= i
Guest

Host

trply=0 trply= i
Guest

Host

E
pkt4

VM Record

VM Replay

E

Figure 2: Enabling correct record and replay of network
packets.

log file and their corresponding complete bit is set. In figure
2, contents of buffered packets pkt1..4 are recorded during
event E and the log record of E will have list of buffered
packets—pkt1..4—when E occurred. During replay, before
injecting a well defined event, we check if any packets have
been recorded along with that event, if any, we deliver those
packets by copying them to receive buffers and setting their
corresponding complete bits. In Figure2, when guest ex-
ecution reaches time i in replay, the hypervisor should in-
ject event E. Before injecting event E, hypervisor finds
packets pkt1..4 were recorded with event E and copies the
recorded packet content to receive buffers and sets the com-
plete bits before resuming guest execution. All three opera-
tions of saving/restoring packet content, setting complete bit
and recording/injecting the well defined event occur as an
atomic operation from the guest’s perspective—no interme-
diate state is visible to guest.

2.2.2 Replay of Direct Memory Access(DMA)-based
disk I/O

Implementing efficient record and replay of disk accesses
has two main challenges, (i) maintaining consistent disk state
for replay, and (ii) supporting different methods of access,
port-based or DMA-based IO. To address the first problem,
we use a copy-on-write (COW) based disk format provided
by QEMU. Recording is done using copy-on-write disk im-
age and writes generated by the guest are redirected to a
temporary disk file (preserving the state of the initial disk
image). To replay, we use the same copy-on-write disk im-
age which has the initial state of the disk and again redi-
rect writes to a temporary a disk file. In both record and
replay, reads after write are served from the temporary disk
file. This method allows the initial disk state to be intact
(both during record and during replay) and can be used for
any number of replay executions.
To execute IO intensive applications we provide DMA-based
disk access (as opposed to port based IO), and record and
replay for the same. Our initial experiments showed that
port based IO is considerably slow compared to DMA based
IO and can not handle even moderate IO intensive applica-
tions. DMA-based disk accesses are asynchronous, i.e., disk

3

Guest

DMA

trec= i

VM Record

trec= j

DMAcount= x DMAcount = x+1

VM Replay

DMA
Initiation

DMA
completion

Guest

DMA

trply= i

trply= j

DMAcount= x DMAcount = x
RDMAcount= x RDMAcount= x+1

DMAcount = x+1trply= i-Δ

trply= j+Δ

Figure 3: Record and replay implementation of DMA

access is initiated by the guest and completion is notified
through an interrupt from the disk drive. In a record and re-
play scenario, DMA completion time— duration from DMA
initiation to DMA completion interrupt arrival—should be
identical in both the record and replay stages. If the com-
pletion times of DMA-based IO are not preserved, the replay
will be unfaithful.
There are two possible scenarios during replay, the DMA-
based disk access finishes earlier during replay than dur-
ing record and vice-versa. To maintain identical ordering of
events during replay, we delay the execution of the guest till
the corresponding DMA interrupt arrives. The two scenarios
are showed in Figure 3,

1. The DMA which completed at time i during record,
completes earlier at time i−∆ during replay. In this
case, the DMA completion interrupt is delayed till the
replaying guest execution reaches time i.

2. The DMA completed at time j during record, but when
the guest execution reaches time j during replay, the
DMA is not yet complete. We pause the guest execu-
tion till the DMA completes (at time j+∆).

InSight relies on a DMA interrupt counter to achieve this.
The counter represents the number DMA interrupts received
so far. We maintain two counters, recorded count RDMAcount
and actual count ADMAcount . Actual count, a VM state vari-
able, is incremented whenever a DMA interrupt is raised by
the emulated disk drive. Recorded count is a field in the
log record. During record stage, every time a DMA inter-
rupt is recorded, the recorded count for that DMA interrupt
record is set to the current value of the actual count. During
replay, before injecting a DMA interrupt from the log file,
actual count and corresponding (interrupt record’s) recorded
count values are compared. If the actual count is less than
the recorded count, then DMA is yet to complete. In this
scenario, the guest VM process is added to a event interrupt-
ible wait queue by the host. When the counters match the
guest process is removed from the wait queue and resumes
execution.

The other possible case where actual count ADMAcount is
greater than recorded count RDMAcount does not occur be-
cause the replay maintains determinism—no extra DMA’s
can be initiated.

3. THE INSIGHT DIAGNOSIS FRAMEWORK
.
In the InSight framework, application diagnosis is a two
step process. In this section (and the next) we present design
and implementation details and a set of use cases of In-

Sight , the diagnosis-as-a-service framework. The frame-
work itself is generic and can be applied to several diagnostic
questions. By diagnosis we imply collection of state infor-
mation during application execution to be used for debug-
ging, profiling and execution analysis.

3.1 InSight events
Diagnosing tools of InSight work offline and rely on the
event traces for analyzing applications. Event traces are gen-
erated by collecting key events about the application execu-
tion. Events are classified based on whether the information
to be collected requires instrumentation for event generation
and event information.
Explicit events need event probes, a code snippet which aids
in notifying the event occurrence and event information ex-
traction. For example, events such as lock acquisition, lock
release require special instrumentation to generate events from
the application’s context. Event probes are a part of an ap-
plication’s execution. On the other hand implicit events can
be extracted without any instrumentation of applications and
their execution. Extraction of implicit events are facilitated
by the virtualization layer (software and hardware). For ex-
ample, occurrence of a memory access event on a specific
memory address can be extracted using the additional level
of page tables introduced by virtualization. Every event has
two important requirements, instrumentation for event noti-
fication and information to be extracted on the event. For ex-
ample, extracting lock events involves getting notifications
during a lock event and extracting information related to ad-
dress of the lock and identity of the thread acquiring the lock.

3.1.1 Event probes
Explicit events are those which capture specific events within
the context of an applications execution. Event probes are
inserted in application execution path to generate explicit
events.
Our first method for event probes is based on Pin tools [13].
We used the Pin API to insert necessary event probes in ap-
plication’s executable. Pin does not require source code mod-
ifications but it uses JIT recompilation and runs the applica-
tion in a virtual environment. Existing work [14] reports an
average overhead of 20-30% for running applications in the
Pin virtual environment (without event probes and related
actions).
The second method to insert event probes works in cases

4

libeventprobes.so.1.0.0
pthread_mutex_lock(){ }
malloc(){ }

Application's address space

libpthread-2.15.so
pthread_mutex_lock() { }

/usr/bin/evince
pthread_mutex_lock()
malloc()

libc-2.15.so
malloc() { }

libgtk.so.1.1.1

Original links by ld

New links by ld with LD_PRELOAD

Explicit links in wrapper using dlsym

Figure 4: Wrappers built using LD_PRELOAD.

where events are to be generated from standard library func-
tions and are defined in shared libraries. The basic idea
is to create wrappers around the required library functions.
Wrappers are created by using the LD_PRELOAD environ-
ment variable. This variable is used to specify a library to be
loaded when an application is executed. The LD_PRELOAD
library is load before any other shared library is loaded in the
application’s address space. Conventionally, the dynamic
linker links a library function call by searching sequentially
in all the loaded libraries and the first instance of the function
definition found is linked. A wrapper for a library function
can be implemented by using chained linking. To under-
stand this, consider the scenario in Figure 3.1.1. Without the
LD_PRELOAD wrapper, the pthread_mutex_lock() and
malloc() calls inside the evince applications are linked
to libpthread-2.15.so and libc-2.15.so respectively.
With a LD_PRELOAD wrapper, these calls are linked to the
wrapper functions defined in the libeventprobes.so li-
brary. Subsequently (after logging required event informa-
tion), the wrapper function switches control to the intended
function call. The address of the actual function definition is
obtained using dlsym() function — given a function name
returns the function definition address — of dynamic loader
ld’s API.
Initial usecases of InSight use the LD_PRELOAD-based method
for event probe insertion, but our framework is generic enough
to accommodate other methods to capture user-level func-
tions (albeit at greater instrumentation and runtime overheads).
Our current implementation uses modified guest kernel for
operating system related events. systemtap [4] can also be
used to insert kernel-level event probes. systemtap allows
embedding C code through guru mode2, which can be used
for event generation.

3.1.2 Event information and event buffer
Information about events is exchanged from event probes to
2The guru mode is set by invoking systemtap with the -g option.
When in guru mode, C code snippets enclosed between {% and %}
are accepted and added to the probe by the systemtap translator.

the diagnosis system by using event_buffer in the guest
application’s address space. Event probes prepare required
event information whenever an event occurs. By preparing
primitive information about the events, overhead is kept in
check. For example, a lock event consists of lock address,
task’s pid, lwpid (thread id) and timestamp of the lock re-
quest. These details can be extracted without incurring high
overhead. To minimize overhead further, frequently used
and non-changing information (pid, lwpid, process name)
are cached in memory.
There are other subtle challenges in making event informa-
tion available to the diagnosis system. The event informa-
tion is in application’s address space and addressed using
guest virtual addresses (gva). Whereas the diagnosis system,
which accesses the event information executes in the host
address space and uses host virtual addresses (hva). Further,
if the event_buffer (memory used for event information)
spans across multiple pages, we need to do more than one
address translations from gva to hva. In order to ensure that
always one translation is sufficient, we use a page-aligned
event_buffer in the guest (with size less than a page). In
multi-threaded applications, events may occur in context of
different threads. With a global event buffer, it possible for
a thread to overwrite an existing event information prepared
by another thread. To avoid such situations, we use thread
specific event_buffers for event information.

3.1.3 Event notifications
The diagnosis system identifies event occurrences by receiv-
ing event notifications from event probes. To generate an
InSight event , an event probe does following:

1. Prepare necessary information about the event in the
event_buffer. The information consists of generic
fields and event-specific fields.

2. Copy guest virtual address (gva) of the event_buffer
to the EAX register.

3. Store the InSight event notification key EVENTNO-
TIFY in the EBX register.

4. Raise debug exception using int3.

The first two steps prepare event information while the last
two steps generate the notification. Events are notified using
a debug exception which is trapped by the hypervisor and
processed by the diagnosis system. To distinguish event no-
tification exceptions from other exceptions a special value
EVENTNOTIFY is stored in the EBX register. Hypervisor
handles event notifications differently during application ex-
ecution stage and diagnosis stage.

3.2 Stage 1: Application execution
Application execution is the first stage of our InSight frame-
work. An application executes within a record and replay
enabled virtual machine. The hypervisor is configured to

5

Guest OS &
Application

 Is Debug
Exception ?

 EBX
has EVENT-
-NOTIFY ?

Recording
required ?

Record the event
to log file

KVM + QEMU

1. Replace int3 at
guest's instr. ptr. with nop
2. Increment guest's
 instr. ptr.

VM Exit

VM Entry

N YY

N N

Y

Figure 5: Events notification during VM Recording

operate the virtual machine in record mode, which enable
recording all events of interest.
Application execution begins after inserting necessary event
probes (both operating system and user-level probes). Fig-
ure 5 shows the VM recording process along with event no-
tifications. During the application execution (VM record-
ing) stage, event information and event notifications are not
necessary, and application execution can make do without
this overhead by avoiding raising these exceptions. To avoid
trapping of event notifications, we could use either use hard-
ware support to disable trapping all debug exceptions or use
software instrumentation to disable trapping only debug ex-
ceptions which are raised for event notifications. We choose
the later method, so that the normal debug exception han-
dling is not changed. Figure 5 shows the method on a VM
EXIT caused by a debug exception. The method avoids trap-
ping event notifications by replacing the int3 instruction
used by the event probes with a nop instruction. The first
step in replacing is to identify the address of the int3 in-
structions which caused the debug exception. We allow the
debug exceptions to occur for the first time. Every time a
debug exception occurs, if the virtual machine is in record
mode (application execution stage) and EBX register has EVENT-
NOTIFY, we replace the instruction pointed by current in-
struction pointer with a nop instruction.

3.3 Stage 2: Application diagnosis
The diagnosis stage starts with VM replay, which replays
previously recorded application execution. The determinis-
tic replay feature of the VM ensures that the event probes
will prepare the same event information and will raise the
same set of explicit event notifications as in the record stage.
Additionally, the diagnosis stage can generate implicit events
while the VM replays the recorded execution. In contrast
to application execution stage which ignored the event in-
formation and event notification, the diagnosis stage logs
all event information. The only difference between appli-
cation execution stage and application diagnosis stage is in
the event notification method. During the diagnosis stage,

int3 instructions will not be replaced with nop instructions.
Every time a debug exception occurs during replay, diagno-
sis system handles it as follows:

1. Check for InSight event identification key EVENT-
NOTIFY in the EBX register.

2. If EVENTNOTIFY is not present in EBX register, follow
the default handling of debug exception.

3. Else, convert the guest virtual address (gva) of event_buffer
present in EAX to host virtual address.

4. Read the event information from the translated hva ad-
dress and store the information in the event database.

The diagnosis system collects and saves the information in
event database, and diagnosis tools can use the events stored
for analysis. Our current implementation uses flat file as
event database. We explain extraction of implicit events in
function profiler’s implementation section (see Section 4.4).

4. USECASES
In this section, we explain the prototype tools created for
demonstrating the usefulness of our framework.

4.1 Events used by diagnosis tools
To demonstrate the usefulness of InSight we implemented
tools which analyses for lock usage related issues and pro-
files application execution. Here we discuss information
fields for the set of events generated to implement these tools.
Each event type includes information specific to the event
type. Along with event specific fields, for every event com-
mon fields such as pid, lwpid, process name and timestamp
are extracted.
LOCK, TRYLOCK, TIMEDLOCK, UNLOCK, LOCKINIT events
are generated from the corresponding pthread_mutex_*

wrapper functions and the lock address represents the event-
specific information. Similarly, {LOCK, TRYLOCK, TIMED-
LOCK, UNLOCK}RET events are generated from the wrap-
per functions after the actual definition returns. In this case,
the return value and lock address are the event-specific infor-
mation fields. THREADCREATE and FORK events are gen-
erated from pthread_create and fork function wrappers
respectively. THREADCREATE is generated from the newly
created thread before executing the start routine. FORK event
is generated from the child process created. Both these events
include parent’s lwpid information. CONTEXTSWITCH is
generated from the kernel and includes lwpid’s of from and
to processes. EXIT is generated either during exit, _Exit,

_exit calls or from the wrapper library destructor —invoked
while unloading libraries from the application address space.
In the former case, EXIT includes return value of exit func-
tions and 0 as return value in the later case. SYMBOL events
are generated once per execution and are done so before
the first explicit event. Event information in this case in-
cludes the address of symbol_buffer (see Section 4.1.1).

6

The SAMPLE (implicit) event is generated during applica-
tion execution at every sample period sample_interval

(see Section 4.4) and includes instruction pointer value as
event information.

4.1.1 Symbol table extraction
For efficient diagnosis, results produced by the diagnosis
system should include symbols from source code of the ap-
plication being diagnosed. This helps user to map the is-
sues found in application execution to application source
code. To achieve this, the diagnosis system should be able to
map raw addresses present in the stack and instruction point-
ers to symbols. Mapping addresses to symbols inside event
probes while generating events incurs high overhead to ap-
plication execution. We postpone this mapping till the diag-
nosis stage. During application execution stage, we generate
a SYMBOL event which exposes symbol tables of the appli-
cation. This event consists of a 4KB page boundary aligned
symbols_buffer. The symbol tables are exposed by itera-
tively raising SYMBOL events and each event exposes part of
the symbol table by copying it to symbols_buffer. Every
time the symbols_buffer becomes full, a SYMBOL event
is raised. Like other explicit events, information present in
symbols_buffer is extracted and used only during diagno-
sis stage.

4.2 Lock contention analysis
Lock contention is an important performance metric in multi-
threaded applications. Poorly designed thread co-ordination
might result in huge loose of concurrency because of lock
contention. As a result, it is useful to analyze the level of
lock contention present in applications for different work-
loads characteristics. We implemented a Lock Contention
Analyzer which uses event traces generated by InSight frame-
work to analyze lock usage in a multi-thread application.
The tool’s lock contention output is inspired by the mutrace
tool [15], which provides online light weight lock contention
analysis for pthread locks. Our lock contention analyzer op-
erates on the events trace generated instead of running inside
the application (as with mutrace). This has the advantage
of incurring lesser overheads as well the same lock events
could be used for analyzing other issues such as potential
deadlocks.
Our tool uses the LOCK, TRYLOCK, TIMEDLOCK, UN-
LOCK, LOCKRET, TRYLOCKRET, TIMEDLOCKRET, UN-
LOCKRET events for identifying lock contention. With these
events, we can simulate the execution of threads. A thread’s
state consists of the per-lock blocking state and the list of
locks held by each thread. Each lock’s state consists of the
thread ID holding the lock, state of the lock (free or busy),
list of threads waiting for the lock and previous thread that
had acquired the lock if free. Though the state maintained
provides enough information about lock usage, obtaining
details about blocked lock requests is not straight forward.
When multiple threads try to acquire the same lock it is not

clear which thread acquires the lock. We employ an indi-
rect method to identify blocked lock requests. For example,
consider first three events of event trace as (LOCK L, T1),
(LOCK L, T2) and (LOCK L, T3), where L is a lock, Ti is
thread which the tried to acquire lock L Among these three
executed lock requests, only one of them doesn’t block (as-
suming lock L is available before these events). But among
the three threads, the thread Tj which acquired the lock will
be known only when (LOCK_RET L, Tj) event occurs. In
order to count number of threads which are blocked on a lock
L acquired by thread Tj, we maintain a count of #threads who
have issued a lock request but have not acquired the lock yet.
On the LOCK_RET event, this count is used to estimate the
number of blocked threads on the lock.

4.3 Potential-deadlock detection
With multi-threaded applications, due to infinite possibili-
ties of thread interleaving, it is seldom possible to identify
all potential bugs. These hard-to-catch bugs are caused by
specific thread interleaving which might not have occurred
during testing phase—one such bug is deadlock. We imple-
mented a potential deadlock detection tool which uses the
event trace collected by InSight and uses an existing po-
tential deadlock algorithm [16].
Potential deadlock detection consists of three major steps,
(i) Building a lock tree, (ii) Adding interleaving edges, and
(iii) Running a modified depth first search (DFS) for cycle
detection.
A lock tree is build for every thread. A lock tree of thread
T , consists of several paths from the root R to every node N
Every path from the root to any other node in the tree repre-
sents a stack (root node at the bottom of the stack) of locks
held by the thread at some point of execution. A Lock tree
can be easily built with lock and unlock events generated by
the InSight framework. In other words, lock trees repre-
sent all possible hold scenarios in hold-wait deadlock con-
dition. Once the lock trees are built, to represent potential
wait-for relationship between threads, we add interleaving
edges across lock trees. Interleaving edges between N and
M are added if and only if nodes N and M represent the same
lock and belong to different lock trees. In Figure 6, we use
notation of AT

i to represent a lock A acquired by thread T
and suffix i is added to identify various instances of lock A
in the lock tree of thread X . In Figure 6, node AX

1 and node
AY

1 represent lock A and acquired by X and Y respectively,
so interleaving edges are added between them (note that suf-
fixes do not matter).

4.3.1 InSight’s potential-deadlock detector
Interleaving edges are normally bidirectional. Referring to
Figure 6 an interleaving edge from node BX

1 to node BY
1

represents a wait-for scenario where X waits on Y because
thread X tried to acquire lock B held by thread Y . Simi-
larly, the other direction of the interleaving edge represents
Y waiting for X . In the pthread library, a subtlety exists—

7

G1

A1

B2C1

G2

A1

B1

Thread X Thread YThread X
lock(G1)
lock(A)
trylock(B)
B acquired
unlock(B)
lock(C)
lock(B)
unlock(B)
unlock(C)
unlock(A)
unlock(G1) B1

Thread Y
lock(G2)
lock(B)
lock(A)
unlock(A)
unlock(B)

Interleaving Edge

Figure 6: Wait-for graph for potential deadlock analysis

trylock does not block if the lock is not available, but
threads can block for a lock acquired using trylock. Again
referring to Figure 6, the edge BX

2 →BY
1 is removed , because

the node BX
2 represents a lock acquired by X using trylock

which can’t block on any thread. On the other hand, once the
lock B is acquired by X using trylock, thread Y can block
on X for lock B, so the edge BY

1 → BX
2 is valid. Our In-

Sight potential-deadlock detector is cognizant of such cases
and builds lock trees in which uni-directional interleaving
edges represent trylock based lock acquisition. Further,
pthread’s timedlock is considered as a trylock. In case
of trylock and timedlock, lock nodes are added to lock
trees only if they acquire lock.
Our techniques uses the LOCK, TRYLOCK, TIMEDLOCK,
LOCKRET, TRYLOCKRET, TIMEDLOCK, UNLOCK, UN-
LOCKRET events to build the lock tree (with interleaving
edges). Next, we use a DFS-based algorithm [16] to detect
valid lock cycles.

4.4 Function profiler
A function profiler provides function level statistics such
as percentage of execution time spent in each function and
helps in identifying hot spots in an application. We built
a function profiler using the implicit event collection and
address space identification features of the InSight frame-
work. As mentioned earlier, implicit events are collected
transparently from guest applications. In order to support
implicit events, the host needs to know for which application
implicit events are collected, address space information (to
translate from guest virtual address to host virtual address)
and symbol table details to resolve addresses. This section
explains details of implicit event collection and its use for
function profiling.

4.4.1 Application identification
As part of InSight , the host maintains a list of tasks being
tracked—tasks for which profiling information is needed—
in (tracked_lwpids) and the current task executing on the
vcpu (current_lwpid) of interest. Each lwpid object in
the tracked_lwpid consists of lwpid, pid, counts_to_sample
(used for sampling) . A task is a process or a light weight
thread (pthread) in the guest. These variables are updated

when new tasks are created, when a tracked task exits and
during context switch. To identify a new task creation, we
use FORK and THREADCREATE events generated by a al-
ready tracked tasks. Note that tasks which are not tracked
task will not generate these events. On FORK and THREAD-
CREATE, the host updates current_lwpid to the lwpid of
the current event and adds the lwpid to tracked_lwpids.
This is valid because the FORK and THREADCREATE events
are generated during execution of the newly created task. A
task exit is identified by an EXIT event, and on this event
the host removes all the tasks in the tracket_lwpid with
pid as EXIT event’s pid. Note that EXIT events are gener-
ated only from a processes inside the guest not by threads.
The host also sets the current_lwpid to NULL. During the
CONTEXTSWITCH event from task P to task Q, the host up-
dates the current_lwpid. If the Q is in tracked_lwpids,
then the host sets the current_lwpid to Q. Otherwise cur-
rent_lwpid is set to NULL. The host to can now use cur-
rent_lwpid to know which process is running on a vcpu at
any time (to associate collected implicit events).

4.4.2 Sampling application execution
We sample an application’s execution at regular intervals and
collect the instruction pointer value at each sample. These
samples are approximate measure of what part of code con-
tributes how much to the application execution. A sample
is recorded every SAMPLEINTERVAL CPU cycles. Note that
this must consider only the CPU cycles spent by the corre-
sponding tracked task. We use hardware performance coun-
ters and performance counter overflow for sampling [17].
The host maintains a variable counts_to_sample—number
of CPU cycles to be executed before sampling the currently
running task. This variable is updated during VM ENTRY,
VM EXIT. Since we may be sampling more than one task
at a time, the counts_to_sample variable has to be saved
and restored during during CONTEXTSWITCH events. The
following steps explain the sampling procedure.
During VM ENTRY,

• If current_lwpid is NULL, then we need not to sam-
ple the current task.

• If current_lwpid is not NULL, CPU cycles need to
be counted. The performance counter is preset with a
value such that it overflows after counts_to_sample
CPU cycles. Counting after VM ENTRY is enabled in
hardware.

During VM EXIT,

• If the counter has overflowed, create a SAMPLE event
with with event information as current instruction pointer
value and reset the counts_to_sample value to SAM-
PLEINTERVAL.

• Else, update the counts_to_sample by deducting the
number of CPU cycles between VM ENTRY and VM
EXIT.

8

Additionally,

• During FORK or THREADCREATE events, to start the
first sampling of the new thread, the counts_to_sample
variable is set to SAMPLEINTERVAL.

• During CONTEXTSWITCH event from task P to task Q,
if P is in tracked_lwpids, then save the current value
of counts_to_sample in P’s lwpid object, and if Q is
in tracked_lwpids, then restore the value from Q’s
lwpid object to counts_to_lwpid

Once samples are collected, a tool aggregates the collected
samples for corresponding functions. The results are pre-
sented after mapping raw addresses to function names.

5. EXPERIMENTAL EVALUATION
In this section, we explain various experiments that we per-
formed to evaluate the efficiency of our framework for ap-
plication diagnosis. We focus on three major aspects as part
of the evaluation, (i) empirically verify the correctness of
record and replay substrate (ii) quantification of overheads,
due to the record and replay substrate and event notifica-
tions and logging, and (iii) demonstration of usefulness of
our framework and tools.

5.1 Record and replay correctness
An important feature of InSight is faithful re-execution of
virtual machines to exploit the execution reproducibility fea-
ture. To verify correctness of InSight we performed the
following tests:

• We ran the top command during the record session.
During replay when the top command was re-executed,
we compared the two outputs. All fields displayed as
part of the top output were identical.

• We executed a CPU intensive workload (Syn_cont, de-
scribed in Section 5.3) and compared various parame-
ters of execution— execution time, number of context
switches, minor and major page faults, number of IO
waits and number of swapped pages. All parameters
during record and replay stage of the application were
identical.

• We also verified the correctness of InSight ’s network
packet recording and DMA recording implementation.
For testing correct network replay, we setup two UDP
clients sending packets to a receiver executing inside a
virtual machine (which was recorded for replay). The
receiver recorded all packets in to a file, and we veri-
fied that the checksum of the file is same during record
and replay. The reason behind choosing UDP clients
is to have non-deterministic mix of packets. For ver-
ifying DMA implementation, we created a file using
dd command with input file as /dev/urandom. The

Test CPU RDTSC N/W
Cases Stress (W1) Stress (W2) Stress (W3)

Time Std. Time Std. B/W Std.
(secs) Dev. (secs) Dev. (Mbps) Dev.

VM w/o
Record 8.66 0.16 0.08 0.00 225.6 5.95

VM with
Record 8.77 0.38 11.81 0.15 184.16 5.08

Table 1: Impact of virtual machine recording on perfor-
mance.

checksum of the file was same during record and re-
play stage. This test also shows that the random num-
ber generator of the system is deterministic during re-
play.

5.2 Overheads related to recording
One of the design goals of InSight is to introduce minimize
overheads during the record stage, a property ensures that
record stage execution resembles real world execution. We
conducted experiments to determine the overheads during
the record stage. The system used for these experiments had
the following characteristics: Intel Core i5 processor (2.8
GHz with 4 cores, 4 GB RAM). The virtual machine was
allocated 1 vcpu and 1.5 GB of RAM. The guest and host
kernels were identical—Linux 2.6.38.8 and the host used
QEMU 0.14.0 for device emulation.
Our experiments were focused on measuring completion time
of benchmarks and impact on network utilization. We tried
to measure the impact on disk IO, but due to multiple levels
of page cache (at host and at guest) we could not get any
conclusive results.
Three different workloads were used to estimate the over-
heads, (i) W1: 10 iterations of a program with CPU inten-
sive computation (computing arctangent value with scale of
3000 using bc utility), (ii) W2: 10 iterations of a program
which executes 10 million rdtsc instructions, and (iii) W3:
5 iterations of a program which transfers 100 MB from host
to guest.
Table 1 reports results of our experiments. For the CPU
intensive workload W1 the recording overheads are negli-
gible (less than 1%), all executions finish in a duration of
close to 8.7 seconds. We use software emulation for rdtsc
instructions for enabling record and replay. Overheads in-
troduced by this trap-and-emulate model is evaluated by the
W2 workload. Over 10 million such calls, the overhead of
execution shows a drastic slow down (by about 150x). Our
workload is an extreme scenario and in reality this overhead
is amortized over a long period of time (usually 1 million
rdtsc instructions are spread across 10 minutes of execu-
tion). Workload W3 is used to quantify the impact on net-
work utilization. The decrease in achieved network band-
width is around 22%. The decrease is due to recording packet
contents (for replay) which requires multiple file writes ev-
ery second. Also, for scenarios where end points of network

9

connections are across machines (or networks) we envision
the impact of record overheads to be lesser.

5.3 Diagnosis overheads
We used following workloads to evaluate the InSight frame-
work. The first two workloads are pthread-library based
and the rest have a single thread of execution.

• RUBiS is an auction site prototype which uses a web
server and a database server. We used Apache the web
server with the thread based multi-processing module
(httpd.worker). Threads-based Apache was chosen
to demonstrate the overhead characteristics of an appli-
cation involving several thread-based events. The web
server executed inside a virtual machine and all pro-
cesses of the web server were diagnosed. The database
server and the client executed on different physical ma-
chines.

• Syn_cont is a synthetic workload to simulate lock con-
tention and had sixteen threads, each executing the fol-
lowing code.
void start_thread(int id) {

for(i=0;i <1000;i++) {
comp(); lock(level1[id/2]); comp()

; unlock(level1[id/2]);
comp(); lock(level2[id/8]); comp()

; unlock(level2[id/8]);
}

}

comp() is CPU intensive function which simulates per-
thread activity. The Syn_cont workload had two lev-
els of lock contention, level1 locks are shared be-
tween two threads and level2 locks are shared be-
tween eight threads.

• The sort workload lexicographically sorts lines of 750
MB ASCII file. The input file is stored in the guest’s
local storage.

• The awk workload uses an associative array to count
number of records in the above mentioned file.

• The sed workload substituted a specific pattern of string
in the above mention file. String matching is done us-
ing regular expression.

The following results to show how application characteris-
tics affect the replay speed and the events database size. Ta-
ble 2 presents the results of execution time and event database
size of the workloads under different execution scenarios—
without recording, with recording and replay with explicit
and implicit events capture. The implicit sampling event,
generate a SAMPLE event every X CPU cycles (denoted as
ReplayX in Table 2). The execution time was measured from
VM boot to VM shutdown. The sort and Syn_cont work-
loads repeated execution five times each before VM shut-
down and the RUBiS workload served 10500 requests be-
fore shutdown.

Workload Scenario Execution Events DB
Time (secs) Size (MB)

sort

W/o Record 1346 NA
W/ Record 1477 NA
Replay (∞) 1401 5.8

Replay (800K) 1551 165
Replay (400K) 1635 324
Replay (100K) 2394 1279

RUBiS

W/o Record 476 NA
W/ Record 481 NA
Replay (∞) 235 38

Replay (800K) 244 39
Replay (400K) 274 40
Replay(100K) 249 46

Syn_cont

W/o Record 886 NA
W/ Record 883 NA
Replay (∞) 941 31

Replay (800K) 998 120
Replay (400K) 1070 208
Replay (100K) 1321 737

Table 2: Replay speed and events database size for dif-
ferent workloads and event types. Replay (X) denotes,
an implicit SAMPLE event once every X CPU cycles.

The results verify that replay speed is inversely proportional
to sample rate and events database size is dominated by SAM-
PLE events. The sort workload is CPU and IO intensive and
did not generate any lock events. A high implicit events sam-
pling rate (1 sample per 100K cycles) generated a 1279 MB
event database—99% of which were theSAMPLE events. When
the implicit sample events were disabled, size of the events
database was only 5.8 MB. Varying the sampling interval
from 100K to 800K cycles per sample, varied the replay time
of the sort workload reduced from ≈40 mins to ≈26 mins.
The Syn_cont workload is CPU intensive and similar results
as the sort workload were observed.
When the workload is not CPU intensive, the replay speed is
higher than the record speed. This is due to skipping of the
halt instructions during replay—CPU no longer waits for
external interrupts as they are served from replay log. The
RUBiS workload had only 2% of CPU utilization and mostly
waited for database replies. Since the database replies are
served from replay log, the replay speed was faster by a fac-
tor of 2. The RUBiS workloads CPU utilization was very
low, hence the number of SAMPLE events generated was
lower as well—32.5% of 46 MB—and increasing the sam-
ple interval had very negligible impact on replay speed and
the events database size.

5.4 Diagnosis results
In this section, we present the results which showcase the
usefulness and correctness of our diagnosing tools.

5.4.1 Lock usage analysis
To evaluate the usefulness of our lock usage tools, we ana-
lyzed the event traces of Sys_cont and the RUBiS workload.
Table 3 summarizes the results achieved. For Syn_cont, the
values are average of 5 runs and in each run the values are

10

Workload / Lock Total % of % of owners-
Description reqs. blocks -hip changes
Syn_cont / Level 1 locks 2000 6.32% 71.46 %
Syn_cont / Level 2 locks 8000 73.66 % 78.85 %
RUBiS / queue-
>one_big_mutex

126 0 % 97.46 %

RUBiS /apr_pool_t-
>apr_thread_mutex_t

129 0 % 21.66 %

Table 3: Lock usage analysis with test workloads.

average of locks of same level. For RUBiS, the values are
average of 5 runs and in each run the values are average of 5
thread groups created by Apache.
As expected, the lock usage tool identified the two level-2
locks present in the Syn_cont workload as most contented
(measured by number of blocks and % of blocks) and most
shared (measured by number of ownership change between
two consecutive lock acquisition). With the Syn_cont work-
load, contention and ownership changes of the level 2 locks
was higher, 10x more blocking on the two locks. We verified
this by using the same workload with the mutrace tool [15],
which reported similar numbers. For the RUBiS workload,
there were no lock contentions but only ownership changes.
We matched the lock addresses with the source code of Apache
2.4 and located the top two locks (in terms of number of
ownership changes).

5.4.2 Function profiler
This section presents the results of the function profiling di-
agnosis tools. We compared our results with the perf [18]
tool for validation. We execute a sample set of applications
inside the InSight framework for profiling. perf was ex-
ecuted with CPU cycles as event on the host machine with
the same applications (the KVM version we used for im-
plementation does not support virtualized of hardware coun-
ters). The results shown in Table 4 are a consolidated view of
five different runs with different applications. We present the
rank range and average of % of sample for the top 4 func-
tions with InSight based and perf-based function profil-
ing. Our results are very consistent with perf results. The
accuracy is achieved by having far more samples than the
default configuration of perf—InSight collected approxi-
mately 14 to 34 times more samples with 100K CPU cycles
as sample interval. InSight profiler has reported per-thread
level statistics for Syn_cont and RUBiS. These per-thread
level reports are more useful compared to perf’s reports
which are consolidated over all threads.

5.4.3 Potential deadlock analysis
This sections presents the experiments done to demonstrate
use of the potential deadlock analysis tool. Finding a po-
tential deadlock in a matured program is a difficult task.
We tried various pthread-based applications (evince, gedit,
vlc, and httpd), but we could not find any potential dead-
lock. We developed the following sample applications with

various potential deadlock scenarios to validate the results
from our tool. These sample applications have the potential
for deadlock but deadlocks do not occur during execution
(we introduced sleep between locking events to serialize the
threads).

Application 1: Trylock
T1(){

if(trylock(L1) == acquired){
lock(L2); unlock(L2); unlock(L1);

} }
T2() { lock(L2); lock(L1); unlock(L1);

unlock(L2); }

Application 2: Gatelock
T1() { lock(Gate); lock(L1); lock(L2);

unlock(L2); unlock(L1); unlock(
Gate); }

T2() { lock(Gate); lock(L2); lock(L1);
unlock(L1); unlock(L2); unlock(

Gate); }

For these two test application scenarios, our tool reported
correct results. The potential deadlock tool identified dead-
locks in the Trylock and Transitive applications. The
tool did not report any deadlock in Gatelock application,
but identified that a potential deadlock involving lock L1 and
L2 was protected by lock Gate. The tool reported following
cycles (names are changed to match the above examples.

• L2T 2 → L1T 2 → L1T 1 → L2T 1 → L2T 2, this cycle is
reported for Trylock example. In this case we made
sure that the trylock succeeds to ensure the potential
deadlock. When the trylock call failed, no deadlock
was reported.

• For the Gatelock application, the tool reported that
the potential cycle L2T 2 → L1T 2 → L1T 1 → L2T 1 →
L2T 2 as protected by lock Gate.

The potential deadlock analysis of these application is based
on the events related to locks that were captured during the
diagnosis stage and the above experiment demonstrates their
usefulness.

6. RELATED WORK
In this section, we briefly discuss work related to determinis-
tic replay and work which leverages deterministic replay for
efficient application debugging and analysis. Various virtual
machine record and replay solutions have been discussed in
[9, 10, 19]. InSight’s record and replay implementation
improves on these to provide efficient DMA and network
traffic handling. These solutions, and InSight , are appli-
cable in uniprocessor scenarios whereas solutions such as
DoublePlay[20] and [21] have extended record and replay to
multi-processor scenarios.
Crosscut [8] uses virtual machine record and replay to ex-
tract process level replay logs which can be replayed with
Valgrind [6] and other diagnosing tools. Crosscut adds re-
producibility to Valgrind, but this solution fails to handle

11

Application Function name InSight perf InSight perf
ranks ranks % usage % usage

(min - max) (min - max) (average) (average)

awk

r_interpret 1 - 1 1 - 1 22.56 24.9
GI strtod_l_internal 2 - 2 2 - 2 8.75 6.99

r_dupnode 3 - 5 5 - 8 5.06 3.76
rs1scan 3 - 5 3 - 4 4.76 4.48

sort

strcoll_l 1 - 1 1 - 1 85.26 77.16
memcmp_sse2 2 - 2 2 - 2 4.81 6.67

strlen_sse2 3 - 3 3 - 4 1.99 2.40
xmemcoll0 4 - 4 5 - 5 1.70 1.78

sed

re_search_internal 1 - 1 1 - 1 28.81 28.90
mbrtowc 2 - 2 2 - 2 18.89 15.83

gconv_transform_utf8_internal 3 - 3 3 - 3 12.14 13.13
builtd_wcs_buffer 4 - 4 4 - 4 8.03 8.22

Table 4: Comparison of function profiling using InSight and perf.

multi-process applications and to harness hardware coun-
ters for profiling. For example, Crosscut solution can not
be used to identify potential deadlocks with process level
semaphores and race condition in shared memory segments.
With InSight , tools to diagnose these issues can be de-
veloped if semaphore and shared memory access events are
generated. X-ray [14] employed a two-stage diagnosing method
using the record and replay feature. X-ray aims at identify-
ing performance issues and tracking the root causes of these
issues. X-ray uses latency, CPU usage, file system usage etc,
as performance metrics. X-ray relies on taint analysis for
providing performance summarization on the chosen perfor-
mance metric. For example, while an input request is pro-
cessed by the application, X-ray assigns performance cost
for each basic block of the code through which the request
is processed. Later it summarizes the assigned costs to iden-
tify the dominant root cause over basic blocks. X-ray can
be extended to identify lock contention and to provide pro-
filing information, but it can not identify potential deadlocks
and race conditions. A similar solution can be implemented
on the InSight framework. For example, X-ray’s solution
of assigning costs to basic blocks can be built by inserting
event probes for system calls and identifying basic block ex-
ecutions by generating implicit events.
Valgrind [6]—a heavyweight online diagnosing tool (designed
for multi-threaded applications) instruments the application
code and analyzes the execution online. Valgrind lacks re-
producibility and incurs high overhead to application execu-
tion. Valgrind’s analysis is confined to the address space of
a process, it cannot debug multi-process applications. Fur-
ther, Valgrind reimplements the pthread library to obtain
control on execution of thread. This restricts the general-
ization of Valgrind framework, whereas in InSight , ex-
tending support to other multi-thread libraries is easier—a
set of wrapper calls can be pre-loaded for generating events.
Tralfamadore [23] collects low-level traces about operating
system execution and answers interesting queries to help un-
derstand the execution flow. Tralfamadore also works on-
line incurring high overheads and since operating system
events are logged application-level diagnosis is not possible.

InSight on the other hand is offline, is application-aware
(meaning extracts process/thread context) and can replay a
recorded session several times for extraction of event over
several iterations. PinPlay [5] provides repayable debugging
framework which uses Pin [13] instrumentation to enable
record and replay facility for parallel programs. For debug-
ging, PinPlay uses the GDB [1] interface through remote stub
protocol of GDB. PinPlay provides reproducibility, but lacks
support for diagnosing tools provided by InSight .

7. CONCLUSIONS AND FUTURE WORK
Efficient diagnosis of multi-threaded and multi-process ap-
plications are challenging and InSight provides a extensi-
ble framework which can be used to build diagnosis tools.
We have implemented InSight —a lightweight offline di-
agnosing framework which uses record and replay technique.
InSight framework has important properties of reproducibil-
ity and minimum overhead without any compromise in effi-
cient diagnosing. InSight tools are built to demonstrate the
efficiency and the usefulness of our framework. We con-
ducted various experiments to measure the overhead intro-
duced by InSight , the obtained results are accurate and
showed that InSight incurs less overhead to application ex-
ecution.
Our current InSight tools are designed for multi-thread re-
lated issues such as lock contention and potential deadlock
detection. The principles used in these tools can be extended
to multi-process related applications—especially inter-process
communication related issues. InSight ’s current imple-
mentation does not provide facilities to identify memory re-
lated issues such as races conditions, uninitialized memory
reads and heap profiling which are addressed by Valgrind[6].
Techniques discussed in [24] can be applied in InSight

framework with the help of implicit events. Implicit events
related to memory accesses can be generated using addi-
tional page table present in virtualization layer. Tools can
then use theses memory access events to identify race con-
ditions in multi-thread and multi-process environment.

8. REFERENCES

12

[1] “GDB: The GNU Project Debugger.”
http://www.gnu.org/software/gdb/.

[2] “GNU gprof.”
[3] “Ftrace.” http://elinux.org/Ftrace.
[4] “Systemtap.” http://www.redhat.com/magazine/

011sep05/features/systemtap/.
[5] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and

J. Cownie, “Pinplay: a framework for deterministic
replay and reproducible analysis of parallel
programs,” in Proceedings of CGO, pp. 2–11, 2010.

[6] N. Nethercote and J. Seward, “Valgrind: a framework
for heavyweight dynamic binary instrumentation,” in
Proceedings of PLDI, pp. 89–100, 2007.

[7] “Oprofile.”
http://oprofile.sourceforge.net/news/.

[8] J. Chow, D. Lucchetti, T. Garfinkel, G. Lefebvre,
R. Gardner, J. Mason, S. Small, and P. M. Chen,
“Multi-stage replay with crosscut,” in Proceedings of
VEE, pp. 13–24, 2010.

[9] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam,
B. Weissman, and V. Inc, “Retrace: Collecting
execution trace with virtual machine deterministic
replay,” in Proceedings of MoBS, 2007.

[10] K. KE and M. LE, “A kvm-based logging and replay
system for debugging non-deterministic executions,”
in Proceedings of Cloud Computing and
Virtualization, pp. 270–277, 2010.

[11] “Kernel Based Virtual Machine.”
http://www.linux-kvm.org/page/Main_Page.

[12] Intel Corporation,
Intel 8255x 10/100 Mbps Ethernet Controller Family,
2006.

[13] “Pin - a dynamic binary instrumentation tool.”
http://www.pintool.org/.

[14] M. Attariyan, M. Chow, and J. Flinn, “X-ray:
automating root-cause diagnosis of performance
anomalies in production software,” in Proceedings of
OSDI, pp. 307–320, 2012.

[15] “Mutrace: Lock Contention .” http:
//0pointer.de/blog/projects/mutrace.html.

[16] R. Agarwal and S. D. Stoller, “Run-time detection of
potential deadlocks for programs with locks,
semaphores, and condition variables,” in Proceedings
of PADTAD, pp. 51–60, 2006.

[17] Intel Corporation, Intel 64 and IA-32 Architectures
Software Developer’s Manual - Volume 3A,3B and
3C, August 2007.

[18] “Perf: Linux profiling .” https://perf.wiki.
kernel.org/index.php/Main_Page.

[19] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and
P. M. Chen, “Revirt: enabling intrusion analysis
through virtual-machine logging and replay,” in
Proceedings of OSDI, pp. 211–224, 2002.

[20] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M.
Chen, J. Flinn, and S. Narayanasamy, “Doubleplay:

parallelizing sequential logging and replay,” in
Proceedings of ASPLOS, pp. 15–26, 2011.

[21] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and
P. M. Chen, “Execution replay of multiprocessor
virtual machines,” in Proceedings of VEE,
pp. 121–130, 2008.

[22] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live
migration of virtual machine based on full system
trace and replay,” in Proceedings of HPDC,
pp. 101–110, 2009.

[23] G. Lefebvre, B. Cully, C. Head, M. Spear,
N. Hutchinson, M. Feeley, and A. Warfield,
“Execution mining,” in Proceedings of VEE,
pp. 145–158, 2012.

[24] N. Nethercote and J. Seward, “How to shadow every
byte of memory used by a program,” in Proceedings of
VEE, pp. 65–74, 2007.

[25] “KVM VirtIO.”
http://www.linux-kvm.org/page/Virtio.

13

http://www.gnu.org/software/gdb/
http://elinux.org/Ftrace
http://www.redhat.com/magazine/011sep05/features/systemtap/
http://www.redhat.com/magazine/011sep05/features/systemtap/
http://oprofile.sourceforge.net/news/
http://www.linux-kvm.org/page/Main_Page
http://www.pintool.org/
http://0pointer.de/blog/projects/mutrace.html
http://0pointer.de/blog/projects/mutrace.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://www.linux-kvm.org/page/Virtio

	Introduction
	The InSight Architecture and Implementation
	Architecture
	Record and replay implementation
	Deterministic replay of network events
	Replay of Direct Memory Access(DMA)-based disk I/O

	The InSight Diagnosis Framework
	InSight events
	Event probes
	Event information and event buffer
	Event notifications

	Stage 1: Application execution
	Stage 2: Application diagnosis

	Usecases
	Events used by diagnosis tools
	Symbol table extraction

	Lock contention analysis
	Potential-deadlock detection
	InSight's potential-deadlock detector

	Function profiler
	Application identification
	Sampling application execution

	Experimental Evaluation
	Record and replay correctness
	Overheads related to recording
	Diagnosis overheads
	Diagnosis results
	Lock usage analysis
	Function profiler
	Potential deadlock analysis

	Related Work
	Conclusions and Future work
	References

