
Starling: Minimizing Communication Overhead in
Virtualized Computing Platforms Using
Decentralized Affinity-Aware Migration

Jason Sonnek, James Greensky, Robert Reutiman and Abhishek Chandra
Department of Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455

{sonnek, greensky, reutiman, chandra}@cs.umn.edu

Abstract—Virtualization is being widely used in large-scale
computing environments, such as clouds, data centers, and
grids, to provide application portability and facilitate resource
multiplexing while retaining application isolation. In many ex-
isting virtualized platforms, it has been found that the network
bandwidth often becomes the bottleneck resource, causing both
high network contention and reduced performance for com-
munication and data-intensive applications. In this paper, we
present a decentralized affinity-aware migration technique that
incorporates heterogeneity and dynamism in network topology
and job communication patterns to allocate virtual machines on
the available physical resources. Our technique monitors network
affinity between pairs of VMs and uses a distributed bartering
algorithm, coupled with migration, to dynamically adjust VM
placement such that communication overhead is minimized. Our
experimental results running the Intel MPI benchmark and a
scientific application on a 7-node Xen cluster show that we can
get up to 42% improvement in the runtime of the application over
a no-migration technique, while achieving up to 85% reduction
in network communication cost. In addition, our technique is
able to adjust to dynamic variations in communication patterns
and provides both good performance and low network contention
with minimal overhead.

I. INTRODUCTION

The emergence of cloud computing (e.g., Amazon EC2 [1])
has led to a growing interest in deploying a wide variety of
applications [2], [3], [4] on shared computing environments. In
particular, because of the relative abundance of resources and
low cost of resource outsourcing, clouds are highly attractive
for compute-intensive applications [5], [6]. The success of
clouds has been driven in part by the use of virtualization as
their underlying technology. Virtual machines (VMs) provide
flexibility and mobility through easy migration, which enables
dynamic mapping of VMs to available resources. Virtual
machines also provide performance isolation and security that
facilitates multiplexing and utilization of shared resources.
For these reasons, virtualization has also become popular
in other domains such as scientific and high-performance
computing [7], [8], [9], [10].

A virtualized computing platform provides an abstraction of
a “pool of resources” where different application components

(or jobs1) can be placed on any resource. This property
has been exploited for executing “embarrassingly” parallel
or largely independent bag-of-tasks applications [10], [5] in
virtual computing environments. However, several compute-
intensive applications in the scientific and data analytics do-
mains have intricate patterns of communication and data de-
pendencies, requiring exchanges of large amounts of data and
state for carrying out their computation. For such applications,
the communication patterns between different components are
a key factor that must be considered during resource allocation.
However, for most cloud environments, such information is
not readily available to the infrastructure provider, and the
volume of traffic exchanged between any two VMs is both
job-dependent and time-varying, so VMs are largely placed
on servers based solely on available capacity.

At the same time, in many existing virtualized platforms, it
has been found that the network bandwidth often becomes the
bottleneck resource. This is because the physical topology in
a large-scale computing platform typically has a hierarchical
structure [11]: a given pair of compute nodes may be located
on the same rack, may be part of the same cluster sharing a
common LAN, or may be on separate clusters communicating
through a slow link (e.g., a wide-area link for distributed
computing platforms). Because of the high speeds and large
number of CPU cores sitting on each rack, cluster, etc.,
their interconnect switches and links become bottlenecks [12],
reducing the capacity of the infrastructure to support more
applications. As a result, it is in the interest of the cloud
provider to reduce the network overhead as much as possible.
This implies that in addition to considering the physical
characteristics (CPU speed, memory and storage) of nodes on
which virtual machines are placed, the network topology must
also be considered in order to increase the efficiency of the
platform, and reduce network contention.

The goal of this work is to improve application performance
in the presence of data dependencies and communication
patterns, while reducing the network communication cost

1In the rest of this paper, we will use “job” to mean an independently
executable application component encapsulated within a VM.

2010 39th International Conference on Parallel Processing

0190-3918/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPP.2010.30

228

imposed on the underlying platform. Towards this end, we
present Starling2: a decentralized affinity-aware migration
technique that incorporates heterogeneity and dynamism in
network topology and job communication patterns to allocate
virtual machines on the available physical resources. Intu-
itively, by placing two co-communicating VMs as close to
one another as possible within the hierarchy, we can reduce
network transfer costs and improve performance. Thus, our
technique attempts to place two heavily data-dependent or
communicating VMs as close to each other as possible (same
node, rack, cluster or local network), in order to reduce
traffic over bottleneck network links, while improving the
overall performance of the applications. This paper makes the
following contributions:
∙ Affinity-based virtual machine placement and migration:
While several existing virtual machine placement and migra-
tion techniques [11], [13] employ resource usage and load
information, they do not consider affinities between VMs
in making these decisions. Our technique explicitly incor-
porates inferred job dependency information along with the
underlying network topology information to make placement
and migration decisions. In addition, while most existing
VM management algorithms focus only on load-balancing or
consolidation as their objective, our technique also enables
better application performance without adversely impacting
these system-level goals.
∙ Implicit inference of dynamic job dependencies: Our tech-
nique infers the communication/data dependencies between
different jobs of an application by monitoring the network traf-
fic between different pairs of VMs in a non-intrusive manner. It
does not require any workflow or data dependency information
to be provided explicitly by the application, and can also infer
changes in these dependencies during the execution of the ap-
plication. This technique could be especially valuable in cloud
computing or other outsourced computing environments, in
which obtaining application profiles is especially challenging
since the the application is typically a black box from the
perspective of the platform provider.
∙ Decentralized control: Another key feature of our technique
is that we have implemented it in a completely distributed
manner. We use a distributed bartering algorithm in which
physical servers independently negotiate affinity-based VM
relocations on the basis of local information. The decentralized
nature of our technique makes it easier to scale to large-scale
systems with thousands of nodes, and would be particularly
amenable to use in computing environments distributed across
a wide area (such as distributed Grids or clouds). At the
same time, such a decentralized approach enables the use of
localized and diverse policies for resource allocation, rather
than having a single, centralized system-wide policy.

We have implemented our affinity-based migration tech-
nique on a 7-node Xen cluster. Our experiments with the
Intel MPI benchmark suite [14] and a scientific simulation-

2Starlings are communicative birds that tend to flock together in large,
close-knit groups.

VM1 VM2 VM3

Monitoring &
Fingerprinting

Affinity
Inference

Bartering &
Migration

Physical Network

Virtual Network

Physical Machine

Fig. 1. System Architecture.

based application [15] show that we can get up to 42%
improvement in the runtime of the application over a no-
migration technique, while achieving up to 85% reduction in
network communication cost. In addition, our technique is able
to adjust to dynamic variations in communication patterns and
provides both good performance and low network contention
with minimal overhead.

II. SYSTEM MODEL AND ARCHITECTURE

We consider our system model to consist of a virtualized
computing platform, in which physical servers are connected
to each other in a hierarchical network topology. For in-
stance, the topology may consist of server clusters connected
through a bottleneck link, and servers within a cluster further
partitioned into racks, so that the inter-server bandwidth is
dependent on whether the servers are on the same rack, within
the same cluster or on different clusters. In general, any
hierarchical network topology can be considered.

For our application model, we consider an application con-
sisting of multiple computational jobs that may have various
data dependencies and communication patterns between them,
arising due to reasons we discuss in detail in the next section.
These data and communication dependencies in general can be
thought of as forming a communication graph. However, we
do not require such a communication graph to be explicitly
provided or known a priori. We assume that each computa-
tional job can be encapsulated within a virtual machine, and
the VMs can be placed and/or migrated to any physical server
in the system, though the cost of migration would depend on
the location of the VM in the network hierarchy.

Figure 1 shows the architecture of our proposed affinity-
aware migration algorithm. This algorithm is completely dis-
tributed and runs on each node in the system. It consists of
the following main components:

∙ Traffic Monitoring and Fingerprinting: Monitors the traf-
fic flowing into/out of each VM hosted on a node, and
keeps track of this traffic over time by fingerprinting the
traffic volume in a succinct way.

∙ Affinity Inference: Determines the affinities between each
VM running on a node and the other VMs that it commu-
nicates with. Note that the VM pairs being fingerprinted
could be physically located on the same node or across
nodes.

229

∙ Bartering and migration: Based on the affinity infer-
ence between different VM pairs, it negotiates a better
placement for its VMs (if needed) or responds to such
negotiation requests from other nodes. Through such
negotiations, it migrates VMs which exchange a large
volume of network traffic closer to each other.

III. TRAFFIC MONITORING AND AFFINITY INFERENCE

First, we want to infer the dependencies between different
jobs running within the VMs, and in particular the dependency
of a job on various physical servers it is interacting with. A
compute job may have high communication dependency on a
physical server for two main reasons:

∙ The job may require data which is generated by another
job located on the server. This kind of dependence
is common in many scientific applications, especially
those that require frequent coordination and data ex-
changes amongst the jobs (i.e., not embarrassingly paral-
lel). Examples include applications parallelized via data
partitioning but needing data exchanges, or multi-step
simulations that need jobs to synchronize and exchange
data/state at each step.

∙ The job may require data stored on the server for carrying
out its computation. This kind of dependence is common
in data-intensive applications, which perform computa-
tions on large quantities of data. The physical server in
this case may be a file server, but may also support exe-
cuting compute jobs. This paradigm is particularly com-
mon in data-intensive computational frameworks such as
MapReduce [16] or Hadoop [17], in which block storage
on each physical machine is abstracted into a global
distributed storage system, and the data in this global
store is utilized by computing jobs which are distributed
amongst the physical machines.

The primary goal of the monitor is to capture such depen-
dencies between pairs of jobs, as well as between jobs and
physical servers. Given this information, we can infer that a
set of jobs is co-communicating, or that a job is dependent on
data hosted on a certain physical machine, so that they can be
placed closer to each other.

The monitoring service observes all incoming and outbound
traffic on a physical server in real-time, capturing statistics
about traffic source, destination and volume. In our Xen-
based [18] implementation, traffic statistics are obtained by
dynamically filtering streams obtained from tcpdump running
in dom0. Traffic information is represented in the form of a
set of < 𝑠𝑜𝑢𝑟𝑐𝑒𝐼𝐷, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝐷, 𝑣𝑜𝑙𝑢𝑚𝑒 > tuples, where
the source ID and destination ID are the IP addresses of VMs,
and the volume is the amount of traffic exchanged between
them over a time window 𝑊 . Note that we also record traffic
sent directly between VM 𝑖 and a physical server 𝑗 to handle
the case where applications use data stored in a distributed
storage system [16], [17], but do not refer to it explicitly in
this discussion for ease of exposition, and rather assume all
communication is between pairs of VMs.

To capture dynamic changes in traffic volume between two
VMs over time, we maintain volume as an exponential average
over its past values:

𝑣𝑜𝑙𝑢𝑚𝑒[𝑡] = 𝛼 ⋅ 𝑣𝑜𝑙𝑢𝑚𝑒[𝑡− 1] + (1− 𝛼) ⋅ 𝑡𝑟𝑎𝑓 [𝑡],
where, 𝛼 is the averaging constant with a value between 0 and
1, 𝑣𝑜𝑙𝑢𝑚𝑒[𝑡] and 𝑣𝑜𝑙𝑢𝑚𝑒[𝑡−1] are the volumes computed for
windows at time 𝑡 and 𝑡 − 1 respectively, and 𝑡𝑟𝑎𝑓 [𝑡] is the
traffic measured at time 𝑡.

The communication fingerprint 𝐶𝐹𝑃𝑖 of a VM 𝑖 is then
defined as a vector of its traffic tuples to all other VMs:

𝐶𝐹𝑃𝑖[𝑗] = 𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑗∀𝑗 ∕= 𝑖,
where, 𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑗 is the traffic volume between VMs 𝑖 and 𝑗.
Intuitively, the communication fingerprint of a VM specifies
its communication patterns and traffic volumes to the other
VMs, and corresponds to the data dependencies and commu-
nication affinities of the job running inside the VM. Using
the communication fingerprint of a VM, we can infer a job’s
data dependencies, and identify instances in which the job
could benefit from relocation to another physical server. In
addition, these communication fingerprints can be aggregated
in a number of interesting ways to infer the overall network
traffic flow, as well as the topology of the network, details of
which can be found in a technical report [19].

IV. AFFINITY-AWARE BARTERING AND MIGRATION

In this section, we present our affinity-aware bartering and
migration algorithm, that combines the job dependency in-
formation with the network topology information to minimize
communication overhead. We begin by formulating this place-
ment problem as an optimization problem, and then present a
distributed bartering algorithm that dynamically migrates VMs
to move the system towards this optimal placement.

A. Optimal Affinity-Aware Placement

To achieve an optimal placement which minimizes the
network communication overhead between different VMs, our
goal can be specified as the following optimization problem:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑

𝑖,𝑗

𝐶𝐶𝑖,𝑗

𝑠.𝑡. ∣𝑉𝑀𝑚∣ ≤ 𝐶𝑚∀ physical servers 𝑚.

Here, 𝐶𝐶𝑖,𝑗 is the network communication cost (defined
below) between two VMs 𝑖 and 𝑗, and 𝐶𝑚 is the maximum
number of VMs that can be hosted on the server 𝑚. The value
of 𝐶𝑚 would depend on the total server capacity and VM
resource usage requirements (in terms of CPU, memory, disk,
etc.). Intuitively, the formulation above says that the VMs
should be placed on the physical servers in a manner that
minimizes the inter-VM communication cost, while meeting
the server capacity constraints.

The network communication cost 𝐶𝐶𝑖,𝑗 can be defined as
the time it takes for two VMs 𝑖 and 𝑗 to communicate and
exchange data with each other. This cost can be thought of as

230

Fig. 2. Distributed Bartering Algorithm: In this scenario, VM2 and VM3
have a high traffic volume, leading to (1) the bartering agent on A sending a
migration request to B, (2) acceptance of request because of available capacity,
and (3) migration of VM2 to B.

the component of an application’s total runtime, corresponding
to the network communication between jobs encapsulated
within VMs 𝑖 and 𝑗. The communication cost is a function
of the traffic volume 𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑗 between the two VMs and
the bandwidth 𝐵𝑊𝑖,𝑗 available between them, which depends
on the physical servers that the two VMs are running on.
The traffic volume can be computed using the communication
footprints described in Section III, while the bandwidth can
be determined from the network topology information3. We
compute the communication cost as:

𝐶𝐶𝑖,𝑗 =
𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑗
𝐵𝑊𝑖,𝑗

, (1)

so that two VMs placed close to each other (on the same
server, same rack, etc.) would have a smaller cost for the same
amount of traffic compared to two VMs located far away (on
different servers, different racks, etc.). Furthermore, besides
improving an application’s performance, minimizing the com-
munication cost will also reduce the network overhead of the
underlying infrastructure by moving traffic from bottleneck
links to high bandwidth links.

B. Distributed Bartering Algorithm

The optimization problem described above is an instance
of the graph partitioning problem, which is known to be NP-
complete [20]. As a result, heuristics are typically employed
to solve such problems. However, many existing heuristics
are centralized and assume prior information about the job
dependencies, which are also assumed to be static. To mini-
mize overhead and increase the scalability of our solution, we
propose a distributed bartering algorithm that allows VMs
to negotiate placement on a physical server that is closer
to the data they require. This algorithm avoids bottlenecks
and central points of failure associated with a centralized
solution, and can also adapt more quickly to dynamic local
changes in job dependency patterns and network topology.
In addition, such a decentralized approach enables the use of

3Network topology inference is beyond the scope of this work, and we
assume that the topology of the network is known.

different policies by different agents based on their location
as well as application-specific requirements of the VMs they
are managing.

Each physical server runs a bartering agent which analyzes
network traffic fingerprints and topology information, and
determines when a job could benefit from relocation. When
the total traffic between a given virtual machine and physical
server exceeds some threshold, the bartering agent negotiates
a relocation with a desired server and initiates a migration if
successful. Next, we describe how relocation negotiations are
carried out between different servers and how the migration
eventually takes place.

1) Negotiating a Migration: Figure 2 illustrates the barter-
ing algorithm, which works as follows. The bartering agent
on a physical server (e.g., server A in Figure 2) periodically
checks the communication footprint 𝐶𝐹𝑃𝑖 for each VM
hosted on that server to determine if the VM’s inter-server
traffic (traffic being sent to another physical machine, such
as server B in Figure 2) exceeds intra-server traffic (traffic
being sent to other VMs hosted on the same physical server).
If this is the case (e.g., assume VM2’s traffic to B is higher
than its intra-server traffic), and the total volume of traffic
exceeds migration thresholds (computed as discussed below),
the bartering agent (on A) will attempt to negotiate a new
home by sending a migration request to the physical server
(B) receiving the most traffic from the VM. In the following,
we will use Figure 2 to refer to the requesting server (A), the
target server (B) and the VM to be migrated (VM2).

Upon receipt of the migration request, the bartering agent
on B will take one of the following actions:

1) If B has capacity available to host VM2, it will send an
‘accept’ response to A. In this case, the bartering agent
on A will initiate live migration of VM2 to B.

2) If B does not have capacity available, it will return a list
of swap candidates: a subset of its hosted VMs suitable
for possible swapping with VM2. If the agent on A
finds a desirable swap candidate (say, VM4), then the
swap will be carried out with VM2 migrating to B and
the selected swap candidate (VM4) migrating to A. The
choice of swap candidates and the swapping mechanism
is discussed in more detail below.

3) If there are no suitable swap candidates, then B returns a
list of neighbors: nodes which are nearest to it in terms
of network bandwidth/latency. In this case, the bartering
agent on A will contact each of the neighbors in turn by
recursively initiating the relocation process. To limit the
number of attempts, each node is contacted at most once.
Also, the bartering agent will only migrate a VM to a
neighbor if the neighbor has significantly (e.g., factor of
10) higher bandwidth to the desired server (B) than the
original host (A). If none of the neighbors which meet
the migration criteria can host the VM, the server will
give up the migration attempt.

To avoid unnecessary migrations and oscillations due to
transient communication patterns, each bartering agent uses
an inertia factor > 1, so that a migration is attempted

231

only if the inter-server traffic exceeds the intra-server traffic
by inertia factor. To avoid deadlocks (where two machines
simultaneously send requests to each other and wait for each
other’s response), as well as to avoid redundant migrations
arising due to race conditions (e.g., VMs 2 and 3 being
migrated to each other’s servers simultaneously), a bartering
agent only allows a single ongoing relocation transaction at
any point of time at its server. The requesting agent selects
a random wait-time based on an exponential backoff before
retrying a request that has been denied due to an ongoing
transaction. The agents also maintain timers to timeout long-
standing requests that have not received a response.

2) VM Swapping: As described above for Case 2 in the
bartering algorithm, in some cases, a VM migration may be
desirable even if the destination machine is full. For instance,
considering the setup shown in Figure 2, assume that each
server can fit only 2 VMs each. In this case, to enable
migration of VM2 to machine B, the bartering algorithm
allows VM swapping, where the bartering agents on the two
machines swap VMs to honor the resource limitations at each
server. This swapping is done only if the swap will result in a
better placement of the VMs in terms of their communication
affinities.

There are two decisions involved in the swapping process:

∙ Selecting swap candidates: When a bartering agent on a
full server receives a migration request (e.g., machine B
from A for VM2), it needs to select a set of local VMs
for possible swapping if they exist. There are two kinds
of VMs that are possible swap candidates in this case:

Type1 : A VM that will benefit by moving to A from B.
This could be a VM whose traffic to machine A is
higher than its intra-machine traffic and may have
tried migrating to A unsuccessfully in the past. A
could also be in the neighbor list of such a VM’s
desired server, so that it may benefit from moving
to A anyway.

Type2 : An isolated VM, i.e., one which does not com-
municate with any other VMs (whose inter-VM
communication to any VM in the system is below an
isolation threshold). Intuitively, such a VM would
not be affected irrespective of where it is placed.

Each agent maintains a list of such swap candidates
running on its machine, and sends the appropriate ones
depending on the requesting server.

∙ Making a swap decision: Once the requesting server
receives the list of swap candidates, it needs to select
one of them. If there are multiple swap candidates,
then the requesting server will give higher preference to
type 1 candidates, picking the one with the maximum
differential in inter-vs.-intra-machine traffic. In this case,
it will also ensure that the preferred swap candidate in
fact will end up with higher intra-machine traffic after the
swap. This check is needed to ensure an overall benefit
from the swap. For instance, in the example above, VM2
may be communicating a lot with both VM3 and VM4.

In that case, swapping VM2 and VM4 would not make
any difference in the overall traffic while incurring the
unnecessary overhead of migration. A type 2 candidate
is selected only if no type 1 candidate exists. In addition,
since migration is not free, we also use a swap inertia
parameter to weigh the cost of swapping, so that we avoid
swapping when it results in only minor benefit.

The swap is done by triggering each migration in suc-
cession, so that temporarily one of the machines will be
overloaded, however, this enables synchronized swaps with
each VM in a consistent state between any migrations. In some
cases, the use of temporary servers may be needed to avoid
overloading the servers participating in the swap [13], but we
do not consider this scenario in our implementation.

3) Computing Migration Thresholds: As mentioned above,
to ensure that the application will benefit from a VM mi-
gration, we must ensure that the performance benefit due to
the relocation outweighs the cost of migration. This can be
accomplished by computing the migration cost (in time) for
a VM from one server to another, and comparing it to the
communication cost savings that would be achieved due to
the relocation in terms of reduced application runtime.

A VM’s migration cost is typically dependent on its memory
size as well as the bandwidth of the link over which migration
has to take place. Thus, for a given VM and target physical
server, we can compute a migration cost estimate proportional
to the VM’s memory size and inversely proportional to the
bandwidth of the link connecting the host physical server to
the destination server. Using this estimate, we can determine
the migration threshold: the traffic volume a VM must be
exchanging with the destination server within each measure-
ment window in order to benefit from relocation to that
server. Intuitively, this migration threshold will be higher for
bigger VMs and over slow, bottleneck links, preventing costly
migrations until they provide a large enough benefit. Note that
the actual downtime of a VM could be reduced further by
techniques such as pre-copying of inactive memory pages [21].
At the same time, migration over WAN without shared storage
may require copying of local storage as well [22], resulting in
much higher migration cost and thus much larger migration
thresholds (proportional to storage size).

V. EVALUATION

A. Experimental Setup

We conducted our experiments on a 7-node cluster, where
each node is a 2xdual-core 2800 MHz AMD Opteron Pro-
cessor 2220 with 4 GB RAM and 250 GB disk space, and
the nodes are connected via Gigabit Ethernet. Each node
runs Xen 3.2.1, with the Dom0 and the DomU’s running
Debian Etch Linux kernel 2.6.18-6-xen-amd64 for one set of
experiments (Intel MPI benchmarks) and running Ubuntu 8.04
Linux kernel 2.6.24-24-xen for the second set of experiments
(Cube Application), due to library dependencies. Due to space
constraints, we present a subset of results, and more detailed
results can be found in a technical report [19].

232

1) Benchmarks and Application: We have used the follow-
ing benchmarks/applications for our evaluation:

∙ The Intel MPI benchmark suite [14] consists of multiple
MPI-based benchmark programs that can test different
communication patterns. Examples of such benchmarks
include Ping-pong which sets up pairwise communica-
tion between sets of processes, Exchange which sets
up a chain of processes doing two-way communication,
Scatter-gather which carries out scattering and gathering
of data among a set of randomly placed processes, All-
to-all in which each process sends and receives data from
all other processes, and Broadcast where a root process
broadcasts data to all other processes.

∙ Cube MHD Jet (Cube) [15] is an astrophysics application
that performs numerical magnetohydrodynamic (MHD)
simulations: it simulates a jet of plasma travelling through
a magnetic field in three-dimensional space. It consists
of multiple computational processes communicating in-
termediate state with each other. The application can
be configured to communicate in arbitrary grid patterns
depending on how many nodes are available.

In our experiments, we place the processes for each bench-
mark/application within VMs which are assigned to physical
machines. The goal is to have the VMs be placed in a
communication-optimal manner.

2) Network Topology Setup: We create a logical network
hierarchy on top of 6 nodes in our cluster. Our hierarchy con-
sists of two logical clusters each consisting of 3 machines. We
used the Linux token bucket packet scheduler to rate control
the traffic going between different sets of machines. Another
node in our physical cluster is set up as an NFS server to export
the file system for the cluster, which is needed for migration
purposes. Since the benchmarks and applications used in our
experiments are designed to be run on clusters with ∼1000
nodes connected over 1-10Gbps links, while we used only
24 cores, we had to throttle the intra-cluster and inter-cluster
network bandwidth to 25 and 5 Mbps respectively in order
to show meaningful network contention. At the same time, to
achieve realistic migration times expected in real platforms,
the inter-machine bandwidth throttling for migration purposes
was set to 500Mbps intra-cluster and 100Mbps inter-cluster
respectively.

3) Comparison Algorithms: In our experiments, we com-
pared the following placement/migration algorithms:

∙ No migration: The VMs are run as initially assigned.
∙ Affinity-based migration: Here, a VM is migrated closer

to other VMs with which it has higher affinity using the
distributed bartering algorithm described in Section IV-B.

∙ Best/Optimal placement: Here, the VMs are pre-placed
in an optimal configuration in terms of minimizing the
network overhead, based on their communication pattern,
and no migration takes place during the execution. The
Intel MPI benchmarks select the communication pattern
at runtime when they are started, and hence, it was
not possible to determine the communication pattern

Fig. 3. Runtimes for MPI benchmarks - static configuration

beforehand. For these benchmarks, we ran trials with
multiple “near-optimal” (closely-placed) configurations
and selected the best among all runs.

4) Metrics: We use the following metrics to compare the
performance of the different placement/migration algorithms:

∙ Application runtime: This metric provides a measure of
the application performance.

∙ Total network communication cost: This metric is defined
as the sum of the cumulative network communication cost
between all VM pairs in the system, using the definition
of communication cost (𝐶𝐶𝑖,𝑗 for VMs 𝑖 and 𝑗) from
Equation 1 (Section IV). We assume 𝐵𝑊𝑖,𝑗 for two VMs
running on the same server to be ∞ as there is no network
traffic in this case (VMs communicate through memory).

All results are based on averages taken over multiple trials
and all graphs show 95% confidence intervals. For our affinity-
based migration algorithm, we used the following monitoring
and migration parameters: a monitoring window 𝑊 of 20
seconds, an exponential averaging constant 𝛼= 0.125 for
computing the traffic volume, an inertia factor of 1.2 and
a swap inertia factor of 1 for the migration and swapping
decisions, respectively.

B. Benefit for Static Configurations

In our first set of experiments, we show the benefit of using
affinity-based migration when the communication pattern of
the applications remains fixed.

1) Intel MPI Benchmarks: We first ran different bench-
marks from the MPI benchmark suite to see the impact on the
application runtime. For each benchmark, we used 6 processes
each running within one VM, and each physical server was
assigned one VM chosen at random. The benchmarks were
run under several different configurations matching the above
initial placement methodology, with and without affinity-based
migration. For migration purposes, each server was limited
to 3 VMs as its limit. We also compared these results to
“best” configurations, where 2 servers in the same cluster
were manually assigned 3 VMs each to minimize the network
communication cost.

Figure 3 shows the average runtime results for these ex-
periments. As seen in the figure, the benchmarks show about

233

Fig. 4. Normalized communication cost for MPI benchmarks - static
configuration

Fig. 5. Normalized Runtimes for Cube application

6.7-33.9% average reduction in runtime, compared to No Mi-
gration, when using our algorithm. However, the gains in the
Alltoall benchmark are not statistically significant. This may
be attributed to the unusual communication pattern created
by this benchmark, in which all processes (VMs) exchange
data with all other processes, resulting in many migrations
before Starling reaches a steady-state. In a real platform,
we’d expect smaller cliques of co-communicating VMs; if
Alltoall is excluded, the average reduction is 28.9-33.9%. We
also see that the Best runtimes are on an average 32-43%
of Migration runtimes. There are two main reasons for this
gap. First of all, the Migration runtimes include the migration
time which is shown as the shaded bar within the migration
bars in the graph. This migration time forms 14-23% of the
total runtime. Secondly, since our affinity-based algorithm
is completely distributed and uses only local information, it
sometimes settles into a non-optimal configuration, explaining
the gap in its performance from Best.

Next, we look at the network communication cost of the
different algorithms to understand how much network over-
head savings they provide. Figure 4 shows the communication
cost for these algorithms normalized with respect to that
of No Migration. As shown in the figure, we see that the
normalized communication cost of the affinity-based migration
algorithm is 0.18-0.32 compared to 0.11-0.15 for Best on
average. This shows that our migration algorithm is able to
substantially reduce the network communication cost. Again,
the confidence interval for Alltoall benchmark was very large,
indicating a lot of variation because of the extreme nature of
its communication pattern.

Fig. 6. Normalized communication cost for Cube application

Fig. 7. Runtimes for MPI benchmarks - dynamic configuration

2) Cube MHD Jet Application: In the next set of exper-
iments, we ran the Cube application with 12 VMs, and a
limit of 4 VMs per machine. The application was set up to
communicate in a 4x3 grid pattern, and was run for 5000
steps of the simulation. For the initial configuration, 2 VMs
were placed at random on each of the 6 physical machines,
and the application was run with migration enabled and also
with migration disabled. Here, based on the application’s
communication pattern, the optimal configuration had 4 VMs
per physical machine on 3 machines within the same cluster.

Figures 5 and 6 show the runtime and communication cost
results for the application normalized by those of the No
Migration algorithm. We see an average improvement of 13%
in runtime and a normalized communication cost of 0.35 w.r.t.
No Migration. This is in comparison to a 77% improvement
in runtime and a 0.11 normalized communication cost for
Optimal.

C. Benefit for Dynamic Configurations

We now show the benefit of using affinity-based migration
when the communication pattern of the applications changes
over time. In this set of experiments, we chained multiple Intel
MPI benchmarks to execute in succession to emulate changing
communication patterns. In this case, each of the benchmarks
was started in the same configurations as before, however,
the communication pattern between the VMs changed on
switching from one benchmark to the next. This was done to

234

Fig. 8. Normalized communication cost for MPI benchmarks - dynamic
configuration

Fig. 9. Runtimes for multiple concurrent benchmarks

demonstrate how each of the algorithms responds to changes in
application behavior. In this case, for No Migration, each VM
remains in its initial location, while for the Migration case,
the VMs are migrated based on the communication patterns
observed in the system (thus re-migrating some of the VMs
after the switch to a different benchmark). For the Best case,
the VMs were started on a favorable placement based on the
first benchmark, and were kept at those locations throughout
the execution. However, we ran multiple such configurations,
and picked the best overall execution.

Figures 7 and 8 show the runtimes and the communication
cost respectively for these dynamic configurations. As seen
in the figures, affinity-based migration improves performance
while reducing the network cost (an average of 25-42% for
runtime and normalized communication cost of 0.15-0.51).
The Best case runtime is 39-46% of the migration runtime and
it has a normalized communication cost of 0.13-0.17. These
results show the benefit of dynamic inference of affinity in the
face of changing communication patterns.

D. Multiple Concurrent Benchmarks

In the next set of experiments, we examine the behavior
of the migration algorithm in the presence of multiple con-
currently running applications, when the platform is already
completely provisioned. The goal here is to show that even if
the system is completely full (in terms of its CPU and memory
resources), there can still be benefit in terms of reducing

Fig. 10. Normalized communication cost for multiple concurrent benchmarks

Fig. 11. Monitoring overhead

network contention and improving application performance
even further. These experiments also show the benefit of VM
swapping explicitly as migrations could not take place here
without swapping being enabled. Here, each physical machine
was set to a cap of 2 VMs. 1 VM running the Cube benchmark
and 1 VM running the Bcast benchmark was randomly placed
on each physical machine. The algorithm was able to swap
the VMs so that each physical machine ended up with two
VMs running the same benchmark. Figures 9 and 10 show
the normalized runtime and communication cost respectively
for this scenario with similar results as before.

E. Migration and Monitoring Overhead

The migration time overhead has been shown in the earlier
results - it ranges from 8-23% in most cases. In terms of the
network overhead of migration, it depends on the RAM size
of the VMs. For our experiments, we set the RAM size to be
632 MB per VM, and we saw an average migration overhead
of 620,906 packets for Etch VM images, and 616,519 packets
for Hardy VM Images.

Figure 11 shows the monitoring overhead by comparing
the runtime of the Broadcast benchmark with and without
monitoring enabled (here we do not carry out any migrations).
As seen in the figure, there is no statistically significant
difference in the two runtimes, thus showing minimal impact
of monitoring on the application performance.

235

VI. RELATED WORK

Affinity-aware job placement: The VM placement problem
presented in this paper is an instance of the graph partitioning
problem which is known to be NP-complete [20], and several
heuristics (e.g., [23], [24]) have been developed to solve the
general graph partitioning problem. There has also been lot of
work in partitioning jobs among processors for the purpose of
minimizing communication overhead [25], [26], [27]. These
approaches have been largely centralized and assume that the
job dependencies are static and are known a priori. Our goal,
on the other hand, is to perform dynamic job allocation in
a completely distributed manner through VM migration and
placement.

There has been recent work on topology-aware application
mapping and load balancing for scientific applications [28],
[29]. However, our work differs in some key aspects because it
is geared towards virtualized clusters and cloud environments,
as opposed to supercomputing systems targeted in this work.
Thus, while this work assumes knowledge about application
structure for its mapping, we rely on non-intrusive monitoring-
based inference of this information. Secondly, we use a
decentralized approach targeted towards a heterogeneous and
hierarchical network topology, as compared to a centralized
algorithm suitable for a homogeneous and tightly-coupled
network topology considered in this work. Another recent
work [30] aims at providing location-aware cluster manage-
ment for cloud environments for data-intensive applications.
The goals of this work are similar to ours, though we have also
considered communication-intensive applications, and focus
on inferring dynamic communication patterns in addition to
file and data dependencies.
Load balancing: There is a large body of work in load
balancing in distributed systems [31], [32], [33], and recent
work in virtual machine migration, placement and load bal-
ancing [13], [11]. Most of these approaches mainly consider
the local load (e.g., CPU load) on the processors in making
their load balancing decisions, while our work also exploits
the communication affinities between VMs to achieve better
placement and migration. MOSIX [34] is a Linux-based cluster
computing system that also achieves runtime load balancing,
while our focus is on virtualized environments. MOSIX has a
centralized communication-aware algorithm [35] while we use
a decentralized algorithm that can be useful for larger systems.
Distributed resource allocation and scheduling: Several
resource allocation techniques [36], [37], [38], [39] for high-
performance, cluster, and Grid computing have focused on the
discovery and scheduling of resources that match the capacity
requirements (e.g., CPU, memory, etc.) of compute jobs. Most
of these techniques rely on application specification of job
resource requirements. Recent work [10] has proposed using
a control-theoretic feedback algorithm to dynamically change
the resource allocation in a virtualized computing platform.
Our work is complementary to some of these techniques as it
incorporates network affinity and data dependencies between
computation jobs as an additional criterion for doing the re-

source allocation. In addition, through VM-level observations,
our technique performs dynamic and non-intrusive inference of
the communication dependencies, and does not rely on explicit
application-level specification of these dependencies.
Virtual machine performance optimization: Several mech-
anisms have been proposed for improving the networking
performance of virtual machines. Xen and co. [40] extends co-
scheduling [41] to improve the performance of communicating
VMs. Xenloop [42] improves the communication performance
between collocated Xen VMs through an inter-VM shared
memory channel that bypasses the virtualized network in-
terface. Our work can utilize some of these mechanisms to
improve the communication performance among collocated
VMs, and in fact, it attempts to find more opportunities
for such optimizations by moving heavily communicating
VMs closer to each other. At the same time, our technique
provides a more general approach for minimizing network
communication cost over a large distributed system.

Our work is similar in nature to recent work [43], [44] that
have considered memory sharing affinities between VMs for
load-balancing and consolidation, except that we are focusing
on network bandwidth instead of memory usage. In fact, we
believe such affinities should be considered across multiple
resources to provide a unified framework for optimal VM
placement and migration [45].

VII. CONCLUSIONS

As virtualization gains in popularity for large computing
environments, management of VMs is becoming an important
problem. The efficiency of the platform as well as the per-
formance of applications running in the platform are critically
dependent on the characteristics of the applications and the
topology of the infrastructure. In particular, in many existing
virtualized platforms, it has been found that the network
bandwidth often becomes the bottleneck resource due to
the hierarchical topology of the underlying network, causing
both high network contention and reduced performance for
communication and data-intensive applications.

In this paper, we presented a decentralized affinity-aware
migration technique that incorporates heterogeneity and dy-
namism in network topology and job communication pat-
terns to allocate virtual machines on the available physical
resources. Our technique monitors network affinity between
pairs of VMs and uses a distributed bartering algorithm cou-
pled with migration to dynamically adjust VM placement such
that communication overhead is minimized. Our experimental
results running the Intel MPI benchmark and a scientific
application on a 7-node Xen cluster showed that we can get up
to 42% improvement in the runtime of the application over a
no-migration technique, while achieving up to 85% reduction
in network communication cost. In addition, our technique
was able to adjust to dynamic variations in communication
patterns and provides both good performance and low network
contention with minimal overhead.

236

ACKNOWLEDGMENT

This work was supported in part by NSF Grant CNS-
0643505.

REFERENCES

[1] “Amazon Elastic Compute Cloud (EC2),” http://aws.amazon.com/ec2/.
[2] “Zmanda case study: Amazon web services,”

http://aws.amazon.com/solutions/case-studies/zmanda/.
[3] “Lotuslive inotes,” https://www.lotuslive.com/en/services/inotes.
[4] “Nasdaq market replay,” http://www.infoq.com/articles/nasdaq-case-

study-air-and-s3?
[5] “Amazon Web Services: Case Studies,”

http://aws.amazon.com/solutions/case-studies/.
[6] “Amazon Elastic MapReduce,” http://aws.amazon.com/elasticmapreduce/.
[7] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen, “Autonomic

Live Adaptation of Virtual Computational Environments in a Multi-
Domain Infrastructure,” in Proceedings of the 2006 IEEE International
Conference on Autonomic Computing, 2006.

[8] R. J. Figueiredo, P. Dinda, and J. Fortes, “A Case for Grid Computing
on Virtual Machines,” in Proceedings of International Conference on
Distributed Computing Systems (ICDCS), Apr. 2003.

[9] K. Keahey, K. Doering, and I. Foster, “From Sandbox to Playground:
Dynamic Virtual Environments in the Grid,” in Proceedings of the 5th
International Workshop in Grid Computing (Grid 2004), Nov. 2004.

[10] S.-M. Park and M. Humphrey, “Feedback-controlled resource sharing
for predictable eScience,” in Proceedings of the 2008 ACM/IEEE Con-
ference on Supercomputing, 2008.

[11] A. Singh, M. Korupolu, and D. Mohapatra, “Server-Storage Virtualiza-
tion: Integration and Load Balancing in Data Centers,” in Proceedings
of the 2008 ACM/IEEE Conference on Supercomputing, 2008.

[12] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the Clouds: A Berkeley View of Cloud Computing,” EECS, UC
Berkeley, Tech. Rep. EECS-2009-28, Feb. 2009.

[13] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and
Gray-box Strategies for Virtual Machine Migration,” in Proceedings
of the 4th USENIX Symposium on Networked Systems Design and
Implementation, 2007.

[14] “Intel MPI Benchmarks,” http://www.intel.com/cd/software/products/
asmo-na/eng/cluster/219847.htm.

[15] “Computational Astrophysics at University of Minnesota,” http://www.
astro.umn.edu/groups/compastro/?q=node/1.

[16] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” in Proceedings of the 6th USENIX Symposium on
Operating Systems Design and Implementation, 2004.

[17] “Apache Hadoop,” http://hadoop.apache.org/core/.
[18] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proceedings of Symposium on Operating Systems Principles, 2003.

[19] J. Sonnek, J. Greensky, R. Reutiman, and A. Chandra, “Starling: Min-
imizing Communication Overhead in Virtualized Computing Platforms
Using Decentralized Affinity-Aware Migration,” CSE, University of
Minnesota, Tech. Rep. TR09-030, Dec. 2009.

[20] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[21] C. Clark, K. Fraser, , S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live Migration of Virtual Machines,” in Proceedings
of NSDI, May 2005.

[22] A. F. Rob Bradford, Evangelos Kotsovinos and H. Schioeberg, “Live
Wide-Area Migration of Virtual Machines Including Local Persistent
State,” in Proceedings of VEE’07, Jun. 2007.

[23] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell Systems Technical Journal, vol. 49, p. 291307,
Feb. 1970.

[24] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on Scientific Computing,
vol. 20, no. 1, pp. 359–392, 1999.

[25] S. H. Bokhari, “Partitioning Problems in Parallel, Pipeline, and Dis-
tributed Computing,” IEEE Transactions on Computers, vol. 37, no. 1,
pp. 48–57, Jan. 1988.

[26] H. Stone and S. Bokhari, “Control of Distributed Processes,” IEEE
Computer, vol. 11, no. 7, pp. 97–106, Jul. 1978.

[27] V. M. Lo, “Heuristic Algorithms for Task Assignment in Distributed
Systems,” IEEE Transactions on Computers, vol. 37, no. 11, pp. 1384–
1397, Nov. 1988.

[28] A. Bhatele and L. V. Kale, “Application-specific Topology-aware Map-
ping for Three Dimensional Topologies,” in Workshop on Large-Scale
Parallel Processing (IPDPS), 2008.

[29] A. Bhatele, L. V. Kale, and S. Kumar, “Dynamic Topology Aware Load
Balancing Algorithms for Molecular Dynamics Applications,” in 23rd
ACM International Conference on Supercomputing, 2009.

[30] M. A. Kozuch, M. P. Ryan, R. Gass, S. W. Schlosser, D. O’Hallaron,
J. Cipar, E. Krevat, J. Lopez, M. Stroucken, and G. R. Ganger, “Tashi:
Location-aware Cluster Management,” in First Workshop on Automated
Control for Datacenters and Clouds (ACDC’09), 2009.

[31] Y.-C. Chow and W. H. Kohler, “Models for Dynamic Load Balancing
in a Heterogeneous Multiple Processor System,” IEEE Transactions on
Computers, vol. 28, no. 5, pp. 354–361, May 1979.

[32] T. Chou and J. Abraham, “Load Balancing in Distributed Systems,”
IEEE Transactions on Software Engineering, vol. SE-8, no. 4, pp. 401–
412, Jul. 1982.

[33] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive load sharing
in homogeneous distributed systems,” IEEE Transactions on Software
Engineering, vol. 12, no. 5, pp. 662–675, May 1986.

[34] A. Barak and O. La’adan, “The MOSIX Multicomputer Operating
System for High Performance Cluster Computing,” Journal of Future
Generation Computer Systems, vol. 13, no. 4-5, pp. 361–372, Mar. 1998.

[35] A. Keren and A. Barak., “Opportunity Cost Algorithms for Reduction of
I/O and Interprocess Communication Overhead in a Computing Cluster,”
IEEE Tran. Parallel and Distributed Systems, vol. 14, no. 1, pp. 39–50,
Jan. 2003.

[36] “Platform LSF,” http://www.platform.com/Products/platform-lsf.
[37] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and A. Roy,

“A Distributed Resource Management Architecture that Supports Ad-
vance Reservations and Co-Allocation (1999),” in Proceedings of the
International Workshop on Quality of Service (IWQoS), 1999.

[38] R. Raman, M. Livny, and M. Solomon, “Matchmaking: Distributed
Resource Management for High Throughput Computing,” in HPDC’98,
Jul. 1998.

[39] V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao, “Cluster Computing on
the Fly: P2P Scheduling of Idle Cycles in the Internet,” in Proceedings
of the IEEE Fourth International Conference on Peer-to-Peer Systems,
2004.

[40] S. Govindam, A. Nath, A. Das, B. Urgaonkar, and A. Sivasubramaniam,
“Xen and Co.: Communication-aware CPU Scheduling for Consolidated
Xen-based Hosting Platforms,” in Proceedings of the 3rd Intl. Confer-
ence on Virtual Execution Environments, 2007.

[41] J. K. Ousterhout, “Scheduling techniques for concurrent systems,” in
Proceedings of the 3rd Intl. Conf. on Distributed Computing Systems
(ICDCS), Oct. 1982.

[42] J. Wang, K.-L. Wright, and K. Gopalan, “XenLoop: a transparent high
performance inter-vm network loopback,” in Proceedings of the 17th
International Symposium on High Performance Distributed Computing
(HPDC’08), 2008, pp. 109–118.

[43] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,
G. M. Voelker, and A. Vahdat, “Difference Engine: Harnessing Memory
Redundancy in Virtual Machines,” in Proceedings of the 8th USENIX
Symposium on Operating System Design and Implementation, 2008.

[44] T. Wood, G. Tarasuk-Levin, P.Shenoy, P. Desnoyers, E. Cecchet, and
M. Corner, “Memory Buddies: Exploiting Page Sharing for Smart
Colocation in Virtualized Data Centers,” in Proceedings of the 5th ACM
Intl. Conference on Virtual Execution Environments, 2009.

[45] J. Sonnek and A. Chandra, “Virtual Putty: Reshaping the Physical
Footprint of Virtual Machines,” in Workshop on Hot Topics in Cloud
Computing (HotCloud’09), Jun. 2009.

237

