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ABSTRACT
Online Internet applications see dynamic workloads that fluctuate
over multiple time scales. This paper argues that the non-stationarity
in Internet application workloads, which causes the request mix to
change over time, can have a significant impact on the overall pro-
cessing demands imposed on data center servers. We propose a
novel mix-aware dynamic provisioning technique that handles both
the non-stationarity in the workload as well as changes in request
volumes when allocating server capacity in Internet data centers.
Our technique employs the k-means clustering algorithm to au-
tomatically determine the workload mix and a queuing model to
predict the server capacity for a given workload mix. We imple-
ment a prototype provisioning system that incorporates our tech-
nique and experimentally evaluate its efficacy on a laboratory Linux
data center running the TPC-W web benchmark. Our results show
that our k-means clustering technique accurately captures work-
load mix changes in Internet applications. We also demonstrate that
mix-aware dynamic provisioning eliminates SLA violations due to
under-provisioning with non-stationary web workloads, and that it
offers a better resource usage by reducing over-provisioning when
compared to a baseline provisioning approach that only reacts to
workload volume changes. We also present a case study of our
provisioning approach on Amazon’s EC2 cloud platform.

Categories and Subject Descriptors
C [Computer Systems Organization]: Performance of Systems;
Reliability, availability, and serviceability; Modeling techniques

General Terms
Design, Experimentation, Performance, Measurement

1. INTRODUCTION
Online Internet applications have become popular in a variety

of domains such as e-retail, online banking, finance, news, social
networking and communication. Many Internet applications run
on a hosting platform such as Amazon’s Elastic Computing Cloud
(EC2) or the Google App Engine. A hosting platform (or a com-
pute cloud) comprises of server and storage farms housed in one or
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more data centers; the platform rents server and storage resources
to each hosted applications and in return provides guarantees on the
capacity and performance seen by each application.

Numerous studies have shown that workloads seen by Internet
applications can be highly dynamic with variations at multiple time-
scales [10, 15]; such variations include seasonal fluctuations such
as time-of-day and month-of-the-year effects as well as sudden
workload spikes caused by flash-crowds (e.g., the so-called ’slash-
dot effect’). To ensure a minimum level of performance and meet
the contracted service level agreements (SLAs), the underlying plat-
form will need to dynamically match allocated capacity to such
observed workload changes. While long-term variations can be
handled by manually allocating server capacity to an application,
short-term fluctuations require an ability to dynamically provision
capacity to react to workload changes in an agile and timely man-
ner. Recently a number of dynamic capacity provisioning tech-
niques have been proposed in the literature [24, 25, 26, 6]. Most
of these techniques track or predict changes in the workload [24,
25] and then provision sufficient capacity to handle this expected
volume of requests. For instance, if a flash crowd causes the work-
load volume to double, so must the provisioned server capacity.
Similarly commercial cloud platforms such as Amazon’s EC2 only
support a simple provisioning approach that adds a new server if
the utilization of the current servers exceed a threshold.

In this paper, we argue that provisioning server capacity based on
the expected volume of requests may not be sufficient to accurately
capture the service demands of a web application. In particular
it has been observed that in real production applications ranging
from enterprise applications to large e-commerce sites, workload
is higly variable and the request mix exhibits nonstationarity [22,
26]. Consequently, a provisioning technique should consider both
the mix of requests as well as their volumes to accurately estimate
the capacity needed by an application. For example, normally in-
frequent heavy-tailed requests may become more frequent during a
workload surge, necessitating significantly more capacity to handle
these “heavy-hitters”. We argue next using illustrative examples
why the workload mix matters when provisioning server capacity.

1.1 The Case for Mix Aware Provisioning: Why
Workload Mix Matters?

Workload fluctuations seen by Internet applications can be caused
by changes in the volume of incoming requests or by changes in
their mix; frequently, workload fluctuations are accompanied by
both types of changes. It is clear that a significant change in the
request volume requires changes in the provisioned capacity—for
example, if the request rate doubles, the application needs twice
as much server capacity. A change in the workload mix (i.e., the
relative frequencies of different request types) is a more subtle phe-

21



nomenon that has an equally important impact on capacity provi-
sioning; however, the impact of such non-stationary workloads has
not been adequately addressed in the research literature. We argue
why the workload mix matters using two illustrative examples.

Example 1: Consider a web application that services two types
of requests: long and short. Assume that short requests require 1ms
of processing time and long requests take 90ms. Initially, the ap-
plication receives 90 short and 10 long requests each second (total
of 100 req/s). This imposes 90 · 1 + 10 · 90 = 990ms of server
processing overhead in each second. Next assume that the work-
load mix changes to 10 short and 90 long requests/second (the total
request volume is unchanged at 100 req/s). This new mix requires
10 · 1 + 90 · 90 = 3610ms of server processing time each second.
Thus, the total processing demand on the server has quadrupled
even though the incoming request rate is unchanged.

A provisioning technique that tracks aggregate request volumes
would not notice any change in the request rate, and thus, would
be unable to react to this large change in the server load. Next we
explain why a provisioning technique that makes decision solely
on the basis of request volumes can incur errors by over- or under-
provisioning server capacity.

Example 2: Consider the above web application that services
long and short requests, where short requests require 1ms and long
requests require 90ms of server processing. Assume an initial re-
quest rate of 100 req/s with equal number of long and short requests
(50 request each per second). Next assume that the workload dou-
bles to 200 req/s. If the workload mix were unchanged, this would
imply a doubling of the processing demand on the server, requir-
ing twice as much server capacity. However, if the relative mix of
long and short request changes when the workload doubles to 200
requests/s, then the actual demand on the server can be greater or
smaller than the 2x increase in request volume. In particular, if
the mix changes to 150 long and 50 short request (total of 200),
this requires an increase of 150∗90+50∗1

50∗90+50∗1 = 2.97, which is a three-
fold increase in server capacity for a doubling of request workload.
Similarly, if the mix changes to 150 short and 50 long requests (to-
tal of 200 req/s), this requires an increase of 150∗1+50∗90

50∗90+50∗1 = 1.02
— a mere 2% increase in server capacity even when the workload
doubles. Thus, a provisioning technique that naively doubles server
capacity due to a doubling of request workload can under- or over-
provision capacity by large amounts by ignoring the changes to the
workload mix.

The above examples illustrate why the workload mix matters
when determining the server capacity needed to service a partic-
ular workload. This paper presents such a mix-aware provisioning
technique that can automatically increase or decrease the server ca-
pacity allocated to an Internet application in response to significant
changes in the workload mix or the workload volume.

1.2 Research Contributions
Our autonomic mix-aware provisioning technique is designed

to capture the effects of non-stationarity in Internet workloads—
which manifest as changes in the observed request mix as well
as changes in the volume of requests seen by servers. In order
to be mix-aware, our technique first characterizes the workload
mix. Instead of doing a static a priori analysis of the workload, we
present an automated approach based on the k-means clustering al-
gorithm to automatically determine the different “types” of requests
present in the workload. Our technique pays particular attention to
the effects of large requests seen in heavy-tailed workloads. This
characterization is then used to drive a queuing theoretic model of
data center applications, which computes the new server capacity
needed to service the predicted workload mix. The technique then

dynamically increases or decreases the number of servers allocated
to the application based on the predicted capacity.

We have implemented a prototype provisioning system that in-
corporates our techniques on a laboratory Linux data center. We
have conducted a detailed experimental evaluation of our approach
by subjecting the TPC-W application to non-stationary time-varying
workloads. Our results show our k-means clustering approach can
accurately capture workload mix changes seen by Internet applica-
tions. We also find that our mix-aware dynamic provisioning sys-
tem eliminates SLA violations due to under-provisioning with non-
stationary web workloads, while also reducing over-provisioning
and achieving better resource usage when compared to baseline
provisioning techniques that react to workload volume changes.

The rest of this paper is organized as follows: Section 2 gives a
system overview. Our clustering technique and mix-aware provi-
sioning policy are described in sections 3 and 4, respectively. Im-
plementation details are discussed in Section 5 and Section 6 shows
experimental results. Section 7 presents related work and we con-
clude in Section 8.

2. SYSTEM OVERVIEW
This section presents the model of the hosting platform and In-

ternet applications assumed in our work as well as the architecture
of our dynamic provisioning system.

2.1 Data Center Model
We assume that web applications run on a hosting platform (or

the hosting “cloud”) that comprises a data center with a cluster of
commodity servers that are interconnected by a high-speed LAN
(Gb or 10Gb Ethernet); one or more high bandwidth links connect
the hosting platform to the Internet.

Load 
Balancer

Tier 1
Dispatcher

Tier 2Tier 1

Tier 2
Dispatcher

Load 
Balancer

Figure 1: Multi-tier application model

The platform is assumed to host multiple Internet applications.
Modern Internet applications are distributed with several compo-
nents; a multi-tier architecture is a popular technique for construct-
ing such applications. In this architecture, each application tier pro-
vides a certain functionality, and the various tiers form a processing
pipeline. Each tier receives partially processed requests from the
previous tier and feeds these requests into the next tier after local
processing (see Figure 1). For example, an online bookstore can
be designed using two tiers—a web tier that receives client connec-
tions and implements the application logic, and a backend database
that stores catalogs and user orders.

The various tiers of the application are assumed to be distributed
across different servers of the data center. Depending on the desired
capacity, a tier may also be replicated via clustering. In an online
bookstore, for example, the web tier can be a clustered Apache
Tomcat server that runs on multiple machines. Such replication
enables the tier capacity to be scaled in proportion to the number
of replicas. Each clustered tier is also assumed to employ a load
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balancing element that is responsible for distributing requests to
replicas in that tier. If a tier is both clustered and replicable on-
demand, it is assumed that the number of servers allocated to it,
and thus the provisioned capacity, can be varied dynamically.

The goal of the hosting platform is to monitor the workload seen
by each tier and dynamically add or remove replicas at each tier
to match the incoming workload (while striving to meet the appli-
cation’s desired response time SLA). The SLA is assumed to be
specified in terms of a high percentile of the response time distri-
bution (e.g., 95 percentile of requests should have a response time
less than 1 second).

2.2 Provisioning System Overview
The architecture of our dynamic provisioning system is depicted

in Figure 2. The heart of the technique lies in the provisioning logic
which runs on a control node of the data center. It consists of an
aggregator that monitors the incoming workload at each tier and
gathers workload statistics by processing the request logs produced
by each component. For new applications, these statistics are used
by the mix determiner for one-time analysis to characterize the ap-
plication workload. This characterization is used by the workload
predictor to estimate the future workload mix and then fed into the
queuing model to compute the server capacity needed at each tier.
The actuator can then provision additional servers from the free
pool or return unneeded servers back to the pool.

The following sections describe (i) how the mix determiner em-
ploys an automated clustering-based approach for determining the
request types seen by an application, and (ii) how this workload
characterization can then be employed to design a mix-aware pro-
visioning technique using a queuing theoretic model.

3. CHARACTERIZING WORKLOAD MIXES
WITH CLUSTERING

To characterize a workload mix, requests which have similar ser-
vice demands are grouped into a service class. The service demand
of a request is measured by the service time of the request. Ser-
vice classes are used to determine how much capacity to provision.
Service classes can be determined manually but this is a long, error
prone and tedious process. We propose a technique to perform this
classification automatically.

Our approach is based on the well-known k-means clustering al-
gorithm. k-means clusters n objects into k partitions (k < n) by
minimizing total intra-cluster variance to find the centers of natural
clusters in the data. The algorithm assumes that the variance is an
appropriate measure of cluster scatter. Other clustering algorithms
could be used for this purpose, but k-means has the advantage that
it is well studied and is known to converge very quickly in practice.
The vanilla k-means algorithm requires k (the number of clusters)
as an input; in our case, however, the number of request classes in
not known a priori. Hence, we must use a modified approach that
first determines the appropriate k for a particular workload and then
clusters the workload into k different request classes.

Our technique for doing so consists of first collecting unique re-
quest service times to partition them into clusters. As explained
in section 1.1, infrequent queries might have a long service time
which translates into a heavy-tailed workload. We adjust cluster-
ing of such workloads by splitting the large tail cluster into smaller
clusters less sensitive to service time variations of larger queries.
Finally, we observe the frequency of the requests within each each
cluster to find the cluster means.

We now detail the 3 steps of our enhanced clustering algorithm:
Step 1 - Determine k and partition unique request types into

clusters: We use an iterative approach to determine the the best
k value for a particular application. The idea is to iteratively run
k-means with every value of k and compute 4 variables: coefficient
of variation1 of intra-cluster distance, coefficient of variation of
inter-cluster distance, ratio of intra-cluster variance to inter-cluster
variance, and ratio of intra-cluster coefficient of variation to inter-
cluster coefficient of variation. The best k value minimizes intra-
cluster variance and maximizes inter-cluster variance [16]. Deter-
mining the best k value is a one-time activity for any given appli-
cation.

Each cluster represents a service time class defined by a lower
and upper service time bound. As we use the entire set of unique
service times of the application, any request at runtime will fall
within a cluster.

Step 2 - Adjust for heavy-tailed workloads: It is common for
service time distributions to have a long tail due to infrequent heavy
requests. k-means is likely to aggregate all these infrequent service
times in a single large cluster.

Example 3: Consider a cluster that contains 2 requests of 500ms
service time and 1 request of 2000ms. Then the average service
demand for the cluster is 2∗500+2000

3
= 1000 ms. If the workload

changes and invokes one 500ms and two 2000ms requests, the new
cluster average becomes 500+2∗2000

3
= 1500 ms, which is a large

shift in the cluster mean.
To prevent such huge shifts in cluster averages, we divide large

clusters into smaller clusters of fixed size. To do so, we specify a
threshold max size on the maximum size of a cluster; if a cluster
containing the tail of the request exceeds this size, it is broken up
into multiple small clusters, each of size max size.

Step 3 - Compute cluster means: We determine the mean for
each of the k clusters by using the set of all services times seen
in an interval as opposed to the unique request service time used
in previous steps. A cluster mean is the average service demand
for all requests falling in that cluster. If a cluster has the service
times S = {s1, s2, s3, . . . , sk} which appear with frequencies

F = {f1, f2, . . . , fk}, the cluster mean is given by
Pi=k

i=1 sifi
Pj=k

j=1 fj
.

Step 4 - Recomputation of cluster means: As the workload
mix changes over time, the frequency of different request types will
change, causing the cluster mean to change. In a mix-oblivious
scenario, all service times belong to one cluster. The cluster mean
changes very frequently, and by large amounts, as the workload
mix changes. With an optimal number of clusters, however, the
cluster means remain more stable over time even in the presence of
workload changes.

Our experimental evaluation in section 6.2 shows that cluster
means changes do not exceed 5% in case of workload changes.
Therefore re-estimating cluster means is not a frequent operation.
This re-estimation of cluster means, while infrequent, can be done
efficiently since the number of clusters is constant—we simply scan
through all clusters and find out the frequency of each request type
in each cluster to recalculate the cluster mean.

4. AUTONOMIC MIX-AWARE PROVISION-
ING

A dynamic provisioning algorithm must decide how many servers
to allocate at each tier of an application so that a specified Service
Level Agreement (SLA) is not violated. The provisioning deci-
sion for each tier of a multi-tier application is taken independently.
Once the provisioning logic decides the number of servers required

1coefficient of variation or variation coefficient is defined as a ratio
of the standard deviation to the mean, i.e. c = σ/μ;
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for each tier, the configuration is updated accordingly by an actua-
tor. Figure 2 gives an overview of the architecture of the system.

The key insight behind our provisioning approach is to not only
consider changes in workload volume (like in a volume-based pro-
visioning approach [24]) but also track changes in the workload
mix using service time clusters determined in section 3. Our algo-
rithm continuously monitors the workload to make two decisions:
(i) when to trigger provisioning, and (ii) how much additional ca-
pacity to provision. We discuss each decision in turn.

4.1 When to provision?
The effectiveness of provisioning decisions relies on invoking

the provisioning algorithm at pertinent points in time. Our ap-
proach uses three different types of triggers:

Periodic: the provisioning logic is invoked at regular time inter-
vals.

Triggered by change in volume: a drastic change in the volume
of requests triggers provisioning.

Triggered by change in the mix: a change in the workload mix
can be used to invoke provisioning to respond to these changes.

By default, our approach invokes the provisioning algorithm pe-
riodically to ensure that provisioned capacity is sufficient to service
the expected workload. The periodicity of invocation can be de-
cided by the administrator depending on the datacenter; e.g. in the
case of EC2 it can be less than 1 hour since the billing is done ev-
ery hour, while in the case of a private data-center it can be more.
Besides this, any sudden changes in the workload volume or the
workload mix beyond a threshold also serve as additional triggers,
since either can substantially change the service demand of the ap-
plication.

4.2 How much to provision?
Once the provisioning algorithm has been triggered, it must then

provision additional capacity, if needed, for each tier of the applica-
tion so that its SLAs are met. We assume that SLAs in a multi-tier
application are specified as end-to-end response time perceived by
the client. For instance, an SLA can specify that the mean of the
end-to-end response time must be less than a value or that the 95th

percentile of response time should be less than a threshold. The
constraint on the end-to-end response time is suitably broken down
into constraints on per-tier response times. This way, each tier can
be treated independently of each other. In this paper, we use SLAs
specified in terms of the 95th percentile of the end-to-end response
time. Given these per-tier SLAs, provisioning the correct number
of servers for each tier is a three step process:

Step 1 - Estimate λi for each cluster: The clustering algorithm
described in section 3 divides the entire workload into clusters. A
predictor for each cluster forecasts λi the arrival rate of requests in
that cluster. Predictors based on time series can be used to provide
accurate results for data center workloads [10],[24]. The total vol-
ume of requests, λtotal, is obtained by summing the λi’s of each
cluster.

Step 2 - Queuing model to predict capacity: We model multi-
tier applications using a network of queues. Each tier is represented
as a queue. Requests coming into a tier are modeled as requests vis-
iting a queue. The queuing discipline is assumed to be first-come-
first-serve. The requests wait in the queue to be serviced, and once
serviced they move to the next queue in the network. Each queue
is modeled as a G/G/1 queuing system. This system can handle
an arbitrary distribution of arrivals and an arbitrary distribution of
service times.

We use Kingman’s approximation for the waiting time in a G/G/1
queue in the heavy-traffic case [13]. This result gives an approxi-

mation of the waiting time distribution when the utilization ρ ∼= 1
(but remains strictly less than one so that the system is still sta-
ble). The probability distribution function of the waiting time in

the queue is exponentially distributed with mean
σa

2+σb
2

2( 1
λ
−x̄)

where

σa
2 is the inter-arrival time variance, σb

2 the service time variance,
λ the request arrival rate, and x̄ the average service time.

In our provisioning experiments the service level agreement is
defined in terms of the 95th percentile response time. Since the
waiting time distribution is exponential, the 95th percentile of the
waiting time, αW (95), can be expressed in terms of the mean wait-
ing time E[W ]. If the SLA requires the 95th percentile response
time to be less than y seconds, the maximum arrival rate of requests
that can be sustained by one server is given by:

λ <

»
x̄ +

σa
2 + σb

2

2 (y/3 − x̄)

–−1

(1)

The average service time is x̄ =
Pi=k

i=1 λidiPi=k
i=1 λi

where λi = arrival rate

in cluster i as found in step 1, and di = cluster mean of cluster i.
The values of the inter-arrival variance and service times σa

2 and
σb

2 are obtained using online monitoring of the tier. We substitute
these values in Equation 1 to find out λ. This gives the capacity of
one server. Using λtotal calculated in step 1, we find the number
of servers required at this tier:

N =

‰
λtotal

λ

ı
(2)

Our mix-aware provisioning algorithm is formally described in
Algorithm 1.

Step 3 - Applying the new configuration: Once the new num-
ber of servers is determined for each tier, an actuator adds or re-
moves servers at each tier to achieve the desired configuration. New
added servers are taken from a free pool, and removed servers are
returned to the free pool.

Note that heterogeneous platforms can be handled by using sim-
ple multiplication factors between servers depending on their hard-
ware characteristics. For example, Amazon EC2 provides various
instances (small, medium, large, xlarge...) each with different hard-
ware resources. By running the web application on each instance,
it is easy to determine a performance factor like, for example, a
medium instance performs 1.5 times better than a small instance,
or a large instance provides 2x the throughput of a small instance.
The number of servers can then be expressed in number of small in-
stances and the actuator can realize the configuration to apply using
a mix of different instances. For example, using the performance
factors described previously, adding 5 small servers could be real-
ized by adding 2 medium and 1 large servers or 2 large and 1 small
servers.

5. PROTOTYPE IMPLEMENTATION
We have built a prototype provisioning system that incorporates

our mix-aware provisioning technique. Our prototype assumes a
cluster of Linux servers in a data center that are interconnected by
a high-speed LAN such as a gigabit ethernet. We assume that one
node of the data center is the control node that runs our provisioning
logic. Our prototype assumes that each tier of a multi-tier applica-
tion runs on one or more servers and that the tier can be replicated
dynamically to scale its capacity. Figure 2 gives the architectural
overview of the different components of our provisioning system.

Servers: The data center hosts a multi-tier application and servers
are allocated in 4 pools: web tier, database tier, load injection and
free servers. When the provisioning logic decides to add a node to
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Input: Let there be k clusters at this tier, incom-
ing volume of requests in each cluster P =
{λ1, λ2, λ3, . . . , λk}, the cluster mean of each clus-
ter D = {d1, d2, d3, . . . , dk}, the 95th percentile re-
sponse time threshold for this tier y, the variance of
inter-arrival time σa

2, the variance of service time σb
2

Output: Number of servers needed for this tier

λtotal =
Pi=k

i=1 λi

x̄ =
Pi=k

i=1 λidiPi=k
i=1 λi

λper−server =
h
x̄ + σa

2+σb
2

2(y/3−x̄)

i−1

N =
l

λtotal
λper−server

m
return N

Algorithm 1: Find number of servers required at a particular tier

Predictor

Mix

determiner

Model

Actuator

Aggregator

Load injection

Web Tier

Database Tier

HTTP

SQL

Free Pool

logs

variances
prediction

i

new configuration

service 

     time

add/remove

node

Provisioning Logic

Figure 2: Provisioning architecture overview

the web or database tier, a server is picked from the free server pool.
Unused nodes freed by the provisioning decisions are returned to
the free pool. The load injection server pool is used to emulate
users.

The web tier uses Apache Tomcat 5.5.26 application server and
the database tier is MySQL 5.1.26 using MySQL master/slave repli-
cation. We have instrumented the Tomcat source code to report the
request service time. To get accurate service times we use the Linux
2.6.26 getrusage system call that captures the time consumed by
a particular thread. We also configured Tomcat to log the arrival
time and response time of each request. To measure the variance
of the inter-arrival time, we use finer granularity timers to get sub-
milliseconds accuracy. The logs are stored on a shared filesystem.
MySQL request service time is determined offline by measuring
the query execution time of each query in isolation on a standalone
system. The query log is activated to record query arrival time. The
above modifications can be done in an application agnostic manner
and is thus generic for any web-application deployed on Tomcat
and MySQL.

The provisioning logic contains 5 components: aggregator, mix
determiner, predictor, model and actuator. They are all implemented
in Java; we have implemented the inter-component communication
using RMI.

Aggregator: The aggregator collects information from all Tom-
cat and MySQL servers at regular time intervals via the shared

filesystem. Tomcat logs are parsed to find the i) σa
2 the variance

of inter-arrival time, ii) σb
2 the variance of service-time, iii) the av-

erage response time and iv) the set of service times seen in the last
interval. For MySQL, the aggregator gets the SQL queries from
the request log file. It then looks up the service time for each query
from the numbers collected during offline profiling. The statistics
for each tier are calculated by aggregating the corresponding statis-
tics of all the replicas of the concerned tier.

Mix-Determiner: The mix-determiner collects the service time
values observed at each tier from the aggregator. Service times
at a tier are distributed into the tier clusters. This way the mix-
determiner finds out the arrival rate of each cluster (i.e. λi). It also
computes the current cluster mean. If the current cluster means
deviate more than 0.5 times the standard deviation of any cluster,
mix-determiner automatically triggers the process of re-estimation
of new clusters means.

Predictor: The predictor takes the arrivals of each bin (λi) as an
input from the mix-determiner. In the current implementation, we
directly use the arrival rate values from the load injectors. Predic-
tions are sent to the model.

Model: The model collects statistics from the aggregator and
the predictor. It processes them to find out the number of servers
needed at each tier by using algorithm 1. The results are sent to the
actuator to implement the new system configuration.

Actuator: The actuator reconfigures the system to provide the
exact capacity that has been decided by the model. It adjusts the
number of servers at each tier accordingly by either adding new
servers from the free pool, or removing servers and returning them
to the free pool. Servers returned to free pool are handled in a data-
center specific manner so as to increase benefit of the reconfigured
system; for e.g. in the case of a data center with dedicated servers,
actuator suspends the machines to save power and wake them up
when needed, while in the case of EC2 it detaches the compute in-
frastructure to save the rental cost. The actuator adds servers to the
application in a tier specific manner, i.e. new MySQL nodes are
always added as slave nodes and the master node is never removed,
while Tomcat nodes, all being identical, are added or removed in-
differently.

6. EXPERIMENTAL EVALUATION
We have tested our proposed clustering and provisioning tech-

niques using a standard multi-tier application benchmark. We de-
scribe our experimental setup in section 6.1. As the provisioning
policies apply independently to each tier, we have chosen for space
constraints to only present our clustering results for the database
tier (section 6.2) and provisioning results for the web tier (section
6.3). Finally, we present a case study on Amazon’s EC2 public
cloud platform in section 6.4.

6.1 Experimental Setup
We use the ObjectWeb [18] implementation of the TPC-W bench-

mark [1] as our reference multi-tier application. TPC-W models an
online retail bookstore. The TPC-W specification describes 14 dif-
ferent web interactions and three different workload mixes: brows-
ing, shopping and ordering. These mixes differ in the relative fre-
quency of each interaction which translates in different amount of
read-only and update transactions. The browsing mix workload has
5% updates, the shopping mix 20% updates and the ordering mix
50% updates.

The users interacting with the web site are emulated by the RBE
(Remote Browser Emulator) that browses the web site according
to the workload definition. For some provisioning experiments, we
have also used the httperf [17] load generation tool. Httperf allows
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us to generate variations in the workload that are different from the
one hard-coded in the RBE.

We have built a data center prototype to evaluate the effective-
ness of our clustering and provisioning techniques. We use a total
of 16 physical servers each with an Intel Pentium4 2.40GHz with
2GB RAM interconnected by a Gigabit Ethernet network. One
server is dedicated to run the provisioning logic. The rest of the
servers are used to host the different components of the TPC-W
web benchmark. Each server runs a linux kernel version 2.6.26.

We also ran additional experiments on the Amazon EC2 [3] pub-
lic cloud platform (section 6.4) where we use small server instances
for the application tiers and a dedicated instance to run the provi-
sioning logic. Each server runs a linux kernel version 2.6.21 with
the Xen [4] virtualization extensions.

6.2 Clustering Evaluation
This section presents the results of our clustering experiments

for the TPC-W benchmark with the service times observed at the
database tier.

6.2.1 Initial clustering
As described in section 3, the first step is to find out the set of

unique service times for each tier. We run each workload mix of the
TPC-W benchmark with a constant number of 800 emulated users
to collect all possible service times in all mixes. We use offline
profiling to get MySQL service times as described in section 4.

To find out the right number of clusters (or service classes) in
the service time dataset, we employ the technique described in sec-
tion 3. We try multiple values of k, the number of clusters in the
data, starting with 3 up to 14 (the total number of interactions in
TPC-W). For each k, we run k-means and compute 4 variables [16]:
1) inter-cluster coefficient of variation (CVinter), 2) intra-cluster
coefficient of variation (CVintra), 3) ratio between intra and inter-
cluster variance (βvar) and 4) ratio between intra and inter-cluster
coefficient of variation (βcv). We then choose the value of k that
gives the smallest values of βcv and βvar .

Figure 3(a) shows CVinter , CVintra and βcv with increasing
values of k. Both βcv and CVintra reach their lowest values when
k = 5 which is the optimal cluster size for our TPC-W setup.
Clustering performance degrades sharply with significantly higher
values of βcv and CVintra with k > 5. CVinter remains stable
with an increasing number of clusters. Figure 3(b) shows how βvar

changes with an increasing number of clusters (k). βvar reaches its
smallest value for k = 5 with cluster centers [{0,0.125}, {0.132,
0.279}, {0.279, 0.343 } { 0.343, 0.396} { 0.396, 0.57 }] (each value
is the range of service time in seconds for that cluster). Higher
number of clusters gives higher βvar values. These 2 figures in-
dicate that the appropriate number of clusters is 5 for the database
tier.

The results of k-means with 5 clusters shows that the high service
time clusters are mostly composed of just two SQL queries. These
two queries are the queries generated by the “Best Sellers” servlet
and the “Admin Confirm” servlet. The authors of [7] also found
these 2 interactions to require more table joins than the others and
to be the most intensive on the DB tier. For this particular workload,
k-means distributes the heavy queries across multiple clusters and
does not require further tail adjustment.

6.2.2 Impact of non-stationary workloads
In Section 3, we discussed variations in cluster means. We con-

ducted two experiments with different non-stationary workloads to
show that cluster average variation is limited even with significant
workload mix changes.

In a first experiment, we change the workload from ordering mix
to browsing mix. Initially there are 800 sessions performing inter-
actions defined by the ordering mix. We gradually replace order-
ing mix sessions with browsing mix sessions by steps of 100 so
that there are always 800 sessions. The average service time at the
database tier is found out by offline profiling. Also the service de-
mand is estimated by keeping the cluster average di fixed for each
cluster. The service times found in an interval are then put into the
clusters to find λi for each cluster. We then find the average service
time x̄ as shown in Algorithm 1. In a second experiment, we transi-
tion the workload from 800 ordering mix sessions to 800 shopping
mix sessions.

Figure 3(c) shows the evolution of errors in the service demand
estimates for both workload transitions. The x-axis represents the
number of ordering mix sessions decreasing from 800 to 0. De-
pending on the experiment, the number of browsing and shopping
sessions are increasing by 100 each time the ordering sessions de-
crease by 100. The maximum error observed was 5% for the tran-
sition from ordering to browsing. The error remains below 1% for
the transition from ordering to shopping.

The lower errors observed in the second experiment are due to
the fact that the shopping and ordering mix have a closer mix of
interactions than the ordering and browsing mix. The error can be
reduced by periodically re-estimating the cluster averages from past
data. These experiments confirm that recomputing cluster averages
does not need to be done frequently. The service demand estimates
remain accurate even in the presence of a major workload change.

6.3 Provisioning Experimental Evaluation
In this section, we evaluate the accuracy of our provisioning

technique with non-stationary workloads. As provisioning deci-
sions are applied independently at each tier, these experiments are
focusing on the web tier only. The application is assumed to require
an SLA where 95th percentile of the web-tier response time must
not be greater than 2 seconds. The database tier is over-provisioned
with 4 replicated instances of MySQL to ensure that the database
is not a bottleneck resource.

We compare the standard provisioning policy based only on vol-
ume of requests [24] with our technique that adds mix-awareness.
In both cases, the algorithms are provided with the request arrival
rate from the load injectors (λi and λtotal). When new Tomcat
servers are added to the web tier, the load injectors are configured
to distribute the sessions evenly among Tomcat instances to ensure
a good load balancing.

6.3.1 Non-stationary workload with constant
volume

This first experiment shows the impact of non-stationary work-
loads on provisioning decisions when the number of sessions re-
mains constant. We expect mix-aware techniques to improve over
techniques that will not detect changes in the constant arrival rate
of requests.

The Workload: We have built a workload of a constant number
of 1000 sessions with a different mix of 3 different servlets. We
use 3 interactions of the TPC-W benchmark: "new products" and
2 versions of "execute search". As the service time of the "execute
search" servlet depends on the complexity of the term searched, we
have created 2 queries that generate a short and a long service time
that we call "execute search fast" and "execute search slow", re-
spectively. The measured service times on our prototype data cen-
ter are 2.6ms for "new products", 5.5ms for "execute search fast"
and 14.0ms for "execute search slow"

Figure 4(a) shows the combination of requests that is sent to the
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Figure 3: Clustering Experiments

TPC-W application over a 90 minutes experiment. We use httperf
to send requests with a 5 seconds think time between 2 interactions.
In the first 50 minutes, the percentage of "new products" requests
decreases while the percentage of "execute search fast" requests in-
creases. This causes the average service time of requests on the web
tier to increase. Similarly, in the next 40 minutes, "execute search
fast" requests are transitioned to "execute search slow" requests,
leading to an even further increase in the average service time. Fig-
ure 4(b) shows the constant average arrival rate of requests, and
the average service time of requests that increases at the web tier
during the experiment.

Provisioning Decisions: We compare our mix aware provision-
ing scheme with a provisioning scheme that looks only at the vol-
ume of requests. The provisioning logic is invoked every 10 min-
utes. Figure 4(c) shows the decisions taken by the 2 provisioning
policies in terms of the number of servers allocated to the web tier
during this experiment. The figure shows that the mix-aware pro-
visioning policy is able to anticipate faster capacity requirements
than the mix-unaware on two occasions. The mix-aware policy de-
cides to allocate a new Tomcat server to the web tier at t=30 and
t=70 minutes. By predicting that the mix of requests about to come
is changing, the mix-aware provisioning anticipates the capacity
needs. The mix-unaware policy however, does not see changes in
the volume of requests and assumes that it will continue to see the
past service demand in the future. It is only when a response time
increase is observed at a later iteration that a new server is added to
the web tier.

Response Times: Figure 4(d) shows the 95th percentile response
times as seen by the clients while running the two provisioning ap-
proaches. These figures show a comparison between the two poli-
cies in terms of how much they violate the SLA. Note that with
the mix-unaware policy the 95th percentile crosses the 2 seconds
line on many occasions after the mis-predictions at t=30 minutes
and t=70 minutes. The mix-aware policy anticipated the workload
changes and reduced the SLA violations by 94%.

Result: This experiment illustrates that when the volume of re-
quests is constant the resource demand on a tier may still change
because of a change in the workload mix. A mix-aware provision-
ing is therefore able to provision resources to account for these
changes and avoid SLA violations that would be experienced with
a provisioning scheme only looking at the volume of requests.

6.3.2 Non-stationary workloads with a varying
volume

In this second experiment, we combine a varying workload a
change in the arrival rate.

The Workload: The workload mix is the same as the experiment
described in section 6.3.1 until t=60 minutes, then we transition the
mix back symmetrically to its original composition for a total of a
120 minutes experiment. To vary the arrival rate, we increase the
number of sessions from 1000 to 2000 at time t=30 minutes.

Figure 5(a) depicts the workload mix and Figure 5(b) shows the
requests arrival rate and the average service time at the web tier
during this experiment. Due to the nature of the mix, the average
service time keeps increasing for the first 60 minutes and then de-
creases for the last 60 minutes.

Provisioning Decisions: The provisioning logic is invoked every
30 minutes. Figure 5(c) shows the decisions taken by the mix-
aware and mix-unaware provisioning policies. At t=30 minutes,
the number of sessions has doubled. The mix-unaware provision-
ing policy doubles the number of servers to respond to this increase
in volume of requests. The mix-aware policy is able to capture
the workload mix change in addition to the increased volume of
request. By taking into account the mix change, mix-aware provi-
sioning allocates an additional server for a total of 3 servers at the
web tier. The mix-unaware policy only catches up 30 minutes later
at the next iteration to provision a third server.

After t=60 minutes, the workload mix changes with a decreasing
service demand. At t=90 minutes, the mix-aware policy detects the
mix change and decides to decrease the number of servers from 3
to 2. The mix-unaware policy however only considers the volume
of requests. Since the volume is the same it assumes that it will
continue to need 3 servers and leaves the system over-provisioned.

Response Times: Figure 5(d) shows the 95th percentile response
times during this experiment with both provisioning policies. As
expected we see that the mix-unaware policy leads to SLA viola-
tions after the misprediction at t=30 minutes. Similarly, after t=90
minutes mix-unaware response times are very low due to the over-
provisioned web tier. mix-aware response time remains below SLA
requirements throughout the experiment with an optimal number of
servers (i.e. no SLA violations).

Result:Even when the volume of requests is changing, a mix-
aware provisioning policy refines traditional predictions based on
volume changes by preventing both under-provisioning and over-
provisioning.

6.4 EC2 Case Study
In this section, we experiment our technique on the Amazon EC2

(public cloud platform). Unlike our prototype data center where our
servers are dedicated to the benchmark execution, EC2 server in-
stances are virtual machines potentially competing with other vir-
tual machines to share the same physical resources [5]. We have
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calibrated the system on a single server instance and observed that
the peak throughput was 15 requests/second for the browsing mix
and 13 requests/second for the shopping mix with 120 clients and
80 clients, respectively.

Figure 6(a) shows the TPC-W workload that we used for our
experiment. We initially use a browsing mix workload of 30 re-
quests/second that increases to 45 requests/second after 10 min-
utes. We then switch the workload from browsing to shopping mix
at t=20 minutes using the same number of client requests. We fi-
nally increase the workload to 60 requests/second for the last 10
minutes of the experiment.

Figure 6(b) shows the decisions that are taken by the mix-aware
and the mix-unaware provisioning techniques and the provisioning
logic was invoked every 10 minutes. When the mix changes at t=20
minutes, the mix-aware technique provisions an additional server
that is required to sustain the 45 requests/second throughput for the
shopping mix. The mix-unaware remains under-provisioned as its
capacity requirements are based on its observations for the brows-
ing mix. When the throughput finally reaches 60 requests/second,
the mix-aware algorithm provisions a fifth server that allows to sus-
tain up to 65 requests/second. The mix-unaware technique pro-
visions only 4 servers which can serve 60 requests/second of the
browsing mix but only 52 requests/second of the shopping mix.

We have shown in this experiment that our mix-aware technique
was effective on a public cloud platform. The response time num-
bers (not presented here for lack of space) are similar to the ones
observed on our private cloud platform. In future works, we are
planning to study the effects of virtualization on longer experi-
ments and the use of heterogeneous server types (large and extra
large EC2 server instances) in cloud platforms.

7. RELATED WORK
A number of recent efforts have focused on dynamic capacity

provisioning for Internet applications [23], [8]. In the context of
system-level efforts, Shirako [12] is a system that supports on-
demand leasing of network resources, including virtual machines.
Shirako decouples leasing mechanisms from resource management
policies and provides a flexible, extensible framework for incorpo-
rating different resource types and policies. vManage [14] is a sys-
tem for coupling and coordinating energy- and resource-management
in data centers during provisioning and placement; such coupling
enables coordination of data center management policies across
different layers and yields better performance and stability. Violin
[20] is a system for dynamically constructing/provisioning groups
of isolated virtual machines within a distributed virtualized envi-
ronment; Violin focuses on network-level constructs for dynami-
cally provisioning and isolating groups of virtual machines running
components of an application.

In the context of provisioning algorithms, one class of techniques
focuses on changes on the workload volume for making provision-
ing decisions and is mix-unaware. Our past work on provisioning
includes a queuing-based approach for provisioning multi-tier ap-
plications [24]. Like the present work, the approach models each
tier as a G/G/1 queue. However, the approach is mix unaware and
only uses the peak session arrival rate to capture the workload and
provisioning capacity to service this peak workload. Thus, the ap-
proach faces the limitations discussed in section 1.1. An alternate
approach uses a G/G/N queuing model to compute the number of
servers necessary to maintain a target utilization level [19]. This
strategy is shown to be effective for sudden increases in request
arrival rate. Other efforts have employed similar M/G/1 queuing
models in conjunction with offline profiling to model service delay
and predict performance [23] (we use such models for provision-

ing). The approach in [25] formulates the application tier server
provisioning as a profit maximization problem and models appli-
cation servers as M/G/1/PS queuing systems; the approach only
considers the impact of different number of end-clients (and thus,
request volumes) and does not specifically focus on the impact of
server processing times or different mixes.

Classical feedback control theory has also been used to model
the bottleneck tier for providing performance guarantees for web
applications [2]. This approach focuses on web servers serving
static content, where service time can be estimated from the re-
quest size. Composition of adaptive feedback systems has been
studied in [11] where a co-adaptation mechanism for dealing with
composition of poorly tuned feedback loops in web applications
was proposed. Similarly machine learning techniques have been
used for provisioning, such as the k-nearest neighbor approach to
provision the database tier [8].

A few recent techniques have taken request classes (i.e., mixes)
into account but the mix is assumed to be specified a priori. Zhang
et. al. [26] use a multi-class model to capture the dynamics of
workload by employing a fixed set of 14 predefined transactions-
types and leverage it to predict the performance of a multi-tier sys-
tem. Another recent effort has employed a network of queues to
model a multi-tier Internet application that services multiple types
of transactions. The authors employ approximate mean-value anal-
ysis (MVA) to develop an online provisioning technique but the
request classes are assumed to be known a priori [6]. In contrast
to these efforts, our work automates the process of characterizing
the workload mix and uses this characterization to provision sys-
tem capacity. Further, while most of these multi-class efforts have
focused on analytic methods, our approach has involved a full pro-
totype implementation and experiments on an actual Linux cluster.

k-means clustering is a common technique used for static work-
load analysis. In [9], k-means is used for workload analysis and
demand prediction. In constrast, we use k-means to automatically
characterize the workload and use queueing theory approaches for
provisioning. Further, our focus is on designing a fully functional
prototype system that has been implemented, while the focus in
[9] is on the analysis of real traces. While we employ k-means to
automatically characterize the workload, other automatic workload
characterization techniques can be used for this purpose as well.
For example, a recent effort has used independent component anal-
ysis (ICA) to automatically groups requests based on service de-
mand [21]; such approaches can be also used in conjunction with
our provisioning algorithm.

8. CONCLUSION
In this paper, we have shown that non-stationarity in application

workloads, which causes request mix to change over time, have a
significant impact on the overall capacity demands imposed on a
data center. We have proposed a new technique based on k-means
clustering to automatically determine workload mixes and a queu-
ing model to predict server capacity for a given workload mix. We
have implemented a prototype provisioning system that incorpo-
rates our mix-aware approach and evaluated it on a prototype Linux
data center. Our experimental results show that k-means cluster-
ing can accurately captures workload mix changes. Our mix-aware
dynamic provisioning system improves over volume-based provi-
sioning techniques by eliminating SLA violations due to under-
provisioning with non-stationary web workloads, while offering
better resource usage by reducing over-provisioning. We also pre-
sented a case study of our provisioning approach on Amazon’s EC2
cloud platform.
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