
VirtPerf: A Performance Profiling Tool for Virtualized Environments

Prajakta Patil, Purushottam Kulkarni and Umesh Bellur

Department of Computer Science and Engineering

Indian Institute of Technology Bombay, India

{prajaktap, puru, umesh}@cse.iitb.ac.in

Abstract—Several applications in the “physical” world are being

consolidated in “virtual” environments using different virtualization
technologies. An important criteria for this exercise is to understand

potential resource requirements and performance levels achieved in

virtual environments. Empirical evidence of these can be gotten by

benchmarking the application’s performance in a controlled manner
in virtual environments. These measurements can be used for a

variety of purposes from virtual machine capacity planning to building

sophisticated performance models to predict performance for loads
that cannot be practically tested. In this paper, we present VirtPerf ,

an integrated workload generator and measurement tool to capture

resource utilization levels and performance metrics of applications

executing under controlled circumstances in virtualized environments.
The tool aims to provide comprehensive measurement-based analysis

for applications in different virtualization settings. Additionally, a

configurable workload generator can be used to stress and profile
applications under different load conditions. We present the detailed

design of VirtPerf and a comprehensive empirical study to demonstrate

its correctness and capabilities.

Keywords-virtualization; application profiling; workload generation;

I. INTRODUCTION

Traditionally, each web application has been deployed onto a

dedicated set of production resources to ensure performance and

enforce strict resource isolation. Risk management dictates over

provisioning of resources to these applications, sometimes to the

extent of doubling the resources over an anticipated peak in order

to handle flash traffic. A proliferation in the numbers of these

applications has led to server sprawl [1]—a situation in which

there exist a large number of underutilized servers in a data center.

An attractive solution, enabled by the advent of virtualization

technologies, is to virtualize. Application servers instantiated in

virtual machines can be consolidated and provisioned effectively

over fewer physical machines (while retaining the isolation guar-

antees provided in a physical environment). Resources freed up

by consolidation can either be allocated on-demand to any of

the applications to meet unanticipated load or to deploy new

applications. This multiplexing works well in situations where

application peaks are out of phase with one another. However, to

exploit benefits of virtualization-based provisioning, one still needs

to capacity plan the virtualized environment where the range of

resources that each virtual machine (VM) needs and corresponding

performance levels are well understood.

The capacity planning exercise prior to a deployment helps answer

questions such as:

• How much workload can a system support for a given amount

of resources allocated to the VMs?

This project is funded in part by a grant from Yahoo! Software De-
velopment India (Grant #09YAHOO001 at Indian Institute of Technology,
Bombay)

• What is the maximum achievable throughput and average

response time of the system for a given provisioning of the

VMs and what is the load in terms of concurrent users at

which it is achieved? Does it satisfy SLA requirements ?

• Given a load level, what would be the resources needed to

sustain it?

• What is the relation between VM resources and response time

or throughput?

Profiling exercises stress applications with different workloads,

monitor resource usage and performance levels and aggregate

results to answer questions of the variety mentioned above. The

profiles generated are vital for decisions regarding service level

agreements (SLAs) offered to customers and the resources required

for the same. Today’s capacity planning tools suffer from two main

disadvantages:

(i) They are not “virtualization aware”. Traditional capacity

planning tools are not built for virtualized environments.

They are not aware of the flexibility in resource allocation

and virtualization specific processes such as VM migration

that these environments bring into play.

(ii) Lack of synchronization between system setup (VM pro-

visioning), load generation and profiling. System setup is

usually done manually and separate tools exists for load

generation and profiling and one must correlate results across

them.

The result is that one has to use virtual environment management

tools and monitoring APIs, manually perform tasks of resource

allocation and for each setting, coordinate load generation and

profiling tools to cobble together a picture of how the application

performs in a virtual environment. The task is cumbersome (to

perform manually) and complicated because of the multiple

possible system configurations to profile, particularly when the

application has multiple tiers.

In this paper, we present VirtPerf — an automated capacity plan-

ning tool for virtual environments. VirtPerf integrates monitoring

APIs of virtual environments, a load balancer with multiple control

knobs (#clients, request rates etc.) and a resource configuration

manager that can operate the system in different resource avail-

ability scenarios (both with and without VM migration). As a

final step, VirtPerf presents back to the user a comprehensive

performance and resource utilization picture of the application

under test. Profiling results of VirtPerf can be used as is for capacity

sizing virtual machines to run multi-tier applications OR can be

used as an input to a performance model to play out multiple

”‘what-if”’ scenarios. VirtPerf supports the Xen [2] and KVM [3]

virtual environments and has been architected to be extensible to

2011 IEEE 4th International Conference on Cloud Computing

978-0-7695-4460-1/11 $26.00 © 2011 IEEE

DOI 10.1109/CLOUD.2011.67

57

other virtualization solutions.

II. A SURVEY OF EXISTING PROFILING TOOLS

There are many performance monitoring tools available for virtual-

ized environments today. Xentop[4], XenMon[5] and XenoProf[6]

are profiling tools for Xen. They are stateless in that they have

to be called each time to get a snapshot of the system under test.

They provide resource consumption data of all the VMs as well as

of the hypervisor(Dom0 in Xen).

These tools are pure profilers. They monitor VMs when told to

do so but lack the intelligence to do anything else. They have to

be integrated with an existing load generator. Most of them just

measure resource usage information and say nothing about per-

formance trends. They cannot set up resource allocation limits on

the VMs and hence can’t automatically create multiple allocation

scenarios. They are NOT aware of virtualization processes such as

migration. Most of the tools are not cross-platform products.

[7] presents a framework for automated server benchmarking. They

have concentrated on automation policies which are independent of

underlying framework e.g server implementation, automated work-

load generator, resource allocations and virtualization technology.

[8] presents the workload characterization of a busy WWW server

(NCSA webserver) deployed on non virtualized high end HP server.

They explain characteristics of the systems response, including

the distribution of response sizes and server response times. But,

they have not studied system resource utilization patterns as a

function of workload and thus cannot examine saturation point

for the webserver. [9] presents workload generation toolkit for

virtualized applications, which considers three dimensions for

workload generation - variation in amount of load, variation in

mix of operations performed by clients and variation in popularity

of data accessed. But, they have not studied workload generation

under different virtualization aware scenarios such as multiple

resource allocations to VMs, virtual machine migration. [10] talks

about an open testbed architecture, where user can install and start

web applications, configure workloads and instantiate controller

that then coordinates experiment runs.

There is some primitive support for figuring out CPU charge back

[5], [11] to individual VMs in Xen (as a result of the CPU overhead

at Dom0 caused by network I/O). However there is little done by

way of disk I/O analysis - indeed most tools fail to even capture

all Disk I/O statistics.

VirtPerf is more than a pure profiler, it is a more complete

capacity planning tool that can give the user the complete range

of performance and resource usage statistics for different resource

allocations in virtual environments. There are no other tools similar

to VirtPerf that we have come across so far.

Autoperf [12] is an automated tool for resource profiling and

capacity analysis of web-based systems deployed in physical en-

vironment. VirtPerf is an extension of Autoperf that understands

the flexibility of resource allocation in virtual environments and

features such as VM migration.

III. TOOL REQUIREMENTS

In the previous section we discussed the feature and drawbacks

of existing profiling tools and motivated the need for a new tool

to profile applications in virtual environments. A list of essential

requirements of such a virtualization-aware profiling tool are:

Figure 1. VirtPerf Architecture

• Support for multiple virtualization technologies such as Xen,

KVM, VMWare etc.

• Tight synchronization of load generation and profiling to avoid

errors and to control load parameters according to nature of

application.

• Should be able to detect warm-up and stable periods of the

application for correct profiling.

• Should support multi-tier applications and be able to profile

aggregate and individual behavior of tiers.

• Should support real load scenarios, e.g., configure request-

level think time generation, set limits on resource availability

for VMs and map VMs to CPU cores.

While we assume a web-based application, i.e., a web-interface

for request and responses, the design of VirtPerf makes it easily

extensible to applications with other types of interfaces.

IV. VirtPerf ARCHITECTURE AND FEATURES

VirtPerf employs a master-slave architecture and consists of three

main modules, the Controller, the Load Generator and the Profile

agents (as shown in Figure 1). The Controller and the Load

generator together form the master while profilers are the slaves

that run in the virtual environments where the application under test

is deployed. The master part is implemented in JAVA and profiler

daemons are implemented in C++.

• Controller: The Controller co-ordinates and synchronizes load

generation, resource configuration on the virtual machines

and monitoring of performance and resource parameters. The

controller reads a configuration file and passes relevant infor-

mation to the respective modules, i.e., transaction information

to the load generator and node configuration information to

the profiler. It directs the load generator to start generating

load at a selected level (based on number of clients and

think time distribution). The controller detects warm-up of

the server based on the stability of response time of requests

and signals the profiler agents to start monitoring the virtual

machines. After completion of load generation (number of

successful requests), the load generator collects statistics from

both the load generator and the profiler agents, and computes

client side performance metrics such as response time and

throughput. These numbers drive the selection of the next load

level. The controller also receives resource usage metrics from

the profiler agents after the load generation of each round.

58

• Load Generator: The Load Generator generates requests at the

specified load level—number of clients, number of requests

per client and think time distribution parameters. We assume

a closed loop system where each client issues a request, waits

for a response from the server and samples a distribution to

emulate think-time behavior before issuing the next request.

Each client is emulated using a separate thread, which issues

requests according to the above loop, till it has requested a

maximum number of requests or throughput of the application

on the VMs reaches saturation. Once load generation starts,

the module first detects warm-up after which it informs the

profiler agents to start profiling. The generator conveys start,

warm-up detected and end states with regards to load to the

controller for coordination with the profiler agents.

• Profiling Agents: The profiling agents are responsible for col-

lecting server side statistics. With the Xen virtualization solu-

tion, a profile daemon runs in the privileged domain (Dom0) to

collect aggregate resource statistics and additionally per-VM

profile daemons collect statistics from within the VM. We term

this assumption of being able to instantiate profiling daemons

inside VMs to be profiled as the gray box approach (similar

to [13]). A more practical approach is that of collecting

statistics related to VMs from the host operating system or the

virtualization control plan, a black box approach. The trade-off

being certain measurement parameters may not be available

or exposed at the host OS. We comment on this trade-off with

regards Xen in Section VI. The VirtPerf controller (master)

issues commands to the daemons in VMs (slaves) to start and

stop capturing resource usage information, and to send back

the profiled data.

A. Inputs to VirtPerf

VirtPerf reads in an input configuration file during startup to

obtain load generator parameters, get locations of application tiers,

learn about resource configuration ranges to be configured at

the application tiers and get profiling characteristics (whether to

perform migration during a profiling run etc.). The following input

information is part of the input configuration of VirtPerf and is

specified in an XML format:

(i) Deployment and configuration information: The location of the

server is specified using the server’s IP address, the port number on

which it is receiving requests and server process identifier (process

name). If the profiled server is running on an hosted virtualization

solution, like Xen, separate location information (IP address) for

the host OS (Dom0, in case of Xen) is also mentioned.

(ii) Resource allocation information: As part of resource configu-

ration parameters, the user can specify the number of CPU cores

to be allocated to the host and guest VMs, range of CPU capacity

(and increment factors) for each VM. The application is profiled

for different combinations of resource allocation within the range

of CPU capacity settings.

Configuration information can include instructions of whether a

VM should be migrated and if so at what instant in the profiling

run. The migration start time is specified in terms of % of requests

executed by the application server.

(iii) Transaction information: This information is related to the set

of valid URLs to be used to load the application service. A user

can specify a set of URLs to use for load generation or specify a

URL sequence and range of values for each argument, to generate

URLs dynamically.

(iv) Load description: The load to be stressed on the server is

specified using, number of concurrent users, request execution

count for each and a think-time probability distribution (e.g.,

Poisson, Uniform) along with required distribution parameters.

(v) Migration Configuration:VirtPerf is also able to profile the

effect of migrating a VM while the service is under load (either

the service VM OR an unrelated VM is migrated). Users can

configure exactly when the migration is to happen, which VM is to

be migrated and the direction of migration (towards or away from

the application VM).

B. Reports and Analysis produced by VirtPerf

Based on the above input setting, VirtPerf performs a set of

profiling experiments based on the range and increment factor

of resource settings. Each run of VirtPerf is at one combination

of resource settings and corresponds to incrementing the load

level by increasing number of requesting clients by a fixed value.

Additionally, in each run one of the VMs being monitored can be

migrated or a ’interfering’ VM can be migrated into our outside

the multi-tier application setup.

For each profiling run, VirtPerf reports following resource usage

information of all active domains in the virtual environment:

• Resource Usage Information: Percentage CPU utilization,

Memory consumed by each VM, disk blocks read and written,

network bytes received and transmitted, and average service

time per transaction.

• Application behavior: Average response time per transaction

and throughput in transactions per second.

In the case of Xen, resource utilization data is collected at the

privileged domain using inbuilt utility xentop, and at other virtual

domains (non-privileged) using system commands ps, netstat, io-

stat. In case of the KVM virtualization solution, resource usages

are collected at both the domains (host and guest) using commands

ps, netstat, iostat.

At the controller (in coordination with the load generator), Virt-

Perf also reports the maximum throughput (req/sec) of the system,

the load level at which throughput saturates and the response time

for this load level.

C. Key Features

AutoPerf, the predecessor of VirtPerf has the following features

that we use: automatic detection of saturation load level, automated

detection of server warm up, We now describe the important

features of VirtPerf beyond what already exists in AutoPerf:

• Profiling Modes: VirtPerf can operate in 3 execution modes.

(i) Single load level: This is the simplest execution mode. In

this mode, load is generated at a specified load level specified

in the input file. The server process is profiled at a fixed,

single load level and resource usage and performance metrics

are reported by the tool.

(ii) Multiple load levels: In this mode, load is generated at

incrementally higher levels (determined automatically) till it

detects throughput saturation. This mode is helpful to see the

change in service demand or resource usages with the changes

in load level. It can help detect unanticipated behavior of a

server process. We achieve different load levels by increasing

59

Figure 2. Profiling application with VM migration enabled

the number of concurrent clients accessing the server process.

(iii) Fixed Multiple load levels: In this mode, the user can

specify a fixed range for load, say 1-100 concurrent clients.

VirtPerf profiles the server in steps of increasing load within

the range. For each load level, it generates a constant number

of requests. This execution count can also be specified in the

input file, else VirtPerf determines the execution count of each

thread automatically.

(iv) Profiling with probabilistic access patterns : In this mode,

realistic scenarios are emulated by generating a workload

that contains mix of transactions according to a customer

behavior model graph (CBMG). A CBMG [14] summarizes

the navigational patterns of a group of customers. A CBMG

description formally consists of a set of states, a set of

transitions between states, and an n ∗ n matrix, P = [pi,j], of

transition probabilities between the n states. States represent

steps in an end to end transaction and they vary according

to web applications. VirtPerf generates load on the server in

such a way that the mix of transactions generated resembles

the workload distribution specified using a CBMG.

• Think time specification: Think time is the average time a

client remains idle after a response has been received and

before sending the next request. VirtPerf can be configured

to use different distributions for think time samples between

requests. Currently, VirtPerf supports Poisson, Uniform and

Exponential distributions and has been architected so that

additional distributions can be added with no change to

the VirtPerf code. This is necessary to simulate likely user

behavior.

• Profiling with resource usage tuning : The server on which

the application VMs execute will most likely have multiple

CPU cores. VirtPerf can be configured to setup CPU resource

limitations per server virtual machine (including privileged

Figure 3. Setup used for experimental evaluation.

domain, Dom0, with Xen). VirtPerf allows the specification

of CPU percentage to be allocated per VM and also configured

mapping of VMs to specific CPU cores. Further, a range for

each can specified, e.g., vary CPU allocated to a VM from

10–100% and assign it 2–4 cores. VirtPerf will request the

server slave profiler daemons to configure the VMs for each

combination, iteratively. For each combination, the server is

stressed for profiling.

• Profiling with VM migration: Migration of virtual machines is

an important benefit to leverage with VM-based provisioning.

Since live migration of VMs needs significant resources for

the migration state transfer and can cause disruption in appli-

cation performance, VirtPerf supports profiling the behavior of

an application during migration. VirtPerf can be configured to

instruct server VMs to migrate at any point during execution

of the profiling run. Further, either the server being profiled

can be migrated, or another tier of the same application

can be migrated to the the same machine as one of it’s

other tiers or an “interfering’ VM can migrate out or into

the same machine as the profiled server. VirtPerf facilitates

specification of all these parameters—the VM to migrate,

when to migrate and destination of migration. Further, it keeps

track of migration start time and the interval to generate

resource usage and performance statistics for the intervals

before migration, during migration and after migration.

It’s control protocol (shown in Figure 2) for these scenarios

takes cognizance of the migration process and profiles accord-

ingly.

V. PERFORMANCE MEASUREMENTS USING VirtPerf

A. Experimentation Setup

The setup for experiments included physical machines with the

following characteristics—Quad core Intel i5 CPU @ 2.80 GHz,

3 GB main memory and Gigabit Ethernet. Two such machines are

used to host multiple tiers of the application under test and a third

machine acts as the VirtPerf master. Note that the master does not

need as much resources as do the machines hosting the application

since it’s primarily a controller. The Xen-enabled host OS and guest

OSes use the 2.6.32 64-bit Linux kernel. Each virtual machines

if configured with 512 MB and be allocated 1 to 4 cores based

on VirtPerf input configuration. Figure 3 shows the experimental

setup. The three physical machines PM1, PM2 and PM3 form an

isolated network. Since we wanted to make measurements without

interference resulting from the network traffic of other applications.

In that sense, this represents a clean room environment for profiling.

Machine PM3 has two network interfaces, and acts as gateway

between the evaluation setup and the department network.

60

 8

 16

 24

 32

 40

 48

 56

 64

 72

 80

 0 8 16 24 32 40 48 56 64 72 80
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

T
h
ro

u
g
h
p
u
t(

re
q
/s

e
c
)

R
e

s
p
o
n
s
e
 T

im
e
 (

m
s
e
c
)

Load (No of Concurrent Users)

Throughput
Response Time

(a) Throughput and Response time variation

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 8 16 24 32 40 48 56 64 72 80

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

C
P

U
 U

ti
liz

a
ti
o
n
(%

)

S
e
rv

ic
e
 D

e
m

a
n
d
(m

s
e
c
)

Load (No of Concurrent Users)

CPU Utilization(DomU)
CPU Utilization(Dom0)

Service Demand

(b) CPU utilization and Service demand variation

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 20 40 60 80 100 120 140 160 180 200

T
h
ro

u
g
h
p

u
t(

re
q
/s

e
c
)

Load (No of Concurrent Users)

Thinktime[Poisson(50)]
Thinktime[Uniform(300)]
Thinktime[Poisson(600)]

(c) Sensitivity to think-time distribution

Figure 4. Throughput and Response time correlations with load.

B. Workloads

We used two applications - a Web-Calendar [15] and RUBiS [16],

to generate workload for evaluation of VirtPerf . WebCalendar is

a PHP-based multi-tier calendering application used for pinning

events, reminders etc. It uses MySQL as the back end database

for storing information. Load is generated in terms of concurrent

users accessing the application for viewing or creating calendar

entries. RUBiS is a benchmark prototype to model an auction site.

It implements the core functionality of an auction site - selling,

browsing and bidding. For a visitor session, users need not register

but are only allowed to browse. Buyer and seller sessions need

registration for transactions. RUBiS also uses MySQL as the back

end database. For emulating real time scenario, database tables are

populated with large number of dummy entries - users (1000000

users), items (130000 items), categories (50 categories) and bidding

entries (1200000 bids), totaling to about 24,00,000 records in

simulation database.

C. VirtPerf Validation

We have validated the results reported by VirtPerf by setting up

web services that take up a known amount of resources - Network,

Disk and CPU and/or have a known response time. We have

observed that the results reported by VirtPerf (both from Dom0

and from within the VM where this benchmark service executes)

are consistent with the expected/known values.

VI. PROFILING WITH VirtPerf

A. Impact of Load on Performance and Resource Usage

Figure 4 shows the results of profiling a Web-calendar service

stressed using different load levels. The load generated used a

Poisson think time distribution with mean of 150 milliseconds.

Both tiers of the web-calendar application are hosted on the same

physical machine.

Additionally, the VirtPerf feature of specifying multiple load levels

within a range is used to auto-increment load levels for profiling

performance metrics and resource usages.

Figure 4a shows the variation in the throughput and user-perceived

response time as the number of users increases from 1 to 72 users.

As seen from the graph, the throughput increases and stabilizes

at 64 requests/sec and plummets after load increases beyond 62

concurrent users. Mimicking the throughput trend, the response

time for each user also increases with load, from less than 100

ms at very low load to 1 second at a load of 67 concurrent

users, and beyond which response time increases drastically due to

non-linearity. The different CPU utilizations and service demand

per request is depicted in Figure 4b. As can be seen, the web-

calendar service is CPU bound and not network bound—Dom0

CPU utilization, to service network traffic of the user domains,

is very low (5 %). On the other hand, DomU CPU utilization

(utilization of the guest domain) increases with load and saturates

at about 375 % (the guest virtual machines is configured to use

4 cores). Beyond a load of 62 users, as seen with throughput and

response time behavior, the system goes into overload and the CPU

utilization of the server plummets. The load generated, uses a set

of similar URL and hence the service demand reported is stable at

60 ms until a load of 67 concurrent users, beyond which it starts

increasing as well.

Thus, as shown above, different load level parameters like, think-

time distributions and their parameters, load types (browsing-mix,

ordering-mix etc.) can be applied and profiled with VirtPerf for

detailed performance and resource usage analysis.

B. Sensitivity to Think-time Distribution Parameter

Next, we vary the think-time distribution and its mean value to

study the impact on throughput of the RUBiS application. Figure 4c

plots throughput variation with think time distribution following

Poisson and Uniform distributions. For think-time sampling based

on a Poisson distribution with mean 50 ms and a Uniform distribu-

tion with mean 300 ms, the throughput saturates at 180 requests/s

with close to 36 concurrent users. While with a poisson distributed

thinktime with mean 600 ms, as thinktime >> service demand,

arrival rate is very low. So, throughput curve goes up gradually

and reaches saturation level with 130 concurrent users.

Varying the think-time distribution type and its parameters Virt-

Perf can capture different limits of load before saturation.

C. Profiling with Probabilistic Mix of URLs

In the real world, a typical client browses through different types

of URLs of a complex web application e.g browse a catalog, select

items, buy an item, put comment etc. As a result, it is beneficial

to profile the applications emulating scenarios which resembles the

realistic and representative workload patterns. VirtPerf can profile

the web applications with a probabilistic mix of URLs defined by

a CBMG. To demonstrate this feature, we use the multi-tier RUBiS

61

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 40 80 120 160 200 240 280 320 360

R
e
s
p
o

n
s
e
 T

im
e
(m

s
e

c
)

Load (No of Concurrent Users)

Browse Only Transactions
Bidding Mix Transaction

(a) Application Response Time

 30

 60

 90

 120

 150

 180

 210

 240

 0 40 80 120 160 200 240 280 320 360

C
P

U
 U

ti
liz

a
ti
o
n

 (
%

)

Load (No of Concurrent Users)

Browse Only Transactions (Dom0 CPU)
Bidding Mix Transaction (Dom0 CPU)

Browse Only Transactions (DomU-DB CPU)
Bidding Mix Transaction (DomU-DB CPU)

Browse Only Transactions (DomU-Web CPU)
Bidding Mix Transaction (DomU-Web CPU)

(b) CPU Utilization

Figure 5. Profiling with Probabilistic Access Patterns

application with both tiers hosted on the same physical machine but

on different VMs. A CBMG is defined for two types of customer

behaviors - one that contains only browsing transactions (read-only

interactions, labelled Browse Only Transaction) and a bidding mix

(15% write interactions, labelled Bidding Mix Transactions).

Figures 5a and 5b show response time and CPU utilization

variation with load (#concurrent users) for two types of customer

behaviors. As mentioned earlier, Browse Only Transaction have

only database read operations, and hence average response time

of requests is less than that with Bidding Mix Transactions. As

can be seen from the graph,as load changes from 1 user to 370

concurrent users the response time increases from 4 msecs to 550

msecs with Browse Only Transaction. The corresponding rate of

increase in response time is higher, increasing from 3 msecs to

950 msecs per request with Bidding Mix Transactions. As more

time is spent for I/O completion during write operations (when

CPU is unused for that request) as compared to during read only

transactions, CPU utilization of both the DomUs (web tier and

database tier) and Dom0 for Bidding Mix Transactions is slightly

less than Browse Only Transaction (as shown in Figure 5(b)). For

Bidding Mix Transactions CPU utilization stabilizes close to 95%

for the Database tier and 85% for the Web tier from a load of 40

concurrent users onwards. While for Browse Only Transaction CPU

utilization saturates at around 135% for the Database tier and 90%

for the Web tier at a load of 240 concurrent users. For Browse Only

Transaction, throughput increases and stabilizes at around 1050

req/sec at a load of 120 concurrent users, while for Bidding Mix

Transactions throughput increases up to 1000 req/sec at a load of

40 concurrent users and then drops down if load increases beyond

40 concurrent users.

D. Profiling with Resource Usage Tuning

In an virtual environment, with VMs being multiplexed on shared

platforms, it is beneficial to know the behavior of applications un-

der different resource availability scenarios. Currently, VirtPerf can

control allocation to the CPU resource, in terms of number of CPU

cores and maximum allowed CPU utilization.

To demonstrate capability of VirtPerf to tune the CPU resource

allocated to a VM, we use the multi-tier RUBiS application with

both tiers hosted on the same physical machine. Load is generated

with 50 concurrent users with a Poisson distribution with mean

150 ms for think time sampling. The CPU allocated to Dom0 (the

privileged management domain of Xen) is configured to use 400%

of the CPU, while the allocated CPU fraction for each of the two

guest VMs (one for each tier—the web tier and the database tier)

are varied. These specifications are part of the input configuration

of VirtPerf .

Web tier Database tier Response Time Throughput

CPU CPU (milliseconds) (request/sec)

10% 20% 5902 8.43

10% 100% 1088 45.49

10% 180% 585 79.89

10% 260% 540 85.43

10% 340% 507 90.16

30% 20% 5525 9.07

30% 100% 1058 45.72

30% 180% 555 83.55

30% 260% 366 121.90

30% 340% 278 155.21

Table I
IMPACT OF CPU RESOURCE ALLOCATION ON PERFORMANCE METRICS.

Table I depicts variation of CPU resource allocated in different

amounts the the Web and the DB tiers respectively. The privileged

domain (Dom0) is configured to use all 4 cores. As can be seen

from the table, with increase in CPU allocation the DB tier from

20% to 340 % the response time decreases ten-fold—from 5901

ms to 507 ms, with 10% CPU allocated to the Web tier. The

corresponding decrease in response time is a factor of 20 with 30%

CPU to the Web tier. This significant increase hints at a dependence

of performance on both a minimum CPU availability at the Web tier

and as high as possible at the DB tier. The throughput shows similar

trends, an improvement by a factor of 11 and 17 respectively, when

CPU allocated to DB is varied from 20% to 340% for the two cases

of 10% and 30% CPU allocated to the Web tier.

Any such number of deployments and variations in resource

allocations can be studied with VirtPerf to understand system

behavior under different resource constraints.

E. Effect of Pinning VMs to Cores

VirtPerf has the capability to pin down VMs to specific cores of

a CPU. The decision to do this can have a significant effect on

application performance as indicated in Figure 6a. In the case where

2 cores are shared between Dom0 and the two application VMs

(containing the web and DB tier respectively), the throughput peaks

at around 35 requests/sec whereas if we use the 2 cores in such a

way so as to separate the DB tier onto it’s own core and allocate

the other core to be shared amongst Dom0 and the web tier, the

62

 10

 20

 30

 40

 50

 60

 0 30 60 90 120 150 180

T
h
ro

u
g
h
p

u
t(

re
q
/s

e
c
)

Load (No of Concurrent Users)

All-SameCores
Dom0-SeparateCores

DB-SeperateCores

(a) Application Throughput

 30

 60

 90

 120

 150

 180

 210

 0 30 60 90 120 150 180

D
B

-V
M

 C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Load (No of Concurrent Users)

All-SameCores
Dom0-SeparateCores

DB-SeperateCores

(b) Database tier CPU Utilization

Figure 6. Effect of pinning VMs to CPU cores on Throughput and CPU
Utilization

throughput peak jumps to around 55 requests/sec. The throughput

saturation is driven by the DB tier being the bottleneck as CPU

utilization numbers show in Figure 6b.

F. Impact of Deployment Scenarios

Functionality of VirtPerf is not dependent or restricted to any

specific set of deployment scenarios. Since, tiers are assumed to

the IP-addressable, they can be deployed in any manner (located

on any physical machines) and appropriately specified as part of

VirtPerf input configuration. This feature can be exploited to study

behaviour of applications under different deployment scenarios.

To demonstrate this feature, the web-calendar application with

tiers is instantiated in different scenarios to study application level

throughout and response time.

Figure 7b and 7a show response time and throughput variation

with load (#concurrent users) for both processes of the application

tiers in the same virtual machine (labelled SameV M), tiers hosted

in different VMs but on the same physical machine (labelled

DiffV M) and tiers in different VMs and located on different

PMs (labelled DiffPM). As can be seen, over all load levels

the SameV M setup, as expected, has the highest throughput and

lowest response time. The maximum throughput in the SameV M

setup is 65 req/sec, while that in the DiffV M scenario is slightly

lower (61 req/sec) and that in the DiffPM scenario is fluctuating

around 50 req/sec. Also, throughput starts decreasing (due to

saturation) at much higher loads—at 60 req/s with SameV M ,

40 req/sec with DiffV M and as early as 24 req/sec with the

DiffPM scenario. Similarly, as compared to the DiffPM

scenario, the DiffV M and SameV M scenarios, beyond a load

of 24 req/sec, have lower response times.

Thus, throughput and response time behaviour, as expected, of

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 8 16 24 32 40 48 56 64

T
h

ro
u
g

h
p
u

t(
re

q
u
e
s
ts

/s
e

c
)

Load (No of Concurrent Users)

SameVM
DiffVM
DiffPM

(a) Application Throughput

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 8 16 24 32 40 48 56 64

R
e
s
p
o

n
s
e
 T

im
e

 (
m

s
e
c
)

Load (No of Concurrent Users)

SameVM
DiffVM
DiffPM

(b) Response Time

Figure 7. Effect of deployment scenarios on performance metrics.

DiffPM is the worst, due to usage of the physical network

interface for data transmissions. VirtPerf can be used to quantify

differences in these behaviors.

G. Profiling with Virtual Machine Migration

As discussed in Section IV-C, VirtPerf can be configured to study

the impact of migration on resource usage and performance metrics.

VirtPerf profiling agents can be instructed to migrate a VM from a

source machine to a destination machine at a specified interval. As

part of this experiment, we use the two-tier RUBiS application and

study impact of migrating one of the tiers and another interfering

VM on the application. For each experiment, the RUBiS tiers are

instantiated as two separate VMs on the same physical machine.

Table II reports profiling statistics when the database tier is

migrated, profiling commences at time S1, migration is initiated at

M1, which terminates and time M2 and the profiling experiment

terminates at time S2. Interval S1 − M1 is the before-migration

phase, M1 − M2 is during migration and M2 − S2 the after-

migration phase. As can be seen, during migration, both the

source and destination Dom0’s require increased CPU bandwidth—

18% and 29% respectively, whereas before migration the “empty”

destination Dom0 utilization was very low. The throughput during

migration drops significantly from 157 req/s to 21 req/s (a factor of

7 decrease) and correspondingly the response time increases from

169 ms to 397 ms (a factor of 2.3 increase). Performance and

resource usages after migration return to before-migration levels,

except that the Dom0 VM on the destination machine has CPU

utilization (of 5%) related to network activity of the database tier.

Next, we instantiate an ”empty” VM and collocated with the two

RUBiS VMs (each containing a RUBiS tier) and study impact

of migrating the “empty” VM. As seen in Table III, even if the

“empty” is related to the RUBiS application, migrating it causes

63

% CPU Utilization Performance

Phase Source Dest. Web Database Response Tput
Dom0 Dom0 tier tier Time (ms) (req/s)

S1-M1 10 0 25 330 169 157

M1-M2 18 29 11 171 397 21

M2-S2 11 5 23 344 147 172

Table II
PROFILING RESULTS WITH MIGRATION OF DATABASE TIER VM.

% CPU Utilization Performance

Phase Source Dest. Web Database Response Tput
Dom0 Dom0 tier tier Time (ms) (req/s)

S1-M1 11 0 27 337 164 158

M1-M2 19 25 19 261 223 31

M2-S2 11 0 27 337 161 163

Table III
PROFILING RESULTS WITH MIGRATION OF A NON-APPLICATION VM.

source Dom0 CPU utilization to increase during migration. This re-

sults in lower CPU availability for the RUBiS application (DB tier’s

CPU utilization reduces from 337% to 261%). Correspondingly,

the response time and throughput of the application are affected—

response time increases from 164 ms to 223 ms and throughput

decreases from 158 req/s to 31 req/s.

As can be seen, VirtPerf setup can be used to emulate several

migration scenarios (including multiple migrations) during a single

profiling run. This feature of VirtPerf can provide valuable in-

formation regarding application performance metrics and resource

usages, in the face various migration scenarios. An immediate

extension would be to restrict resource usages at source and desti-

nation machines for migration and study impact on the application

and migration time. For the results presented here, all VMs could

execute on all 4 cores of the physical machine and in both cases

migration time was 425 ms.

VII. CONCLUSIONS

In summary, we have described an integrated capacity planning tool

for virtual environments. VirtPerf integrates resource provisioning,

load generation and profiling while at the same time allowing the

user to understand the effects of migration on application perfor-

mance. A single specification drives the entire suite of tests for

different provisioning setups, a range of load levels and migration

of different tiers. VirtPerf even allows the user to migrate a VM

not related to the application either into or out of the application

machine while under load. With this comprehensive profiling capa-

bility, one can determine precisely the VM resource requirements

to operate at a specific SLA in a virtualized environment. We have

demonstrated the usefulness of such a tool with a few applications

(RUBiS being an enterprise benchmark) in a lab environment thus

far.

Future work includes stressing the tool with larger applications

involving multiple tiers, testing the tool with KVM (no new devel-

opment is needed apart from using the monitoring API provided

by KVM as opposed to Xentop) and adding a host of other useful

features. Other types of resources such as network bandwidth,

memory can be added as a part of resource tuning feature. We

are planning to add a support for ZipF and other distributions that

more closely approximate web think times. The last category of

feature adds includes analytics to detect bottleneck identification

in multi-tier applications.

REFERENCES

[1] Michael Armbrust et. al., “Above the Clouds: A Berkeley View

of Cloud Computing,” UC Berkeley, Tech. Rep. 4, 2009.

[2] Paul Barham et. al., “Xen and the Art of Virtualization,” in

Proceedings of the Nineteenth ACM Symposium on Operating

Systems Principles, 2003.

[3] Kernel Based Virtual Machine (KVM), http://www.linux-

kvm.org/page/Main Page.

[4] Xentop, http://www.xen.org.

[5] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforc-

ing Performance Isolation across Virtual Machines in Xen,” in

Middleware, 2006.

[6] Aravind Menon et. al., “Diagnosing Performance Overheads in

the Xen Virtual Machine Environment,” in Proceedings of the

1st ACM/USENIX International Conference on Virtual Execution

Environments, 2005.

[7] Piyush Shivam et. al., “Cutting Corners: Workbench Automation

for Server Benchmarking,” in USENIX Annual Technical Confer-

ence, 2008.

[8] John A. Dilley, “Web Server Workload Characterization,” Hewlett

Packard Laboratories, Tech. Rep. HPL-96-160, 1996.

[9] Aaron Beitch et.al., “Rain: A Workload Generation Toolkit for

Cloud Computing Applications,” UC Berkeley, Tech. Rep. EECS-

2010-14, 2010.

[10] Aydan Yumerefendi et. al., “Towards an Autonomic Computing

Testbed,” in Proceedings of the Second Workshop on Hot Topics

in Autonomic Computing, 2007.

[11] L. Cherkasova and R. Gardner, “Measuring CPU Overhead for

I/O Processing in the Xen Virtual Machine Monitor,” in Pro-

ceedings of the Annual Conference on USENIX Annual Technical

Conference, 2005.

[12] S. Shrirang, “AutoPerf: An Automated Load Generator and Per-

formance Measurement Tool for Multi-tier Software Systems,”

Master’s thesis, IIT Bombay, Mumbai, India, June 2007.

[13] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Sand-

piper: Black-box and Gray-box Resource Management for Vir-

tual Machines,” in Proceedings of 4th USENIX Symposium on

Networked Systems Design & Implementation, 2009.

[14] D. A. Menascé and V. A. F. Almeida, Scaling for E-Business:

Technologies, Models, Performance, and Capacity Planning.

Prenctice Hall, 2000.

[15] WebCalendar, http://www.k5n.us/webcalendar.php.

[16] Cristiana Amza et. al., “Specification and implementation of

dynamic Web site benchmarks,” in Proceedings of IEEE Interna-

tional Workshop on Workload Characterization, WWC-5, 2002.

64

