
Perfctr-Xen: A Framework for
Performance Counter Virtualization

Ruslan Nikolaev Godmar Back

Virginia Polytechnic Institute
Blacksburg

{rnikola,gback}@cs.vt.edu

Abstract

Virtualization is a powerful technique used for variety of applica-
tion domains, including emerging cloud environments that provide
access to virtual machines as a service. Because of the interaction
of virtual machines with multiple underlying software and hard-
ware layers, the analysis of the performance of applications running
in virtualized environments has been difficult. Moreover, perfor-
mance analysis tools commonly used in native environments were
not available in virtualized environments, a gap which our work
closes.

This paper discusses the challenges of performance monitoring
inherent to virtualized environments and introduces a technique to
virtualize access to low-level performance counters on a per-thread
basis. The technique was implemented in perfctr-xen, a framework
for the Xen hypervisor that provides an infrastructure for higher-
level profilers. This framework supports both accumulative event
counts and interrupt-driven event sampling. It is light-weight, pro-
viding direct user mode access to logical counter values. perfctr-
xen supports multiple modes of virtualization, including paravirtu-
alization and hardware-assisted virtualization. perfctr-xen applies
guest kernel-hypervisor coordination techniques to reduce virtu-
alization overhead. We present experimental results based on mi-
crobenchmarks and SPEC CPU2006 macrobenchmarks that show
the accuracy and usability of the obtained measurements when
compared to native execution.

Categories and Subject Descriptors D.2.8 [Software Engineer-
ing]: Metrics—Performance measures; D.4.8 [Operating Sys-
tems]: Performance—Measurements

General Terms Performance, Measurement

Keywords Profilers, virtual machine monitors, perfctr, PAPI,
HPCToolkit, Xen

1. Introduction

Virtualization allows multiple instances of an operating system
to run on a single computer. The idea was first introduced for
VM/370 [13] and has later been reincarnated for modern platforms
as described in [11] and [24]. A Hypervisor or VMM (virtual ma-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’11, March 9–11, 2011, Newport Beach, California, USA.
Copyright c© 2011 ACM 978-1-4503-0501-3/11/03. . . $10.00

chine monitor) is a software layer that separates the virtual hard-
ware an OS sees from the actual hardware and arbitrates access to
physical resources such as CPU or memory. Among widely known
VMMs are Xen [8] and KVM [18], [20]. Virtualization improves
isolation and reliability because each OS runs independently from
the others on its own virtual processor, increases resource utiliza-
tion as the same hardware can be used for multiple purposes, and
leads to better productivity as large pieces of software can be pre-
configured and installed very easily.

Virtualization is widely used in several application domains. It
allows the creation of “virtual appliances” [25], which are software
bundles that contain their own specialized OS and run along with
other virtual appliances and general purpose OS on a single ma-
chine. Commercial providers of infrastructure as a service (IaaS)
solutions rely on virtualization to provide business solutions for
server consolidation. Virtualization has also been proposed as a
means of utilizing manycore platforms efficiently [7].

However, running performance-critical applications in virtu-
alized systems is challenging because of virtualization overhead
and the difficulty of making appropriate resource allocation and
scheduling decisions. Commonly used performance evaluation
frameworks extensively exploit profiling to allow systems and ap-
plication developers to understand the performance of their ap-
plications. Such profiling frameworks rely heavily on hardware
performance counters provided by modern CPUs. These counters
provide information about hardware-related events such as cache
misses, branch mispredictions, and many others.

Like any other resource, access to these hardware performance
counters must be managed by both the hypervisor and the guest
operating system kernel. However, current hypervisors are unable
to provide efficient and virtualized access to performance counters.
Our work closes this gap.

This paper presents perfctr-xen, an infrastructure to provide di-
rect access to hardware performance counters in virtualized envi-
ronments using the Xen hypervisor. Perfctr-xen relies on the coop-
eration of guest kernel and underlying hypervisor to provide pro-
filing tools running in the guest with access to performance coun-
ters that is compatible with the APIs used in native, unvirtualized
environments, notably PAPI [10]. Consequently, frameworks and
libraries that rely on PAPI can now be used inside Xen, such as
HPCToolkit [6] or TAU [26]. To accomplish this compatibility, we
modified both the Xen hypervisor as well as the guest kernel run-
ning inside each virtual machine. Perfctr-xen supports both paravir-
tualized mode as well as hardware virtualization mode and exploits
optimizations that avoid trap-and-emulate overhead. Although our
implementation focuses on Xen, the techniques we use are applica-
ble to other hypervisors.

15

Library/Framework Type Monitoring Direct access Interfaces Used

perf events low level Per thread Yes ioctl, mmap, sysctl, prctl
perfctr low level Per thread Yes ioctl, mmap, dev

perfmon high and low level Per thread No syscalls, mmap, signals
PAPI high level Per thread Yes (w/ perfctr) perfctr, perf events, perfmon

OProfile profiler System wide N/A oprofilefs
XenoProf profiler System wide N/A oprofilefs

TAU PerfExplorer profiler Per thread N/A PAPI
HPCToolkit profiler Per thread N/A PAPI

Table 1. Characteristics of Performance Monitoring Libraries and Frameworks

2. Background

This section introduces hardware event counters and existing li-
braries and frameworks that provide access to them. We further
discuss the state of support for such counters in existing virtual
machines.

2.1 Hardware Event Counters

Modern CPUs provide access to hardware event counters through
programmable performance monitoring registers. Such registers
can be programmed to count events of interest, such as cache ac-
cesses or misses or branch mispredictions. The registers may be
read-only or read-write. System software controls whether regis-
ters are directly accessible to non-privileged user applications or
whether accesses must be done in privileged mode from system
code. The number of registers is typically smaller than the set of
event types that can be counted, requiring that the user select a sub-
set of events of interest. The set of event types is specific to a given
microarchitecture and frequently changes as the microarchitecture
evolves. Performance monitoring registers can be set up to trigger
interrupts when they overflow. This mechanism is useful to perform
statistical profiling using sampling intervals that contain a constant
number of the events of interest in each interval.

2.2 Performance Monitoring Frameworks and Libraries

A cornucopia of performance monitoring frameworks and libraries
exist. A representative set of examples is shown in Table 1. These
frameworks and libraries differ in their functionality, level of ab-
straction, granularity of monitoring, and the interfaces upon which
they rely.

At the bottom level, low-level performance counter libraries
provide a thin layer over the facilities provided by the hardware,
which does not hide architecture-specific event types from the user.
These systems consist of kernel extensions and a corresponding
user library. The kernel extensions implement operations that re-
quire privileged access, such as reprogramming counters or setting
up interrupt handling and forwarding interrupt notifications to pro-
cesses. The user library provides an API for accessing event coun-
ters.

Events may be counted globally (system-wide), or per thread.
Most libraries support both modes, although some (e.g., OPro-
file [12]) provide only global counting. Global recording of events
has the advantage that it can account for vertical interactions at all
levels of the software stack as well as during horizontal interac-
tions with other programs, such as local servers. On the other hand,
global profiling makes it difficult to separate events of interest from
unrelated system activities or noise.

Per-thread counting provides each thread with its own logical
set of performance counters, just like each thread has its own log-
ical set of machine registers. To implement per-thread accounting,
the performance counter framework needs to maintain per-thread
state which is updated on each context switch.

Some libraries (e.g., perfctr [22] and perf events [2] 1), allow
a thread to directly read the physical performance monitoring reg-
ister in user mode in order to obtain fine-grained and precise in-
formation about events during its execution, while other libraries
(e.g., perfmon [17]) require a system call to obtain access to this
information. Those systems that provide direct access must either
maintain the thread’s logical value in the physical register while the
thread is scheduled, or they must place a correction (offset) value
in an agreed-upon location (such as a memory-mapped area in the
thread’s address space) that allows a thread to compute its logical
value based on the value read from the physical register.

High-level performance counter libraries such as PAPI [10]
provide a layer that hides microarchitecture-specific event types
behind a uniform, higher-level API. Performance profilers such as
TAU [26] and HPCToolkit [6] in turn are built on top of higher-
level performance counter APIs. These profilers statistically sample
events and present cumulative statistics to the user that relates
these events to instructions and functions in the user codes, with
appropriate references to the source code if available.

The choice of framework influences the accuracy of measure-
ments [27]. Bypassing high-level APIs in favor of low-level APIs
typically reduces the measurement error, but requires architecture-
specific code. The accuracy depends also on which events should
be counted (user mode only vs. user and kernel mode events [27]).

To compensate for the limited number of performance counter
registers, some frameworks (perfmon, PAPI) support event multi-
plexing. This technique applies only a subset of the desired event
sets during subsections of a program’s execution, then scales the
results to extrapolate their values for the entire program.

2.3 Virtualization Approaches

App 1 App 2

Kernel 1

hypervisor

Kernel n

App 3 User level

Guest domain

level

VMM level

...

Figure 1. Architecture of a Type-I Virtual Machine Monitor

In this work, we consider Type I virtual machines [19] (see
Figure 1) in which the hypervisor forms the lowest layer with direct
access to the hardware and guest operating systems run on top of
the hypervisor in separated domains.

Fully virtualized systems leave the guest OS entirely unaware
that it is not running on physical hardware. As a result, an un-
changed guest kernel (such as an off-the-shelf image of a commer-
cial OS) can be executed. Such full virtualization can be accom-

1 perf events was previously known as perf counter

16

Domain 0

Domain 1

Domain is suspended

by hypervisor

Domain is resumed

by hypervisor

Thread 0 is

suspended by guest
Thread 0 is

resumed by guest

Thread 0

Thread 0

Thread 1

Thread 1

Events

Figure 2. Context switching in a virtualized environment. The
guest domains and the hypervisor are both unaware of when a
domain or thread switch takes place.

plished either using hardware assist, or using binary translation.
Hardware-assisted systems such as Intel VT or AMD-V run the
kernel in a deprivileged mode, allowing the hypervisor to trap and
emulate any instructions whose effect must be local to a given do-
main. Prior to the introduction of hardware assist, full virtualization
of IA32-based systems required binary translation of the guest ker-
nel code because the architecture lacked the ability to intercept all
necessary instructions when executed in deprivileged mode [23].

For this reason, the Xen virtual machine monitor [8] introduced
adaptations into the guest OS kernel code (a process known as
paravirtualization), to reduce emulation and management costs and
yield better performance. Beyond avoiding binary translation, the
adaption of guest kernel code either in their core or through the
use of special drivers has become common today for any virtual
machine monitor.

2.4 Performance Counters in Virtual Machines

Support for performance event monitoring depends on the type
of virtualization being used. There is limited support in Xen for
selected microarchitectures when hardware-assisted virtualization
(e.g., using Intel VT or AMD-V) is used. In this approach, accesses
to performance monitoring registers are intercepted via traps. How-
ever, the set of architectures supported is far smaller than that sup-
ported by PAPI, and hardware-assisted virtualization is not always
used.

The XenoProf [21] framework extends the OProfile [12] system-
wide profiler to allow per-domain (e.g., per guest) profiling in Xen,
even when hardware-assisted virtualization is not used. However,
XenoProf does not allow independent and simultaneous profiling
of different domains.

Aside from these approaches, most current virtual machines
disallow access to the performance monitor registers by the guest
operating systems, thus preventing widely used low-level libraries
such as perfctr and perf events from being used. Consequently,
users cannot benefit from high-level performance profilers such as
TAU PerfExplorer and HPCToolkit to diagnose the performance of
their applications when executing on top of virtual machines.

3. Virtualizing Hardware Event Counters

The encapsulation of guest domains from the underlying hyper-
visor poses a difficulty for virtualizing performance counters, be-
cause these two components are mutually unaware of their schedul-
ing policies. As shown in Figure 2, the guest kernel remains un-
aware if the hypervisor suspends its domain on the physical CPU
on which it runs. Likewise, the hypervisor is unaware of when a

guest kernel switches to a different user task on its domain’s virtual
CPUs.

Both inter- and intra-domain context switches involve the
performance monitoring framework and may require updating
machine-specific (MSR) registers. First, PMU (Performance Mon-
itoring Unit) configuration registers (e.g., event selectors) need to
be re-programmed to reflect the desired event configuration of the
thread to be resumed. Second, if the performance counter regis-
ter contains the logical value of the thread to be resumed, it must
be restored (and the value of the outgoing thread must be saved).
Otherwise, its value must be sampled and recorded in the corre-
sponding data structure for the thread or domain.

Since the guest domain kernel runs in a deprivileged envi-
ronment, its access to the registers during intra-domain context
switches must be managed by the hypervisor. For fully-virtualized
domains, a trap-and-emulate approach can be used to intercept
and emulate the corresponding privileged instructions that write to
these registers. Although read accesses could be trapped as well,
current architectures allow the hypervisor to grant direct read ac-
cess to the MSR registers to guest domains. If the guest is adapted
to use paravirtualization, the cost of trapping and emulating indi-
vidual privileged instruction can be reduced by using hypercalls
instead, which allows the batching of multiple updates. The guest
can also cache previously activated configurations to avoid these
hypercalls if possible, thus avoiding unnecessary writes to the MSR
configuration registers.

Whereas the counter-related configuration information must be
saved and restored on both inter- and intra-domain switches, the
values of the registers containing the actual event counts require
saving and restoring only if the register physically contains the
thread’s logical value during execution. Consequently, the cost of
writing to these registers can be avoided when this is not required,
which holds true in two cases. First, if a counter is used to obtain ac-
cumulated event counts (in ‘a-mode’), a virtualization-aware guest
domain can apply the necessary correction offsets to obtain the log-
ical accumulated value from the physical value. Second, in the case
of the timestamp counter (TSC) register, hardware-assisted virtual-
ization via Intel VT or AMD-V allows for transparent, per-domain
offsetting, which also avoids the cost of physically updating these
registers on a context switch. In addition, on some architecture im-
plementations, it is impossible to safely update the TSC register
since it may be shared across cores. Avoiding the save-and-restore
cost is beneficial because it can be expensive (66-93 CPU cycles per
register; for Pentium 4 as much as 18 registers must be restored).

On the other hand, if a counter is used in interrupt mode (‘i-
mode’), the physical register contains a small negative value that
will overflow, thus triggering an interrupt, after a desired num-
ber of events occurs. In this case, saving and restoring cannot be
avoided. The interrupt is handled by the hypervisor, who must for-
ward this interrupt to the affected domain via a virtual interrupt
mechanism. Upon receipt of the virtual interrupt, the guest ker-
nel notifies the user-level profiling components via a Unix signal.
Previous work [21] claimed that such delivery needs to be syn-
chronous, an assertion repeated in [15]. In Xen, the delivery of vir-
tual interrupts to guest domains is not synchronous, but uses a soft-
ware interrupt mechanism, thus making it possible that their deliv-
ery could be delayed by higher-priority interrupts. In Section 4.2.2,
we argue that support for synchronous interrupt delivery is not re-
quired if the performance counter registers are restored before the
guest domain is resumed, and if the guest domain verifies that a
register in fact overflowed before delivering the notification to the
user level.

Perfctr-xen supports performance counter virtualization in Xen
in three configurations, which required different and separate im-
plementations: (1) for paravirtualized guest kernels, which use

17

hypercalls to communicate performance counter configuration
changes from guest to hypervisor, and in which the guest and hy-
pervisor cooperate to maintain information about the current thread
context; (2) for fully-virtualized guest kernels, which use the save-
and-restore approach for all registers; and (3) a hybrid approach
in which a guest can run in a hardware-assisted, fully-virtualized
domain but still enjoy the generality of and the optimizations de-
veloped for the paravirtualization case.

4. Implementation

Our implementation is based on, and compatible with, the existing
perfctr [22] implementation. In this section, we describe perfctr in
detail and outline how we adapted it to enable performance counter
virtualization in Xen for paravirtualized and hybrid modes. Sec-
tion 4.2.5 describes our virtualization strategy for fully virtualized
domains.

perfctr-guest

PAPI

PerfExplorer,

HPCToolkit, etc.
Guest: Profilers

Guest: High-level

performance counters

Guest: Low-level

performance counters (*)

perfctr-xen
Hypervisor: support for

low-level counters (*)

Figure 3. Software layers in perfctr-xen. Components marked with
an asterisk (*) were adapted from perfctr.

4.1 The perfctr library

We chose perfctr because it is widely used and provides the founda-
tion for higher-level libraries and frameworks such as PAPI, HPC-
Toolkit, or PerfExplorer, as shown in Figure 3. It is efficient, light-
weight and allows direct access to performance counters in user
mode. Perfctr supports a wide range of x86 implementations span-
ning multiple generations and different vendors, whose hardware
event counter implementation can differ significantly. In addition,
perfctr works on non-x86 platforms such as PowerPC and ARM
and can easily be integrated in any Linux distribution.

Perfctr consists of a kernel driver and a user-level library.
The kernel driver maintains performance counter-related per-thread
data structures, updates them on each context switch, and makes
them available to the user-level library via a read-only mapping.
Besides miscellaneous architecture-specific information, this per-
thread data structure contains the following information:

• Control State. Information about which PMU data registers a
thread is actively using, which events these registers count, and
to which physical register address they are mapped. Similar
information is kept with respect to the use of the time-stamp
counter, which is also virtualized.

• Counter State. For each PMU data register, as well as the TSC
register, two values are kept: Sumthread, which reflects the
thread’s accumulated logical event count up to including the last
suspension point; and Startthread, which reflects the sampled
value of the counter at the last resumption point.

Perfctr supports two types of counters: a-mode and i-mode
counters. A-mode counters are used by threads to measure the

number of events occurring in some region of a program. User code
explicitly reads the counter’s value when needed. When a thread
wants to access the logical value of a counter at time t, a user
library function issues a RDTSC or RDPMC instruction to obtain the
register’s physical value Phys(t) and computes the logical value
Logthread(t) as

Logthread(t) = Sumthread + (Phys(t)− Startthread) (1)

On each context switch, the perfctr kernel driver updates the
accumulated value of the outgoing thread as Sumthread ←
Sumthread +(Phys−Startthread) to account for the events dur-
ing the last scheduling period. In addition, the Startthread value
of the thread to be resumed is reset as Startthread ← Phys. Note
that the actual physical register value is not changed on a context
switch for a-mode counters.

I-mode counters, which are used for sampling, trigger interrupts
after a certain number of events has occurred, which represents the
sampling period. Since the value at which an overflow interrupt is
triggered is fixed at 0 and cannot be programmed, the physical reg-
ister must be set to a small negative value whose absolute value
represents the desired length of the sampling period. I-mode coun-
ters are treated differently during a context switch: their physical
value is saved on suspend and restored on resume. The Sumthread

field maintains the counter’s accumulated logical value as for a-
mode counters. The Startthread field is used to record the physical
value when a thread is suspended. Consequently, the logical value
of an i-mode counter can also be obtained using equation (1).

When an overflow occurs, perfctr handles this interrupt, iden-
tifies the register(s) that have overflowed and updates Sumthread,
then disables further event counting for these registers. Using the
OS’s signal delivery mechanism, a signal is sent to the user pro-
cess. The signal handler is then responsible for recording the sam-
ple based on the provided user process’s state and it must re-enable
event counting. Once re-enabled, the physical value of the register
is reset to the sampling period, which is also recorded in the data
structure maintained by perfctr.

4.2 The perfctr-xen framework

Perfctr-xen includes a hypervisor driver, a guest kernel driver, and a
modified user-level library, whose functionality we describe in this
section.

4.2.1 A-mode counters

The virtualization technique described in Section 4.1 requires that
the underlying system perform two actions during a context switch:
(1) update the counter state of the threads being suspended and re-
sumed, and (2) activate the resumed thread’s control state. As dis-
cussed in Section 3, in a virtualized environment, both intra-domain
context switches between threads in a domain and inter-domain
context switches between domains can occur. During intra-domain
switches, the guest kernel can perform the state updates similar to
the native implementation. For inter-domain context switches, the
hypervisor must perform these updates.

We first considered having the hypervisor update each thread’s
counter state directly on the guest kernel’s behalf. This approach
has the advantage that no changes to the perfctr user library are
required. However, it would create undesirable coupling between
the hypervisor and the guest kernel implementations, because the
hypervisor would need to traverse guest kernel data structures. In-
stead, we decided to split the control and counter state in two parts.
At the guest kernel level, a per-thread data structure is maintained.
At the hypervisor level, a per-VCPU data structure is maintained
for each virtual CPU that is assigned to a guest domain. The hyper-
visor provides read-only access to this data structure to the guest

18

kernel, who in turn maps it into the address space of each thread
using performance counters.

The per-VCPU data structure is modeled after the per-thread
data structure used in the native version of perfctr (in fact, our
implementation uses the same data structure declarations, as dis-
cussed in Section 4.2.4). For each PMU data register, as well as for
the TSC register, the hypervisor maintains two values per VCPU:
Startvcpu and Sumvcpu. Startvcpu represents the sampled value
of the counter at the most recent resumption point of the domain or
thread (whichever happened last). If the hypervisor resumes a do-
main, it directly updates Startvcpu after sampling the counter. If
the guest kernel resumes a thread, it requests via a hypercall that the
hypervisor record the sampled value in Startvcpu. The same hy-
percall is also used to activate this thread’s counter-related control
state.

The field Sumvcpu represents the cumulative number of events
incurred by this domain since the last intra-domain thread resump-
tion point until the most recent domain suspension point. It is set
to zero on each intra-domain switch during the hypercall that noti-
fies the hypervisor that the guest kernel resumed a thread. On each
inter-domain context switch, the perfctr-xen hypervisor driver up-
dates the accumulated value of the outgoing VCPU as Sumvcpu ←
Sumvcpu+(Phys−Startvcpu) to account for the events incurred
since the last intra- or inter-domain resumption point.

The perfctr-xen guest kernel driver maintains the value
Sumthread for each thread as in the native case, which represents
the cumulative number of events up to the last thread suspension
point. A counter’s logical value at time t is computed as

Logthread(t) = Sumthread + (Phys
∗(t)− Start

∗

thread) (2)

Phys∗(t) represents the adjusted physical value that accounts for
possible VCPU preemption, which is computed as

Phys
∗(t) = Sumvcpu + (Phys(t)− Startvcpu) (3)

Thus, the logical value represents the sum of the cumulative num-
ber of events until the last thread suspension point, plus the num-
ber of events encountered from there until the last domain resump-
tion point while the domain was active, plus the events encountered
since then until t, reduced by an adjusted start value Start∗thread.

The adjusted thread start value Start∗thread compensates for
the requirement that each intra-domain context switch includes a
hypercall. Since this hypercall is introduced by our framework, we
wish to exclude any events occurring during its execution. Right
before resuming a guest thread, the guest kernel driver computes
Start∗thread = Phys∗(tr) after returning from the hypercall at
time tr

Start
∗

thread = Sumvcpu + (Phys(tr)− Startvcpu) (4)

This adjustment excludes any events incurred between when the
hypervisor sampled the counter during the hypercall and tr . The
inclusion of the term Sumvcpu ensures that all such events are
excluded, even if the domain was suspended and resumed during
the hypercall by the preemptive scheduler. Since Start∗thread takes
the place of Startthread in equation (1), we store its value in the
Startthread field of the per-thread structure.

The use of Start∗thread enables an additional optimization.
In applications in which multiple threads count the same types
of events, the hypercall accompanying the intra-domain context
switch does not change any counter’s control state. In this case,
we skip this hypercall. Consequently, Startvcpu is not reset to
the counter’s current physical value and Sumvcpu is not reset
to 0. Since we still initialize Start∗thread using equation (4), we
allow the thread being resumed to subtract events incurred by
other threads within the same domain since Startvcpu was last
initialized. This optimization reduces the frequency with which

Startvcpu is updated, which in turn increases the risk that an
integer wrap-around leads to incorrect results when computing a
thread’s logical value. To reduce this risk, we expanded the width
of the counters. Whereas perfctr uses 32 bits to represent only
the lower 32 bits of all counters, our implementation uses their
actual width (64 bits for the TSC register, and 48 bits for PMU
data registers; 40 bits on older CPUs). We sign-extend based on
the physical register width and store the extended values in 64-bit
variables.

Domain 0

Domain 1

Thread 0

Thread 1

Thread 0

Thread 1

Events

Sum
thread

Start thread

*

Sum
vcpu

Phys(T4) - Start
vcpu

T0 T1 T2 T3 T4

Figure 4. Example scenario for virtualized counters

Example Scenario. Figure 4 shows an example scenario to illus-
trate equations (2) and (3). Initially, thread 0 in domain 0 is running.
At point T0, thread 0 is suspended by the guest kernel and its accu-
mulated event count is recorded in Sumthread. At T1, thread 0 is
resumed. The hypervisor sets Sumvcpu ← 0; upon return from the
hypercall, the guest records Start∗thread. At point T2, the domain
is suspended; the hypervisor records the number of events elapsed
in Sumvcpu and later resumes the domain at point T3. At this point,
the hypervisor samples Startvcpu as Phys(T3). Finally, the log-
ical value computed at time T4 reflects the sum of the three seg-
ments during which the thread was active, while excluding those
time periods during which the thread or domain was suspended.

4.2.2 I-mode counters

As in the native perfctr implementation, i-mode counters require
saving and restoring the physical register value on both intra-
and inter-domain context switches. In addition, when a thread us-
ing i-mode counters is suspended by the guest, the PMU must
be reprogrammed to stop triggering interrupts for this counter.
Since writes to PMU registers can be performed only by the
hypervisor, an additional hypercall is necessary when a guest
thread is suspended. Our implementation uses the Startvcpu and
Sumvcpu fields in the VCPU structure to maintain the currently
active thread’s Startthread and Sumthread values at the time the
thread is resumed. While a thread is active, we set its per-thread
Startthread ← 0 and Sumthread ← 0 in order to be able to use
equation (2) to compute the logical value (if desired).

When an intra-domain context switch occurs, a guest invokes
a suspension hypercall which will update Sumvcpu and store the
current physical value in Startvcpu. These values are then pre-
served in the Sumthread and Startthread fields of the outgoing
thread. The guest then invokes a resumption hypercall which will
restore Sumvcpu and Startvcpu based on the previously saved
Sumthread and Startthread fields of the thread to be resumed.
The Startvcpu value will be written to the corresponding physical
register. When an inter-domain context switch occurs, the hyper-
visor updates Sumvcpu to account for the events incurred by the

19

domain and preserves the outgoing VCPU’s value in its Startvcpu

field before restoring the physical register value from the saved
Startvcpu field of the VCPU to be scheduled.

When an overflow interrupt occurs, the hypervisor forwards this
interrupt to the guest domain using a virtual interrupt we added
for this purpose (VIRQ PERFCTR). When the guest receives the vir-
tual interrupt, it performs the same actions as in the native perfctr
implementation, with three slight nuances: (1) When the guest re-
ceives the virtual interrupt, it suspends counting for the interrupted
thread, and Sumvcpu will be updated via the suspension hyper-
call. To prepare for the next sampling period, Startthread is re-
set with the negative sampling period. (2) When the user thread
resumes counting, the resumption hypercall is executed, which re-
stores Startvcpu from Startthread and sets the physical register
value from Startvcpu. (3) The guest does not need to re-program
APIC controller, as it has been done already by the hypervisor.

The virtual interrupt is not delivered synchronously because a
software interrupt mechanism is used. As such, it is possible that
the delivery of the interrupt is delayed, for instance, because other,
higher-priority interrupts are being handled first. This could have
two consequences. First, it could affect the accuracy because the
events incurred during those interrupts will be counted as being
part of that thread’s activity. However, it is already the case that
interrupt-related guest kernel activities can perturb the currently
running thread’s event count. Second, it is possible that a higher-
priority interrupt triggers a context switch in the guest. When the
virtual interrupt is eventually handled, a different thread may be
running on the VCPU. Since we save and restore each thread’s
counter state on intra-domain interrupts, we can check if the cur-
rently running thread indeed encountered an overflow (i.e., if any
of its counters have a non-negative value), and prevent the delivery
of the overflow notification if this is not the case. When a thread
whose counters have overflowed is suspended before the interrupt
has been delivered, we mark it by setting an ’interrupt pending’
flag, which is checked when the thread is resumed so that the over-
flow notification is delivered in the correct context.

4.2.3 Memory Management

Machine

Frames

Physical Frames

(Guest 1)

Physical Frames

(Guest n)

shared_info

per_thread

vperfctr_state

vperfctr_state

per_thread

Virtual Address

(Thread-1.1)

Virtual Address

(Thread-1.m)

per_thread

vperfctr_state

Virtual Address

(Thread-n.1)

shared_info

shared_info

shared_info

Virtual Address

(Hypervisor)

Figure 5. Page mappings in paravirtualized mode

The virtualization approach described in Sections 4.2.1
and 4.2.2 relies on sharing data structures between hypervisor and
guest threads, as well as between guest kernel and guest threads.
To expose the hypervisor’s per-VCPU data structures, we extended

the existing shared info data structure in Xen. This addition in-
creases the structure’s size from 1 page to 8 pages; as a result, we
needed to modify those places in the code where a single page size
was assumed. The additional information, which is kept in 7 ad-
jacent pages, is also made visible to user threads via a read-only
mapping to facilitate the computation of the logical counter value.
User threads also have read-only access to per-thread information
which is mapped into their user space as in the original implemen-
tation.

The way in which the per-VCPU data mapping is established
differs between paravirtualized and hardware-assisted mode. In
paravirtualized mode, shown in Figure 5, the shared info struc-
ture does not appear as physical memory to the guest kernel. In-
stead, it is allocated by the hypervisor in machine memory and ap-
pears at a fixed virtual address in the guest kernel’s address space.
The corresponding machine address is communicated to the guest
kernel through the xen start info data structure. The guest ker-
nel uses a Xen Guest API (xen remap domain mfn range) to cre-
ate an additional mapping to these machine frames.

Machine

Frames

Physical Frames

(Guest 1)

Physical Frames

(Guest n)

shared_infoshared_info

per_thread

vperfctr_state

vperfctr_state

per_thread

Virtual Address

(Thread-1.1)

Virtual Address

(Thread-1.m)

shared_info

per_thread

vperfctr_state

Virtual Address

(Thread-n.1) shared_info

shared_info

shared_info

Virtual Address

(Hypervisor)

Figure 6. Page mappings in hybrid mode

In hardware-assisted mode, shown in Figure 6, the guest has
full control over its physical address space. It can allocate the
shared info in any of its physical page frames. The chosen phys-
ical address is communicated from the guest kernel to the hyper-
visor. Since shared info appears in the guest’s physical mem-
ory map, Linux’s standard mapping API (vm insert page) can
be used to add read-only mappings into the user threads’ address
spaces.

A domain may use multiple VCPUs, and the guest kernel sched-
uler may migrate threads between VCPUs based on its scheduling
policy. Consequently, we expose the per-VCPU data structures of
all VCPUs to every user thread. We also added an additional field
smp id to the per-thread structure to record the VCPU on which
the thread is resumed. The user-level library uses this field as an
index to access the correct per-VCPU structure.

Care must be taken to handle thread or domain migrations
that may occur while accessing those counters. We implemented
an optimistic approach in which we check if the values of the
Startthread and Startvcpu fields corresponding to the TSC
counter changed between before and after the attempted access.
Such a change indicates a domain and/or thread migration, in which
case we retry the access until we succeed.

20

Component Number
of Lines

Details

perfctr 563 VCPU support, hypervisor
communication, etc.

Linux 36 shared info management,
VIRQ PERFCTR

Xen 3488 perfctr-xen, shared info
management, VIRQ PERFCTR

Table 2. Added or modified code

4.2.4 Software Engineering Considerations

In addition to providing compatibility with perfctr, we aimed to
reuse as much of its codebase as possible. We were able to reuse
the architecture-dependent code portions almost entirely, which
will allow us to add support for newer CPU families as soon as
they are supported by perfctr. Both the guest kernel driver and
the hypervisor driver are based on perfctr. For the guest kernel
driver, we replaced the functions that assumed direct access to the
hardware with the appropriate hypercalls. For the hypervisor driver,
we needed to provide glue code so that it could function within
the Xen hypervisor rather than the Linux kernel for which it was
designed. This glue code was written in the form of preprocessor
macros and inlined functions contained in a separate header file,
allowing us to avoid changes to most of the perfctr code. Table 2
summarizes the total amount of added or modified lines of code in
the Xen hypervisor, the Linux guest kernel and the imported perfctr
code. We note that more than half of the number of lines of code
added to Xen stems from the addition of the perfctr driver.

4.2.5 Counter Virtualization in Fully-Virtualized Domains

The implementation described in Sections 4.2.1 and 4.2.2 requires
that the guest kernel includes our perfctr-xen implementation so
that it can benefit from the optimizations we made to enable direct
access to counter values, which avoids the cost associated with
save-and-restore for a-mode counters. Fully-virtualized domains do
not require any guest kernel changes.

For fully virtualized domains, Xen’s VPMU driver already sup-
ports counter virtualization for PMU registers on some recent
CPUs. This virtualization is achieved by using a save-and-restore
mechanism for PMU registers on inter-domain context switches as
well as a hardware-assisted trap-and-emulate mechanism for PMU
configuration registers. (A similar approach was implemented for
KVM in [15].) The hypervisor intercepts the privileged instructions
a domain uses when writing to configuration registers. A hardware-
supported access bitmap allows the hypervisor to provide exclu-
sive access to dedicated PMU registers for a domain. These mech-
anisms allow the use of the native perfctr implementation in fully-
virtualized environments for the PMU registers, but they fail to pro-
vide per-VCPU virtualization for the TSC register, which cannot be
reliably written to.

Xen exploits the TSC offsetting feature provided in hardware-
assisted virtualization, so that each domain can set its own vir-
tual initial value. However, this per-VCPU offset δ is not adjusted
during inter-domain switches, hence does not reflect just the cy-
cles during which a particular VCPU was active. To address this
problem, we modified the implementation in the following way.
When a domain is suspended, we take a sample of the TSC value
(TSClast ← Phys(t)). When the domain resumes, we obtain
the current value TSCcur ← Phys(t), and re-calculate the TSC
offset as δ ← δ − (TSCcur − TSClast). The updated offset is
recorded by the CPU and will be reflected when a guest executes
the RDTSC instruction.

5. Experimental Results

Our perfctr-xen implementation was able to pass all perfctr and
PAPI built-in tests. We verified that it functioned correctly with
higher-level tools such as the HPCToolkit profiler. In this section,
we discuss our experiments to validate the correctness of our imple-
mentation using microbenchmarks, we discuss test results obtained
for the SPEC CPU2006 benchmarks, and show profiling results ob-
tained using the HPCToolkit running on top of perfctr-xen. All ex-
perimental results were obtained for Xen 4.0.1, Linux 2.6.32.21-
PvOps, perfctr 2.6.41 run on a Intel Xeon E5520 with 2x4 cores
and 12 GB of RAM.

5.1 Validation of Correctness

To validate the correctness of our implementation, we compared the
perfctr-xen implementation running in Xen with the original perfctr
implementation running in native mode on the same hardware.
For most counters, we expect to obtain the same value. For some
counters (e.g., cache misses) we expect to see slight deviations
because different domains running in parallel may compete for the
same resource.

5.1.1 A-mode Counters

IR TSC BIR LLCM LLCR

Hardware event type

R
e
la

ti
ve

 e
rr

o
r

o
f
c
o
u
n
te

r
(l
o
g
 s

c
a
le

)

0
.0

0
1

0
.0

0
2

0
.0

0
5

0
.0

1
0

0
.0

2
0

0
.0

5
0

1:D0−T1
1:D0−T2
1:D1−T1
1:D1−T2
2:D0−T1
2:D0−T2
2:D1−T1
2:D1−T2
3:D0−T1
3:D0−T2
3:D1−T1
3:D1−T2
4:D0−T1
4:D0−T2
4:D1−T1
4:D1−T2

Figure 7. Microbenchmark result for a-mode counters

We first ran a specially developed 1-minute long microbench-
mark. This synthetic microbenchmark heavily exercises branch in-
structions, memory accesses, and floating-point operations without
performing a useful task. In Figure 7, the error relative to the na-
tive execution environment is shown for several test scenarios and
event types. We considered two domains (Dom0 and Dom1) and
two threads (Thread 1 and Thread 2) in each domain, running in
parallel. Each test result is denoted as N : Dx − Ty , where N
is the test case scenario, x is a guest domain and y is a thread.
We considered the following test scenarios N , which represent dif-
ferent arrangements of CPU multiplexing: (1) Each domain runs
on two dedicated physical cores (PCPUs), and each thread in ev-
ery domain runs on a dedicated VCPU. (2) Each domain runs on
a dedicated PCPU and all threads in every domain run on a shared
VCPU. (3) Domains run on a shared PCPU and all threads in each
domain run on a shared VCPU. (4) Like (1), except that threads

21

are randomly migrated across VCPUs, and VCPUs are randomly
migrated across different PCPUs. We used the Xen xm command to
pin VCPUs to PCPUs, and we used the Linux taskset command
to pin threads to VCPUs.

We considered the following counters: TSC (Time Stamp
Counter), IR (Instructions Retired), BIR (Branch Instructions Re-
tired), LLCM (L2 cache misses), and LLCR (L2 cache references).
The results show some deviations, but the overall relative error
(compared to native) remains very small. As expected, the per-
thread values for the number of cycles spent, instructions and
branch instructions retired match more closely the values obtained
in native execution than the values corresponding to cache misses
because those values are less affected by resource sharing. The
results shown were obtained for paravirtualized domains; we ob-
tained comparable results for hardware-assisted domains using our
hybrid mode implementation.

5.1.2 I-mode Counters

To verify the functioning of our i-mode counter implementation,
we used PAPI’s included tests. We present the results for the over-
flow pthreads test. The test is a synthetic benchmark that performs
a set of floating point operations. We ran the test for 300 sampling
periods, and recorded the logical counter values afterwards. The
benchmark runs 4 threads for which it uses a random CPU (VCPU
in our case) assignment. We present results for two scenarios: (1)
Dom0 and Dom1 run on separate PCPUs. (2) Dom0 and Dom1
run on a shared PCPU. As Figure 8 shows, the error relative to the
native mode for the number of retired floating-point instructions
(PAPI FP INS) is negligible. Figure 9 shows the number of cycles
as measured using the PAPI TOT CYC event type, which exhibit
a larger relative error. This result is expected because we do not
compensate for events occurring in the hypercall events at resump-
tion points when using i-mode counters. The hypercalls consume
cycles, but do not perform any floating point operations.

1:D0−T1

1:D0−T2

1:D0−T3

1:D0−T4

1:D1−T1

1:D1−T2

1:D1−T3

1:D1−T4

2:D0−T1

2:D0−T2

2:D0−T3

2:D0−T4

2:D1−T1

2:D1−T2

2:D1−T3

2:D1−T4

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

Figure 8. Relative error for i-mode counters (PAPI FP INS) for
PAPI overflow test

5.2 SPEC CPU2006 benchmarks

We used the SPEC CPU2006 benchmarks as macrobenchmarks to
show the correctness of our implementation and provide error esti-

1:D0−T1

1:D0−T2

1:D0−T3

1:D0−T4

1:D1−T1

1:D1−T2

1:D1−T3

1:D1−T4

2:D0−T1

2:D0−T2

2:D0−T3

2:D0−T4

2:D1−T1

2:D1−T2

2:D1−T3

2:D1−T4

0.016 0.017 0.018 0.019 0.020

Figure 9. Relative error for i-mode counters (PAPI TOT CYC) for
PAPI overflow test

mates for CPU and memory bounded workloads. Native mode exe-
cution is again used as reference point. Since Dom0 is a paravirtual-
ized domain in Xen, we used the Dom1 and Dom2 domains for tests
that include fully-virtualized domains. (To exclude any possible ef-
fect of Dom0, we pinned it to a dedicated core.) We considered
5 scenarios: (1) Native mode execution. (2) Fully-virtualized do-
mains Dom1 and Dom2, each running on a dedicated core (DC). (3)
Fully-virtualized domains Dom1 and Dom2 running on the same
core (SC). (4) Paravirtualized domains Dom0 and Dom1, each run-
ning on a dedicated core (DC). (5) Paravirtualized domains Dom0
and Dom1 running on the same core (SC).

The official SPEC distribution contains a large set of different
benchmarks. We ran all of them using the ’train’ problem size and
recorded the total number of events counted during their execution.
Since some benchmarks were executed under different data sets,
we calculated the cumulative event counter values for all data sets.
We present results for a subset of benchmarks only, choosing those
for which both a non-negligible number of events was counted and
for which the difference between the scenarios was largest; these
represent the relative weakest performance of our framework.

In Figure 10, the results for the cycle counts reported by the
virtualized TSC are shown. If the benchmarks execution were un-
affected by virtualization, and if our framework achieved the same
accuracy as perfctr running natively, we would expect to obtain the
same results for all test scenarios for a given benchmark. This is
true for most benchmarks, although 3 benchmarks (mcf, astar, and
lbm) show significant deviations for the fully virtualized configura-
tion. When counting the number of instructions retired (Figure 11),
we did not observe any significant differences.

Figures 12 and 13 display the number of L2 cache references
and misses, respectively. Since these events are more strongly influ-
enced by environmental factors inherent to the virtualized environ-
ment, they show slightly larger deviations, particularly for the num-
ber of cache misses. For example, libquantum shows a significant
drop in the number of cache misses observed, although the num-
ber of cache references is roughly the same. These effect warrant
further investigation to ascertain if they indeed reflect environmen-

22

libquantum perlbench lbm milc bzip2 mcf astar

5
e
+

0
9

1
e
+

1
0

2
e
+

1
0

5
e
+

1
0

1
e
+

1
1

2
e
+

1
1

1:Native

2:D1

2:D2

3:D1

3:D2

4:D0

4:D1

5:D0

5:D1

Figure 10. SPEC CPU2006, Time Stamp Counter (TSC)

libquantum perlbench lbm milc bzip2 mcf astar

1
e
+

1
0

2
e
+

1
0

5
e
+

1
0

1
e
+

1
1

2
e
+

1
1

1:Native

2:D1

2:D2

3:D1

3:D2

4:D0

4:D1

5:D0

5:D1

Figure 11. SPEC CPU2006, Instructions Retired

tal circumstances or are caused by inadvertent interactions with the
measurement framework.

5.3 HPCToolkit Profiling

HPCToolkit’s sampling mechanism is based on PAPI, which ex-
ploits the i-mode counter capabilities of our framework. As a pro-
filer, HPCToolkit maps sample counts to individual functions. We
tested HPCToolkit on the SPEC CPU2006 benchmarks. As an ex-
ample, we selected the 429.mcf benchmark, which performs com-
binatorial analysis. We considered PAPI TOT CYC (number of cy-

libquantum perlbench lbm milc bzip2 mcf astar

5
e
+

0
7

1
e
+

0
8

2
e
+

0
8

5
e
+

0
8

1
e
+

0
9

2
e
+

0
9

1:Native

2:D1

2:D2

3:D1

3:D2

4:D0

4:D1

5:D0

5:D1

Figure 12. SPEC CPU2006, L2 Cache References

libquantum perlbench lbm milc bzip2 mcf astar

1
e
+

0
3

1
e
+

0
5

1
e
+

0
7

1:Native

2:D1

2:D2

3:D1

3:D2

4:D0

4:D1

5:D0

5:D1

Figure 13. SPEC CPU2006, L2 Cache Misses

cles), PAPI L2 TCM (L2 cache misses), and PAPI BR INS (num-
ber of branch instructions) events. We considered sampling periods
of 40000, 1000, and 500 events, the overall event counts ranged
from 10s to 100s of millions of events. Similar to our previous
setup, we run 2 concurrent instances of HPCToolkit in two sepa-
rate domains using the following scenarios that correspond to la-
bels in Tables 3, 4, and 5. (1) Domains Dom0 and Dom1 run on the
same PCPU. (2) Domains Dom0 and Dom1 run on different PC-
PUs. We present results for all top-level functions that accounted
for at least 1% of the total number of samples, sorted by decreasing

23

Function 1:D0 1:D1 2:D0 2:D1
main 0.98 0.99 0.95 0.98
global opt 0.98 1 0.95 0.98
price out impl 0.98 1.01 0.95 0.99
primal net simplex 0.98 0.98 0.94 0.96
primal bea mpp 0.99 0.99 0.97 0.98
replace weaker arc 0.9 0.97 0.88 0.94
refresh potential 0.96 0.98 0.88 0.9
update tree 0.96 0.97 0.9 0.93
primal iminus 1.56 1.56 1.36 1.51
insert new arc 1.2 1.13 1.02 1.13
flow cost 0.94 0.93 0.94 0.94
dual feasible 0.95 0.95 0.95 0.93
suspend impl 0.91 0.9 0.9 0.89

Table 3. HPCToolkit profiling results for 429.mcf, sample count
ratio virtualized/native (PAPI TOT CYC)

Function 1:D0 1:D1 2:D0 2:D1
main 1.01 1.01 0.99 1.01
global opt 1.01 1.01 0.99 1.01
price out impl 1 1.01 0.98 1.01
primal net simplex 1.03 1.02 1.01 1.01
primal bea mpp 1.04 1.04 1.07 1.05
replace weaker arc 0.97 0.97 1 0.96
refresh potential 1.04 1.01 0.9 1.01
update tree 0.83 0.72 0.53 0.61
primal iminus 4.5 4.75 3.5 4.83
insert new arc 0.27 0.46 0.3 0.22
flow cost 0.97 1.03 0.91 0.94
dual feasible 0.95 0.95 1.05 1
suspend impl 1 0.94 1 1.06

Table 4. HPCToolkit profiling results for 429.mcf, sample count
ratio virtualized/native (PAPI L2 TCM)

Function 1:D0 1:D1 2:D0 2:D1
main 1.01 1.01 0.98 1.01
global opt 1.01 1.02 0.98 1.02
price out impl 1.02 1.04 0.99 1.03
primal net simplex 1 1 0.97 1
primal bea mpp 1 0.98 0.97 1
replace weaker arc 0.99 1.05 1.04 1.09
refresh potential 1.02 1.28 1.03 1.04
update tree 0.86 0.75 0.84 0.86
primal iminus 1.53 1.47 1.23 1.27
insert new arc 0.99 0.87 0.95 0.96
flow cost 0.97 0.97 0.97 0.97
dual feasible 1.03 1 1 1
suspend impl 1.07 1 1 1.07

Table 5. HPCToolkit profiling results for 429.mcf, sample count
ratio virtualized/native (PAPI BR INS)

number of samples. The tables show the ratio of the sample counts
reported under virtualized vs. native execution. For most functions,
similar counts were reported, although one (primal iminus) shows
significant differences which will warrant further investigation. We
note that the same set of functions was identified in both execution
modes, making the use of HPCToolkit in a virtualized environment
a viable tool for identifying bottleneck functions that account for
the largest proportion of events.

6. Related Work

There has been a number of previous efforts to add support
for hardware event counters to virtualized environments. Xeno-
Prof [21], which is integrated in Xen, allows the use of event coun-
ters for system-wide monitoring and profiling. It is an extension of
the OProfile Linux system-wide profiler. Each monitored domain
runs an instance of OProfile with a Xen-specific driver, which com-
municates with XenoProf in the hypervisor. XenoProf collects PC
samples and puts them into shared buffer. Then it notifies the cor-
responding domain via virtual interrupt, so that it can map the PC
sample to a specific executable symbol. XenoProf does not support
performance counter virtualization (i.e., the simultaneous monitor-
ing of multiple domains), works only in paravirtualized mode, is
specific to OProfile and cannot be easily adapted to work with other
higher-level toolkits such as HPCToolkit.

Work concurrent with ours [15, 16] implemented performance
counter virtualization for the hardware-assisted KVM virtual ma-
chine monitor that is included in recent versions of the Linux ker-
nel. Like Xen’s VPMU driver discussed in Section 4.2.5, their im-
plementation uses a save-and-restore mechanism for PMU regis-
ters. During inter-domain context switches, the hypervisor saves
and restores the PMU registers of a domain. The delivery of over-
flow interrupts to a domain relies on hardware support provided by
architectural virtualization extensions. Such full virtualization ap-
proaches have the advantage that they do not require any accommo-
dations to the guest kernel or user libraries, and thus allow the use
of virtually any framework in the target domain, but they forgo the
potential optimizations arising from guest kernel adaptation, such
as the offsetting technique for a-mode counters discussed in Sec-
tion 4.2.1. In addition, each instruction that changes a configura-
tion register requires a separate trap to emulate its effect, whereas
the use of hypercalls allows the batching of such changes by com-
bining them into a single call. Finally, although hardware virtual-
ization extensions are becoming increasingly common, some major
IaaS cloud providers (e.g., Amazon EC2) still widely uses paravir-
tualized setups.

The VTSS++ system presented in [9] uses a system-wide global
sampling mechanism that records time-stamped event counter val-
ues. The global TSC register is used to obtain these time stamps.
In addition, the system records the time stamps of all intra- and
inter-domain context switches. An off-line post-processing system
then reconstructs the events produced by individual threads and do-
mains. This method has the advantage that no guest kernel or user-
level provisions are required, but its reliance on post-processing
may make it unsuitable for some applications.

The vmkperf utility [4] used by VMWare ESX allows the count-
ing of events occurring within given time intervals, similar to a-
mode counters. vmkperf does not support the functionality of i-
mode counters and therefore cannot easily be used to support high-
level profiling toolkits.

The perf events (previously known as perf counter) frame-
work [2] provides performance monitoring capabilities similar to
those of perfctr. This framework has been integrated in recent ver-
sions of the Linux kernel. Like perfctr, it supports per-thread coun-
ters and direct user mode access. Higher-level frameworks such as
PAPI include support for perf events, although the recently added
direct access feature [3] is not currently supported in PAPI. The
techniques we presented in this paper are applicable to perf events
as well; a virtualization of perf events is possible future work. The
tight integration of perf events with the Linux kernel may require
a substantial amount of refactoring in order to create a hypervisor
driver. This coupling may make it more difficult to exploit a sin-
gle code base for the guest and hypervisor driver as done in our
perfctr-xen implementation (see Section 4.2.4).

24

The perfmon framework [17] for Linux provides both low-level
and high-level features. The framework supports per-thread moni-
toring and sampling, although it exclusively relies on system calls
to access counter data. The Intel VTune performance analyzer [5]
and AMD’s Code Analyst [1, 14] are proprietary frameworks for
precise, low-overhead event sampling. They consist of a kernel
driver and high-level infrastructure that provides result analysis ca-
pabilities. Event counts can be viewed on per-thread or per-module
basis. Our techniques could be applied to a possible virtualization
of perfmon, VTune, and CodeAnalyst.

7. Conclusion

This paper presented perfctr-xen, a novel performance counter
framework for the Xen hypervisor which we have developed.
perfctr-xen extends the existing perfctr framework so it can be used
in virtual machine environments running under the Xen hypervisor.
perfctr-xen supports both paravirtualized guest and guests using
hardware-based virtualization. It provides a hybrid mode in which
paravirtualization techniques are applied to hardware-assisted guest
virtual machine.

The technical contributions of this paper are the following: (1)
application of an offsetting technique that allows direct access to
logical per-thread counter values from user mode while avoiding
the costs associated with saving and restoring physical PMU data
registers; (2) the optimization of guest and hypervisor communi-
cation to minimize and amortize the costs associated with their
coordination, while avoiding the costs of trapping and emulating
counter-related instructions; (3) a technique for increasing the accu-
racy of performance monitoring by correcting for monitoring over-
head.

Perfctr-xen enables the use of higher-level profiling frameworks
such as PAPI or HPCToolkit in those environments, without requir-
ing changes to them. As such, it addresses an urgent need in emerg-
ing IaaS cloud environments.

Acknowledgments

We thank the anonymous reviewers for their suggestions. This
material is based upon work supported by the National Science
Foundation (NSF) under Grant CSR–AES #0720673.

We released the code of our framework to the general public
under an open source license. The latest version can be obtained at
http://people.cs.vt.edu/~rnikola/.

References

[1] AMD CodeAnalyst. http://developer.amd.com/cpu/
codeanalyst/, 2011.

[2] Performance counters for Linux. http://lwn.net/Articles/
310176/, 2008.

[3] Perf counter direct access support. http://lwn.net/Articles/
323891/, 2009.

[4] Vmkperf utility for VMWare ESX 4.0, 2011.

[5] VTune amplifier profiler. http://software.intel.com/en-us/
articles/intel-vtune-amplifier-xe/, 2011.

[6] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. HPCToolkit: Tools for performance anal-
ysis of optimized parallel programs. Concurrency and Computation:

Practice and Experience, 22(6):685–701, 2010.

[7] G. Back and D. S. Nikolopoulos. Application-specific system cus-
tomization on many-core platforms: The VT-ASOS framework. In
STMCS: Second Workshop on Software Tools for Multi-Core Systems

(STMCS), San Jose, CA, Mar. 2007.

[8] P. Barham, B. Dragovic, K. Fraser, and et al. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the nineteenth ACM

Symposium on Operating Systems Principles, pages 164–177, New
York, NY, USA, 2003. ISBN 1-58113-757-5.

[9] S. Bratanov, R. Belenov, and N. Manovich. Virtual machines: a whole
new world for performance analysis. SIGOPS Oper. Syst. Rev., 43:
46–55, April 2009.

[10] S. Browne, C. Deane, G. Ho, and P. Mucci. PAPI: A portable interface
to hardware performance counters. In Proceedings of Department of

Defense HPCMP Users Group Conference, June 1999.

[11] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco: running
commodity operating systems on scalable multiprocessors. ACM

Trans. Comput. Syst., 15(4):412–447, 1997. ISSN 0734-2071. doi:
10.1145/265924.265930.

[12] W. Cohen. Multiple architecture characterization of the build process
with OProfile, Red Hat. http://people.redhat.com/wcohen/
wwc2003/, 2003.

[13] R. Creasy. The origin of the VM/370 time-sharing system. Softw.

World (UK), 13(1):4 – 10, 1982. ISSN 0038-0652.

[14] P. Drongowski, L. Yu, F. Swehosky, S. Suthikulpanit, and R. Richter.
Incorporating instruction-based sampling into AMD CodeAnalyst. In
IEEE International Symposium on Performance Analysis of Systems

Software (ISPASS), pages 119 –120, Mar. 2010. doi: 10.1109/ISPASS.
2010.5452049.

[15] J. Du, N. Sehrawat, and W. Zwaenepoel. Performance profiling in a
virtualized environment. In Proceedings of the 2nd USENIX confer-

ence on Hot topics in cloud computing, HotCloud’10, Berkeley, CA,
USA, 2010. USENIX Association.

[16] J. Du, N. Sehrawat, and W. Zwaenepoel. Performance profiling of
virtual machines. In Proceedings of the 7th ACM SIGPLAN/SIGOPS

international conference on Virtual Execution Environments, VEE
’11, Newport Beach, CA, USA, 2011.

[17] S. Eranian. Perfmon2: A flexible performance monitoring interface for
linux. In Ottawa Linux Symposium, pages 269–288, Ottawa, Canada,
2006.

[18] I. Habib. Virtualization with KVM. Linux Journal, 2008(166):8, 2008.
ISSN 1075-3583.

[19] S. T. King, G. W. Dunlap, and P. M. Chen. Operating system sup-
port for virtual machines. In ATEC ’03: Proceedings of the annual

conference on USENIX Annual Technical Conference, pages 71–84,
Berkeley, CA, USA, 2003. USENIX Association.

[20] A. Kivity. KVM: the Linux virtual machine monitor. In OLS ’07: The

2007 Ottawa Linux Symposium, pages 225–230, July 2007.

[21] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and
W. Zwaenepoel. Diagnosing performance overheads in the Xen vir-
tual machine environment. In VEE ’05: Proceedings of the 1st

ACM/USENIX International Conference on Virtual Execution Envi-

ronments, pages 13–23, New York, NY, USA, 2005. ISBN 1-59593-
047-7. doi: 10.1145/1064979.1064984.

[22] M. Pettersson. Perfctr library. http://user.it.uu.se/~mikpe/
linux/perfctr/, 2011.

[23] J. S. Robin and C. E. Irvine. Analysis of the intel pentium’s ability
to support a secure virtual machine monitor. In 9th USENIX Security

Symposium, pages 129–144, 2000.

[24] M. Rosenblum. The reincarnation of virtual machines. Queue, 2(5):
34–40, 2004.

[25] C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich, J. Chow,
M. S. Lam, and M. Rosenblum. Virtual appliances for deploying and
maintaining software. In LISA ’03: Proceedings of the 17th USENIX

conference on System administration, pages 181–194, Berkeley, CA,
USA, 2003. USENIX Association.

[26] S. Shende and A. D. Malony. TAU: The TAU parallel performance
system. International Journal of High Performance Computing Appli-

cations, 20(2):287–311, 2006.

[27] D. Zaparanuks, M. Jovic, and M. Hauswirth. Accuracy of performance
counter measurements. In IEEE International Symposium on Perfor-

mance Analysis of Systems and Software (ISPASS 2009)., pages 23–32,
Apr. 2009.

25

