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ABSTRACT

The increasing heterogeneity between applications inginmgwir-
tualized data centers like clouds introduce significantlehges in

estimating the power drawn by the data center. In this work, w

present WattApp: an application-aware power meter foreshdata
centers that addresses this challenge. In order to deaheattro-
geneous applications, WattApp introduces applicatiompaters

(e.g, throughput) in the power modeling framework. WattApp
based on a carefully designed set of experiments on a mix-of di

verse applications: power benchmarks, web-transactiokloads,
HPC workloads and I/O-intensive workloads. Given a séVddp-
plications and)M server types, WattApp runs if(N) time, uses

O(N x M) calibration runs, and predicts the power drawn by any
arbitrary placement withia% of the real power for the applications

studied.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling techniques

General Terms
Performance

Keywords

Power Modeling

1. INTRODUCTION

Energy management has emerged as one of the most challeng

ing problems faced by data center administrators. Accgrtbran

estimate [13] based on trends from American Society of Heati

Refrigerating and Air-Conditioning Engineers (ASHRAE)[Lby
2014, Infrastructure and Energy (I&E) costs would contiéabout
75% while IT would contribute a significantly smalleg% towards
the overall total cost of operating a data center. The cupewer
density of data centers is typically estimated to be in tmgeaof
100 Watt per sq.ft. and growing at the rateléf—20% per year [2].
Surveys by Data Center Institute[1] predict that unlessexive
actions are taken, power failures and limits on power aldity
will halt data center operations at more ttg%o of all companies
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within the next five years. Thus, energy is no longer a sectagsc
citizen and is getting a lot more emphasis in data centegdesi

A second important trend in data centers has been the imtteas
diversity of applications hosted on a shared server clusbart-
sourced data centers that host multiple customers and tee- em
gence of the cloud paradigm for computing has led to such-a sce
nario. Power management technigues have slowly evolveligo t
emerging reality by moving up from the hardware level to a-mid
dleware level. The early work in energy management had &mtus
only on power-aware design of hardware and on mechanismas lik
Dynamic Voltage Frequency Scaling (DVFS) that reduce power
consumption in a single server [24, 27]. While applicatiorese
hosted on standalone servers, such an approach was suffidien
ever, as virtualized and shared data centers became corplance)-
techniques leveraging the reconfiguration capabilitigerefl by
virtualization to manage power were designed that took izagce
of the heterogeneity between applications.

Virtualization allows a provider to consolidate applicais run-
ning on a large number of low utilization servers to a smailen-
ber of highly utilized servers. Each application runs iroi Vir-
tual Machine (VM), which provides the required isolatiorigmo-
tection from other applications. Further, virtualizatiptatforms
today provide the capability of migrating a virtual machinens-
parently from one server to another, thus enabling dynamic c
solidation. A dynamic consolidation based approach allssrser
clusters to increase or decrease the number of operatiengdrs
by adapting to the workload intensity, thus enabling eveghéi
energy efficiency [31, 32, 27, 16, 26].

The power drawn by a commercial server consists of a static
component and a dynamic component. The static component of
power is a fixed power drawn even if the server is not doing any
processing. The dynamic component of power depends on the us
age of various components of the server. For servers withadl sm
dynamic range, power modeling is not relevant as the sewgep
can always be approximated by the idle power. Earlier senvsed
to have a very large static component but the increased focus
energy awareness has resulted in vendors adding suppeduoe
power consumption in unused server components. Hence ither
a distinct trend towards increase in the dynamic power range

The ever-increasing dynamic range of server power makestpow
modeling a fundamental piece in power management, whiab-is r
quired to estimate the impact of various reconfigurationoast
Since the early work in power management was designed for ho-
mogeneous applications and focussed at the hardware joyeer
modeling methodologies also implicitly assumed homogasep-
plications. Hence, the impact of power management acticas w
modeled in an application-oblivious manner. Even thougivgyo
management techniques have now become more inclusive and ar



aware of heterogeneous applications, power modeling igobs
still make this simplifying assumption. It has been obseértreat
modeling power in an application-oblivious manner hasifigant
errors for heterogeneous applications [31, 19].

1.1 CPU Utilization Based Modeling
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Figurel: Power VsCPU Utilization for all TPC-W, SpecPower,
Domino and variants. TPC-W-isavariant of TPC-W that does
not load images. TPC-W- 3VM is clustered TPC-W- running
on 3VMs hosted on the same server. Domino- is a variant of
Domino with small number (10) of users.

CPU utilization based power models are the most popular in
practise because of their inherent simplicity. Since thécstom-
ponent of a server power if fixed, the accuracy of a power mgetel
in its ability to predict the dynamic power consumed by a serv
Hence, we first study th&ccuracyof an application-oblivious CPU
utilization driven model to predict the dynamic power usagea
given server. Fig. 1 shows the power drawn by a server atrdiffe
ent CPU utilization fof PC' — W (a web serving workload [10]),
Domino (a commercial mail server [5]), SpecPower (a seroergs
benchmark [8]) and variants of the same.

We observe a wide disparity in the observed values of power
at the same utilization for different applications. We nibiat there
are many points beyond the20% error range (solid lines in Fig. 1)
of the fitted dynamic power curve, indicating an error grettian
40%. 1/0 bound applications like Domino tend to have higher
power consumption relative to other applications at low GRiY
lization. However, since 1/0 bound applications do not usayn
compute components significantly (e.g., Floating Point&i#PUS)),
the increase in power with increased CPU utilization is moefer
for these applications. Further, these applications maygttle-
necked by another resource and the range of CPU utilizateon m
be low (e.g.,30% for Domino). Hence, the model is not even de-
fined for higher CPU utilization, implying the need of a diffat
input parameter in modeling. This clearly underlines thguhes-
ment of a better model for estimating server power.

1.2 Contribution

In this work, we introduce application-awareness in powedm
eling and present WattApp, an application-level power méie
shared data centers hosting heterogeneous applicatiomske®
contributions are

e We establish a linear relationship between marginal power
and marginal application throughput (number of jobs exe-
cuted per second) on a diverse set of enterprise appligation
and benchmarks (TPC-W, SpecPower, Domino). We show
that incorporating the virtualization ratibis important to

Lvirtualization Ratio is defined as the number of VMs on a serve

build accurate power models. Our most important result is
to establish that a linear combination of the power models
for individual applications (at their virtualization raji can
estimate the power drawn by a mix of applications.

e We employ our observations to desidfattApp a power me-
ter, that takes a set @ff servers andV applications and per-
forms O(N x M) calibration runs to build a power model.
We validateWattAppon a new set of applications (Linpack,
daxpy, fma) to verify that the principles behind the design
of WattAppare not tied to a specific class of applications.
WattAppreduces error by up-tt0 times over the utilization-
based predictor most commonly used, achieving an accuracy
of 95% on many real application and benchmarks. Further,
WattApp uses aServer Stealingechnique to ensure that
power models can be built with minimum disruption in a pro-
duction server farm.

The rest of the paper is organized as follows. In Sec. 2, waildet
the usage and requirements for a power model. We descritexeour
perimental tested in Sec. 3 and establish the relationsttipeen
power and application throughput in Sec. 4. We extend ouerebs
vations to multiple applications in Sec. 5 and use them tiagdes
and validate WattApp in Sec. 6. We conclude with a discussfon
the related work in Sec. 7.

2. POWER MODELING: USAGE AND RE-
QUIREMENTS

2.1 Power Modeing Use Case

The emergence of virtualization and live migration of vattu
machines (VM) have led to a scenario where a server may host
multiple applications and possible power management rstio-
clude migrating these applications to other servers inahafThe
flow in a power-aware placement controller (for exampleered
[31, 26, 33]) consists of (i)Application Usage Predictidip Can-
didate Placement Generation and (iii) Final Placement f@ti
(Fig. 2(a)). ThePlacement Controlleneeds to compare various
candidate placements with respect to (i) the estimated poare
sumed and (ii) the performance of all applications in thaicet
ment. APower Modelerprovides an answer to the first question,
helping thePlacement Controlleto make a decisi
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Figure 2. (a) Power-aware Dynamic Consolidation (b) Candi-
date Placement

The input to thePower Modelercomponent is a placement of
applications on servers (Fig. 2(b)). In addition to the ah@ertain
characteristics of each application may be available. Re e ex-
ample, an applicatiod; may be executing00 daxpy operations
per second on a virtual machine with an entitlement &f cores
on a Power6 p570 server @% utilization in the current place-
ment. Similarly, another applicatiaA, may be executind0 ma-
trix transpose operations on a virtual machine with an lentiént



of 1.5 cores on the same Power6 p570 serveéi0ét utilization. In

a new candidate placement, both of them may be moved to alirtu
machine on a Power6 JS-22 blade with cores each. Hence, in
this case, the application throughput, characteristiaghefsource
and target server, and the CPU utilization on the sourcesemay

be available. Th®ower Modelershould be able to infer the power
drawn by the JS-22 blade for running the two applicationsftbe
available application data. In the past, the idle power ofcaes-
sor constituted0% of a server's power and hence, maRjace-
ment Controllergely on a coarse estimate of power (typically peak
power of the server) to make their decision. However, thedef

an increasing dynamic (workload-dependent) range of theese
makes such an approach infeasible [12]. A look at differemtgr
models in [31, 32, 28] indicate that the dynamic power rarge i
typically higher for HPC applications, underlining even nmahe
necessity of an accurate power model for HPC applications.

2.2 DesrableCharacteristicsfor a Power M odel

The key motivation for power modeling is to estimate the iotpa
of various power management actions, before taking thefmac
We now enumerate four important requirements, similar &],[2
which are desirable in any good power estimation model. heart
a power model for shared servers need to deal with diversie app
cations, leading to a fifth requirementldéterogeneity Support

1. Accuracy: The static power drawn by a server if fixed and
does not require any model. Hence, the accuracy of a power
model captures its ability to predict the dynamic power of a
server. Hence, we define the error in accuracy of a power
model as the absolute difference between the predicted dy-
namic (active) power and the real dynamic power, normal-
ized by the real dynamic power.

. UsableParameters: The input parameters of a power model
should be readily available and monitored in server farms.
Typically, a 'Usable’ model would require parameters that
require no dedicated instrumentation code, has minimatove
heads, and can be collected from user space. A survey of
more thanl00 data centers revealed that they only monitor
high level system parameters that can be collected via stan-
dard tools (e.g, nmon).

. Predictable Input: In a virtualized data center, an applica-
tion is co-located with other applications on a shared phys-
ical server. With time, energy management actions would
move the applications and both the hosted server and the co-
located applications for a modeled application would cleang
A model withPredictable Inpuhas input parameters that ei-
ther do not change with reconfiguration or can be predicted
after reconfiguration. Further, based on history, one shoul
be able to make a short-term prediction of the parameter.

. Speed: Once built (or calibrated), a good power model should
be able to give an estimate of the power drawn by a candidate
placement ofN applications onM servers in a reasonable
time (of the order of a second or less).

. Heterogeneity Support: In a shared data center hosting het-

erogeneous applications, the model should be accurate for a

diverse set of workloads hosted on the same physical server.

Existing research in power modeling has tried to model paser
a function of system parameters independent of the apiolitat
running on the server. We argue in this paper against such an
application-oblivious power modeling approach and shoat #n
accurate and practical power model for heterogeneouscapipins
needs to be application aware. The motivation for an apjica

aware power model stems from two reasons:(i) System lewveépo
models based on easily available parameters like CPU attibiz
can have an error as high 88% for heterogeneous applications
(Fig. 1) (ii) More accurate system level power models areetlas
on event counters like memory bandwidth that are not availaip

all platforms (notUsablg. Even on platforms with available coun-
ters, they have associated overheads. We observed CPUeaderh
of more than5% on an IBM JS-22 blade with Power6 processors
using thehpmstat utility [6].

Most importantly, if an application moves from one serveane
other and the set of applications co-located with it chatfyenew
event counters can not be inferred easily from the moniteahaes
on the server it is currently placed on (rRredictablg. This is be-
cause on a target server, the applications would be coedaaith
a different set of applications (VMs) that may use non-giarted
resources (e.g, cache) in a different way than the VMs hasiede
previous server. This directly impacts event countersitil@amory
bandwidth and may indirectly impact other event countees In-
structions Dispatched per Second (IDS) as well. The comdek
of Predictabilityis the greatest obstacle in using a model based on
event counters. Hence, we explore a power model that takes th
throughput (number of jobs executed per second) of an atjait
as input in order to estimate power, as opposed to existiplicap
tion oblivious power models.

3. EXPERIMENTAL TESTBED AND PARAM-
ETERS

We conducted a large number of experiments to investigate th
key application and server parameters that dictate the poare
sumed by a server. We start by describing our experimersied.

3.1 Hardware Setup

The experiments were performed on 3 machines (2 blade server
and and 1 commodity rack server) detailed in Table 1. These ma
chines were used to run the tested applications directly droats
for virtual machines which hosted the applications. We & |
Active Energy Manager [4] to monitor power féiuestarl and
bluestar4 and a power meter at the plug forad-max.

3.2 Applications

Name Description Nature
TPC-W TPC-W with images CPU, Memory
TPC-W- TPC-W with noimages | CPU, Cache
SpecPowel| Benchmark from SPEC | CPU

Domino Mail server with 500 users Disk 1/O
Domino- Mail server with 10 users | Network
daxpy BLAS-1 routine CPU

fma Vector HPC Application | CPU

HPL LinPack Benchmark CPU

Table 2: ApplicationsUsed for (a) Design and (b) Validation

The goal of this work was to create a modeling methodology
that is applicable across a wide variety of workloads. Hemee
use enterprise applications to design our methodology dr@ H
applications to validate it. The disparity in the applicas used
for Design and Validation avoids any application biaseséep in
the methodology.

The first application we select for modeling is the SpecPower
benchmark [8]. SpecPower is the first industry-standard SPE
benchmark that evaluates the power and performance chesact
tics of volume server class computers. The benchmark esesrci
the CPUs, caches, memory hierarchy and the scalabilityarfesh



Name Processor Model L2 Memory | HyperVisor
bluestarl| Intel Xeon 2 x 3.2GHz | HS21 Bladecentef 2MB | 4 GB VMWare ESX 3.5
bluestar4| Intel Xeon 2 x 3.2GHz | HS21 Bladecentet 2MB | 4 GB VMWare ESX 3.5

mad-max| Intel Core 2 Duo 2GHz Desktop 4MB | 2GB Xen 3.2
Table 1. Hardware setup TPC-W
Domino SpecPower Domino- TPC-W-
180 T
memory processors (SMPs) and is a representative of typieal- wor .

intensive applications. SpecPower allows a "calibratialue” to

be set, which represents the unique maximum throughput &d w
set this value to 10115. This calibration value correspdodbe
maximum throughput obtainable on all three servers we usetin

L

Power in Watts

experiments. Jrew | 5

We used TPC-W [10], as a representative benchmark for a-trans 110 SPe e | o
actional workload that stresses CPU, but also has large myaise 100 & = - e D"“z'?:)' - o
age. We used the freely available implementation of TPC-akhfr Requests per second

SpecPower operations (100) per second

University of Wisconsin [9]. TPC-W uses a web server frontle
to handle the requests and a database server to processabasga ~ Figure 3: Power Vs Transaction Rate for all applications on
queries corresponding to the web requests. The applicativreds ~ Pluestar1. The vertical lines denote the throughput bound for
images in the HTML document that is sent in the response to the €ach application.

web request and these images create a large memory footrint
order to study applications that use cache well, we creasgiant

of TPC-W, termed TPC-W-, by disabling the images from being
loaded. This ensure that all the content is dynamically gegd,
leading to a small footprint. The throughput of TPC-W andasats
was modified by the use of the browsers think time variant.

The third application we selected was Lotus Domino [5]; d rea
1/0-bound application. Domino is an IBM collaboration appl
cation that provides enterprise e-mail, messaging, dirgcter-
vices, web services, and application services. A variaftarhino
(Domino-) simulates 10 users instead of 500. It was obsettvaid P(A;) = ai + Bidi 1)
the Domino application has a significant use of disks, hehise t
variant tries to rely less on disk and more on the OS page cé&ane
the validation experiments, we used HPC applications thiatrast
well with the applications used to design the methodologye W
used two vector-based routines (daxpy and fma) as well as HPL

thus cover the entire possible operating range for the sellie
observe that marginal (dynamic) power for any applicatiprhas

a linear relationship with application throughput). The actual
slope of the power-throughput curve varies across apitabut

the relationship can be expressed by a curve of the torm 3; \;

with error in dynamic power less thai?s for most (more than
90%) of the operating range (Fig. 3). Hence, we conclude that
an application throughput based power model is quite atearzd
can be captured as

Since the constants and 8 vary with each application, separate
calibration runs are required for each application on egeryer
type that the application is placed on. We note that the mogledis
us to infer only two coefficients, which can be done using tadd-c

a widely used Linpack implementation. All our applicaticansd bration runs. However, we recommend using multiple runstesed
their variants are listed in Table 2. simple linear regression [7] to estimate and3;. Once we deter-
o mine «; andg;, we can predict power by (i) first predicting if the
3.2.1 Application Parameter given throughput can be achieved and (ii) if yes, then use E¢m
We use application throughput or the number of jobs executed Predict the power. _ ) )
per second as the attribute to describe the applicationn@tien of We next investigated the reason behind the linear reldtipns
throughput is well defined for transactional applicaticike TPC- between marginal power and application throughput. Weemnj

W and Domino. The same notion can be trivially extended tglon turéd that resource consumption for jobs would increasesily
running batch HPC jobs in the following manner. For any batch ~ With throughput, resulting in the linear increase in powgarlier
n HPC jobs that are expected to complete in tifjave define the research suggests that the resource metrics of importanseriver
throughput of the HPC application ag7’, which may be lessthan ~ Power are CPU, memory, disk and network [21]. However, virtu
1j0b/second for long running jobs. This notion of throughput has ~ @lized server farms that use dynamic consolidation for panan-

been used for all HPC jobs considered in this paper. agement [31] require data to be stored on network disks s@fha
plications can be migrated. Hence, disk power is not reatigra-

4. APPLICATION-AWARE POWER MODEL- Ponent of server power and needs to be modeled separately. Fo

experiments involving TPC-W and variants, a separate datab

ING server is used and disks are network attached. HoweverlIfor a

We have conducted a large number of experiments to investi- other applications, we use local disks. The power usage ef th
gate the feasibility of an application-aware power modeé Miw memory component depends on memory bandwidth. On this plat-
present some of our key observations. form we did not have a counter for memory bandwidth and we used

the number of L2 cache misses per second measured using Opro-

file [25] as a proxy for memory bandwidth. L2 cache misses do no

account for any memory used through prefetching. However, w
We first explored the feasibility of estimating power drawn b~ were not interested in the actual estimate of memory usedvbut

a server running a single application on a server as a functio only needed to know if memory activity increased as throughp

4.1 Application Throughput Based Power Mod-
els

readily available application parameters like appliaatibrough- was increased. Since an increase in number of L2 cache nisses
put. For a set of applications, we run the application witiiéasing dicate an increase in memory bandwidth, this proxy was aabép
throughput and measure power (Fig. 3) till we reach satumathd to us.

throughput can not be increased any further. These expetsme Figure 4 confirms our conjecture that resource utilizatio@@U,
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tively. Further, we also rui’ PC-W on one or more virtual ma-

We also observe that the throughput bounds are a result ef spe chines such that the total throughput combined over all thiaat
cific resources. For example, SpecPower, Domino- and TP@W a machines equals the one obtained running natively. We obseat

bounded by CPU and Domino is bounded by disk usdgeC-W -
is a much more interesting case as it did not seem to be resourc
bounded by any of the resources but still reaches saturatidm
conjectured that a distributed application like TPC-WI@prC-W -

the power drawn for the same application throughput in@easth
the number of virtual machines. On the other hand, virtasiin
seems to have minimal impact on the power usage for SpecPower
workload (Fig. 5(b)). In order to understand the impact ofual-

may be bounded by other components and looked at the systemization better, we added one more applicaiGRC-W - to the mix.
logs of the database server that hosted the databageHor-11- We observed an even higher virtualization overhead TB/C-W -

. We found that the database server TaPC-W - was running at (Fig. 5). The findings made it very clear that power modeling
close t0100% CPU utilization. This observation underlines the oblivious of virtualization ratio made little sense and eeging on
importance of taking all components of a distributed agpion the application, the models need to be aware of the settimich
into account, while predicting the throughput bound of sactap- the application will be running.

plication. The observations emphasize that modeling p@sea . . . . .
function of application parameters is not only more uskimfily 100
but may capture the actual system load better than a modetibas
on a single metric like CPU utilization.

80

60

4.2 Virtualization-aware Power M odeling

Our first experiments aimed at characterizing the power draw
by a server running an application without virtualizatié¥e con-
cluded that application-level power modeling is feasibtenon-
virtualized systems. Modern Hypervisors use various agfm
tions to ensure that the Hypervisor overhead is fairly lonG&U- ) Operations (100) per second
intensive applications. However, virtualization has otheerheads ~ Figure6: CPU VsAggregated Transaction Rate for SpecPower
due to 1/O [18] and cache contention [32] and we now study the With different virtualization ratio on bluestarl
impact of the virtualization ratio (defined as the number iof v
tual machines on the server) on the power models. We run the We also conjectured that the increase in power due to vizamal
same application natively and at the same throughput divate tion was a result of higher resource consumption due toalida-
one or more virtual machines and study any difference in powe tion, while serving the same number of application reque3ts
consumed. Virtual machines can be assigned resourced) atéc validate this conjecture, we also measured the CPU uiiizdor
either dedicated or shared with other virtual machines. ifrfpact the same set of experiments. We observed (Fig. 6) that SpetPo
of virtualization is more intricate for shared resources] aence showed minimal increase in CPU as we increased the number of
we use virtual machines with shared resources in our studhate virtual machines running the application. On the other h@neC-
it more widely applicable. W - showed a marked increase in CPU utilization as we increased

We observed that the impact of virtualization depends on the the number of virtual machines (Fig. 7). This proved our eonj
application characteristics. Fig. 5(a) studies the powawd by ture that the increased power consumption was a result dehig
T PC-W onbluestar1 machine at various throughput running na-  resource consumption, due to virtualization overhead¥@uand

40

CPU utilization in %

Host
1VvM
2VM's
3 VM'?

100

20 B

0x X+

! ! !
40 60 80

ok L
0 20

120



cache contention. Further, the virtualization overheas ayplica-
tion dependent, stressing even more the need for applicatiare
power models.
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Figure 7: CPU Vs Aggregated Transaction Rate for TPC-W-
with different virtualization ratio on bluestar1
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We further tried to characterize the applications that shiglier
virtualization overhead as compared to applications thhtbi
lower overhead. We observe thigpec Power has low /O activity
(lower disk activity as well as memory activity in Fig. 4) asne-
pared toT' PC-W. It has been noted [18] that I/O instructions are
a prominent source of virtualization overhead. Howevernote
that T PC-W-, which has no images, also has low disk activity
but has the highest virtualization overhead amongst tieethappli-
cations studied. Hence, we needed to look beyond I/O actioit
understand this behavior.

It has been observed that HPC applications with moderagel siz
working set face cache contention due to virtualization abd

ESX and Xen. We observed thatFSX and Xen have differ-
ent overheads for 1/O intensive applicatioASRC-W). On Xen,
CPU overhead due to I/O is mainly proportional to the numlifer o
page flips (transfers) [18] and increasing the number of VM's
constant throughput doesn't increase the CPU overhead.h®n t
other handESX issues I/O requests that due to binary translation
are emulated in contexts whose contention only increastbstie
number of VM’s. However, in all cases, they conform to Eqgn. 2.
For lack of space, those plots are omitted in this paper.

4.3 Extending Power Models
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Figure 8. Power Vs Transaction Rate for TPC-W at different
frequency

In typical data centers, new servers get added over timege co
up with increased workload. Hence, they consist of serveas t
are of the same family and differ in minor versions, typigalhly
processor frequency. Hence, if we can use the power models of

200 250

serve a drop in performance [32]. Hence, we measured the L2 o|d servers to generate models for new servers, it allows bsitd

cache hit and miss rate for the modeled applications. Werebde
thatT PC-W - has a smaller working set size and is able to serve
most of its requests from cache (miss/hit ratio of 2%), whasre
SpecPower has a much larger Active Memory (indicative ofgela
working set) and a higher miss/hit ratio (about 8% in Table 3)
These observations extend the earlier result on cache impget-

ing virtualization overhead for HPC applications [32] tderprise
applications as well. The above observation also impactgepo
modeling as it implies that applications that have a smatking

set need to be aware of virtualization. Hence, we conclude th
applications with high I/O activity or low working set neeal be
aware of the virtualization ratio, while building their pemwmodels.
On the other hand, for applications characterized by largeking

set and low I/O activity, we may not need to build power model
separately for each virtualization ratio.

App L2 hit/inst | L2 miss/inst| Memory
TPC-W- 0.036 0.0006 57 MB
SpecPower 0.042 0.0033 781 MB

Table 3: CacheHit and Missratesfor TPC-W- and SpecPower

It is interesting to note that the overhead due to I/O agtiaitd
cache contention are qualitatively different. At low thgbput, I/O
intensive applications like TPC-W do not have much overh€au
the other hand, for multiple VM'sT PC-W - requires expensive
cache thrashing context switches even at low throughpdtrigao
significant overhead (Fig. 5). Since the impact of the viraagion
ratio on power varies across applications and can not betifjgdn
in a closed form, we build separate models of an application f
each virtualization ratio. Hence, we extend Eqn. 1 for arlieap
tion A; running at virtualization ratid as

P(Aiq) = aia+ Bi,aki 2)

We have conducted similar experiments for other (appbcesierver)
pairs at different virtualization ratios(frotnto 7) using both VMWare

the models with very few calibration runs. Hence, we perfedra
preliminary study to investigate the feasibility of extérglpower
models from one server to another.

To simulate multiple processors those belong to the same pro
cessor family but differ in frequency, we usegu freq to scale
the processor frequency. We then studied the impact on patver
various throughput values at all the available frequenckag. 8
shows the study fol” PC-W (other applications are omitted for
lack of space). We observed that, at least for CPU-bound-appl
cations likeT'PC-W and SpecPower, the power model does not
change (beyond the noise value) at different frequenciesieder,
as we increase or decrease CPU frequency, the available €&PU r
source changes and, as a result, the throughput bound staénk
we decrease the CPU frequency. Hence, our study indicads th
it is reasonable to use power model of an older server in thesa
family for newer servers in the same family, at least for CRUrizl
application. We are also conducting experiments on diffepeo-
cessor families with changing Cycle Per Instruction (CP$)part
of future work.

5. MODELING POWER USAGE OF MUL-
TIPLE APPLICATIONS

We have presented insights on modeling the power drawn by an
application as a function of application throughput on aveaas
well as virtualized server. The second model (Egn. 2) canpbe a
plied to servers that support a single application type. oV ex-
plore the possibility of building power estimation modeds $erver
clusters that support multiple applications, i.e., déf&rapplica-
tions may run on a shared server in their own virtual machines

Our study for building application-level power models fasin-
gle application brings out two important observationssty marginal
power drawn by a server has a linear relationship with themar
increase in application throughput. Secondly, for manyliegp
tions, the virtualization overhead needs to be factorechitesuild-



Application | Machine Model Bound/Type
TPC-W Bluestarl-host | 0.18*x + 125 190/CPU
TPC-W- Bluestarl-host | 0.05*x + 125 218/DB CPU
SpecPower| Bluestarl-host | 0.0044*x + 124 | 10115/Input
Domino Bluestarl-host | 0.16*x + 131 49/disk
Domino- Bluestarl-host | 0.15*x + 132 184/CPU
TPC-W Bluestarl-1VM| 0.197*x + 125 180

TPC-W mad-max-1VM| 0.056*x + 247 -

TPC-W- Bluestarl-1VM| 0.075*x + 128 -
SpecPower| Bluestarl-1VM| 0.0044*x + 124 | -
SpecPower| mad-max-1VM| 0.00162*x + 244| -

TPC-W Bluestarl-2VM| 0.25*x + 125 168

TPC-W mad-max-2VM | 0.115*x + 247 -

TPC-W- Bluestarl-2VM| 0.085*x + 131 -
SpecPower| Bluestarl-2VM| 0.0044*x + 124 | -
SpecPower| mad-max-2VM | 0.00162*x + 244| -

TPC-W- Bluestar1-3VM| 0.093*x + 134 -
SpecPower| Bluestarl-3VM| 0.0044*x + 124 | -

Table 4: Single Application Power Models. Models for mad-
max use Xen Hypervisor.

ing their power model. We conjecture that the power drawn $gta
of applications running on the same server can be inferredias
ear combination of the power models of each applicationingn
independently. We also conjecture that the power model dif in
vidual applications to be used for this linear combinatibawdd be
the model at the same virtualization ratio for the applarati

Our conjecture is based on the intuition (obtained from3#&).

that power consumed by different resources have a statip@om
nent, independent of usage and a dynamic component, that is d

rectly proportional to usage. Since the static componeipoofer
usage is consumed by all applications running independest|
well, we use only the largest static power among all co-kedatp-
plications for the static power usage of the consolidatedeseTo

estimate the dynamic power of the consolidated server, we co

bine the standalone dynamic power of all co-located apiptics,
at their respective throughputs. This is based on the intligih the
resource usage of any resource gets combined from all afiph.
If the applications use different resources, the comtbnetiappens
trivially. If applications use same resources, the intuitstill holds
due to (a) linearity of resource consumption with throughgd
(b) linearity of dynamic power consumption with resourcages
(Fig.3,4).

To elaborate the linear combination with an example, cansid

a server running two VMs, first with applicatiof; at throughput
A: and second with applicatiod; at throughput);, with power
m0d9|304i’2 +ﬂi,2)\i andOCj’Q +ﬂj72)\j at virtualization rati®2. The
linear combination estimates powerasx{a; 2, a; 2} + Aifi,2 +

A;Bj,2. We study both these hypothesis in this section. We use the

individual models for each application created in Sec. dr2tiis
linear combination and summarize them in Table. 4.
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Operations (100) per second (SpecPower)
Figure9: Power VsTransaction Ratefor TPC-W- + SpecPower
on bluestar1 with (i) real value, estimated using application-
level modelsfor (ii) native TPC-W- and native SpecPower, (iii)
1VM TPC-W-and 1 VM SpecPower, (iv) 2VM TPC-W- and 2
VM SpecPower, and (v) CPU utilization based model.

needed more for blade servers with a larger dynamic range lik

bluestarl instead of rack servers likewad-maz. However, in
both these cases, our experiments validate the conjediateat
linear combination of the models of individual applicasoat the
same level of virtualization can infer the power drawn by a ofi
applications on the same server.
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Figure 10: Power Vs Transaction Rate on mad-max for TPC-
W + SpecPower with (i) real value, estimated using (ii) CPU
utilization based model and (iii) application-level models of 2
VM TPC-W and 2 VM SpecPower.
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We study our conjecture for the heterogeneous applicatien s Operations (100) per second (SpecPower)
nario in Fig. 9 with TPC-W- and SpecPower. We observe an ex- Figurel1l: Power VsTransaction Rate on mad-max for TPC-W
pected value with an error in dynamic power less th&hof the + TPC-W- + SpecPower with (i) real value, estimated using (ii)
real value for most of the workload range. To strengthen &r o CPU utilization based model, and (iii)application-level models
servation, we experiment with a completely different seaipom- of 3VM TPC-W, 3VM TPC-W- and 3VM SpecPower.
modity rack server(mad-max) running<enHypervisor instead of We also observe that a utilization-based power model isfinsu
a production-leveblade serverbluestarl) running/MWare ESX ficient to estimate the power drawn by a server. In fact, we see
We study a combination df PC-W and SpecPower and find a that the utilization-based model has an error higher ¥ in
similar pattern (Fig. 10)bluestarl is an IBM HS-21 blade server  all cases for the bluestar machine, even approachiyg, mak-
with advanced power management features and has a much largeing it completely useless for predicting dynamic power. tRer,
dynamic power range, whereas mad-max is a rack server with awe also observe that taking the level of virtualization iat@ount
very limited dynamic power range. However, our observatioold is very important since the power model 6fPC-W- is heavily
for both these diverse cases. We do note that an accuratd imode dependent on the virtualization ratio. A model that is unanat



virtualization ratio may have an error as high3@#. Hence, we
conclude that taking the virtualization level of individupplica-
tions model into account is very important, especially itaist one

of the applications being co-located has a small working ©etr
observations hold as we increase the number of hosted apptis

as well (Fig. 11). Hence, we model the power for a mix of appli-
cations running on a shared server as a linear combinatidineof
models of individual applications in the following manner.

P(Ai,a+ Aisa+ -+ Asaa) = max{aii,d, .-, Qid,a}+

Bi1,aNi + -+ + Bid,dNid (3)
6. WATTAPP: AN APPLICATION AWARE
POWER METER

We now preseniVattApp an application aware power meter that
encapsulates our experimental observations.
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Figure 12: WattApp Architecture

The architecture dfVattAppis described in Fig. 120NattApphas
three distinct flows that execute independently of eachrothiee
first flow is called theModel Builderflow. In this flow, theModel
Builder reads the system and application logs (power, throughput
values) to create individual application-level power med@p-
plication Power Tablewith «; 4, 5;,4) of each applicatiord; for
each server type that hosts the application. Further, as daia is
logged, the models are continuously refined and enrichetdttade
more server types and/or virtualization ratios.

The second flow inWattAppis the Configuration Management
flow, executed by th€onfiguration Orchestrator The job of the
Configuration Orchestratois to refer to theApplication Power Ta-
ble and identify applications and server types that do not have a
power model at the required virtualization ratio and parfaali-
bration runs to generate the required log data. To achigsgettte
Configuration Orchestratodirects theVirtualization Managerto
copy the VM for the application on all the servers that cant hos
it and executes them at up-foworkload intensities. The aim of
this exercise is to identify the application throughput hdwn the
given server and to get at least two observations of powesuger
application throughput. The same set of experiments amateg
at the virtualization ratio that the application is intedde run at
(default is 5).

The Configuration Orchestratocan quickly create the power
model for servers that are not running production workldadadw-
ever, in an operational server farm, the biggest challesge per-
form the calibration runs without disrupting the normal &load.
W att App achieves this by a technique that we @dirver Steal-
ing by interfacing with aPower Manager The Power Manager
provides a list of idle servers and any servers that will beeddo
Standby mode due to power management. If a server that isgdan

to be switched to a standby mode belongs to a server type fiehwh
model data is not available for some applications, @uafigura-
tion Orchestratoregotiates deasefrom the Power Manageifor

the duration required to run the calibration runs. Once éagiired
runs are performedy att App returns the lease back and the server
can be switched to standby. Tt8&rver Stealingechnique allows

W att App to build theApplication Power Tablén an operational
server farm in an unobtrusive manner.

The third flow inWatt App is called theOracle flow and exe-
cuted by theDOracle Query Interfaceln theOracle flow any power
manager can use thuery Interfacewith a server, and a set of
applications along with their required throughput, akattAppre-
turns a power estimate. In cases where the required throtigap
not be supported within the resource bountfaftAppalso returns
a flag to pass this information. In tt@racle flow, WattAppuses
the Application Power Tabland Eqn. 3 to predict the power drawn
by any given set of applications on a specified sefattAppalso
uses a frequency-based normalizer if an estimate is rehforea
new server type (for which data is not available in the Table)
6.1 Implementation and Validation

We have implemented WattApp using VMWare ESX as the vir-
tualization manager on an IBM HS-21 Bladecenter chassis 4vit
blades. We re-use the two blades 'bluestarl and 'bluesteodi
the initial modeling and add two additional blades ’bluedtand
‘bluestar3’ in our managed environment. The two new blades u
Intel Xeon 5148 quad-core processor, with 2.33 GHz coraizaqgy.

The rest of the specifications are same as the earlier blAtieke
blades have a RAM of 3.4 GB and share a single datastore of size
160 GB. We use IBM Active Energy Manager to monitor power
[4] for the blade servers. THeower Managelis based on an ex-
tension of our earlier work [32, 31]. The server cluster hdhe
existing applications (TPC-W, Domino and SpecPower) a$ agel
three HPC applications. The first two applications @epy from
a HPC suite [20] andfma. The third application is a Linpack
benchmark called HPL [3] that has been extensively used imyma
performance studies. We use HPL withl a« 2 process grid and
vary the number of problems (jobs).
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We useWattAppto benchmark all the applications on all the
servers, which provides an upper bound estimate for 'model ¢
ation time’. SinceWattApponly needs to build power models for
individual applications (as opposed to all possible coratiams of
co-located applications), the number of calibration r@tgiired by
W att Appis linear in the number of applications. FurthBfatt App
uses one server of each server type to run concurrent cheract
tion of any given application ensuring a linear time. Hente
running time ofWattAppwas independent of the number of servers
in the server farm. This property ensures tétttAppis scalable
and hence can be used in large server farms. Further, foragach
plication, WattAppran no more than0 calibration runs, with each
run lasting aroun@® minutes. Note that the length of the run de-
pends on the time granularity at which the monitoring modhzle

80 100



report power numbers, which for IBM Active Energy Manager, i
1 minute. In our experiments, we never needed to go beyond
virtualization ratio and runs for each ratio and hence, the bench-
marking time for each application was arous@ minutes. For a
total of 6 applications, we needed a total time3hours to com-
pletely create the power models. Given that the differemhltmer

of server types in a server farm may be relatively sm&lhtt App

is very likely to get deasefor each server type usir§erver Steal-
ing to compute the power models in even less time.

We now investigate thé\ccuracyof WattApp. For lack of
space, we only present one study. To establish the appltgabi
of WattAppacross a wide variety of applications, we present a sce-
nario with the three new HPC applications that were not used d
ing the design ofWattApp During a period of low activity, the
Power Managerconsidered moving th€axpy, fma and HPL
application on the same server. As a result, it requedtadApp
for an estimate of the power consumed by the server to host the
applications. In this particular caségzpy had an entitlement of
0.5 of the server, wheragma andH P L had an entitlement @f. 25
each. Based on the estimate given, the applications wentLaly
placed onbluestar2, which is a different machine from the ones
used in our initial experiments (Sec. 4). Post reconfigomative
change the throughput of the applications and measure therpo
consumed by the server.

Fig. 13 shows the dynamic power (actual power - idle power)
drawn by the server after the applications were moved wiimgh
in application throughput. We observe tHatatt App is able to
predict the actual power drawn to withiii?” for the entire oper-
ating range, with an error of less thail” for more than half of
the operating range. To compare against the CPU Ultilizétased
method, we also build a model of server power versus CPU uti-
lization of the server. This model was derived from all thdiea
measurements of CPU utilization and power on the server. We o
serve that the CPU-based predictor has an error greateb€3an
for the entire operating range. As we have shown before jghas
direct consequence of the fact that the CPU utilization rhéxle
application-unaware, leading to inaccuracies with hgfeneous
applications. The case study further establishes thegitrerof
WattApp w.r.tAccuracy Usability, Predictable Input Speedand
Heterogenity Supporimaking it applicable to emerging clouds as
well as traditional data centers.

7. RELATED WORK AND DISCUSSION

Research in power modeling can be broadly classified into (i)
Simulator-based, (i) CPU Utilization-based (iii) Event perfor-
mance counters based and (iv) Coarse-grained. Table. &npses
summary of their relative strengths and weakness. Earlykivor
power modeling focused on simulators of various hardwatese
goal was a power-aware design of servers. Wattch [15] is alwid
used CPU power simulator whereas SoftWatt [22] estimate®po
for complete systems. These models are based on detaileitlyact
count registers and aksccuratebut are limited in terms oSpeed,
Usability andPredictable Input

Bellosa [14] address the problem of speed in simulatioretbas
models by proposing a model based on Instructions Dispdiocbe

across platforms led to power modeling based on readilyahlai
system parameters like CPU utilization [21]. A CPU utilinat
based model is currently the most popular power estimatiodain
used in practise [23, 27] and works well for estimating the im
pact of actions like workload redistribution for a fixed apption.
However, different applications make differing use of vasg CPU
units and other system resources like memory and a CPUatutiliz
tion model is useful only if the application used during petidn

is same as the one used during model building [30, 32, 31érInt
estingly, the workload-sensitive nature of CPU-based risoldas
been recently cited as a reason to go back to using detaitatt ev
counters in [29] for predicting processor and memory poveaige
under voltage scaling. A good comparison of various sydtmet
power models is presented in [28].

Early power management research used analytical powerlsnode
based on voltage and frequency [17], which are fast, but prdy
vide rough estimates. Coarse-grained estimates based dypih
and state (active, off) of the processor have been used jnHigx4v-
ever, with the increase in the dynamic power range of seft@tsa
more accurate power prediction method is needed. The wosk cl
est to ours is the power modeling in [19]. The authors createep
profiles for each application and use it to estimate the paolnasn
by a consolidated server hosting the applications. Howdverap-
plications are assumed to be in a stable state (a fixed thpotigin
our model) and the model ignores any impact due to virtuadina
Further, the authors use a CPU-based averaging technigueban
serve that their model may not be accurate for a mix of woddoa
where at least one workload is not CPU-dominated.

The lack of an accurate power model for heterogeneous server
and applications has been cited as the primary reason tateist
namic consolidation methodologies to sub-optimal alhong [32,
31]. Further, as observed in [31], the lack of an accurategpow
model makes the problem of enforcing a power budget on adhare
data center a challenging oné/attAppsignificantly enhances the
ability to estimate the power drawn by a shared data centerimg
heterogeneous applications, this providing this missiegein the
overall power management framework.

7.1 Discussion and Conclusion

We have investigated the problem of modeling power for loeter
geneous applications and servers in a virtualized servar. fave
propose an application throughput based power model aat-est
lish its Accuracy Usability, Predictable Input Speedand Hetero-
geneity SupportWe show that I/O activity and working set size are
important parameters that determine if virtualizationoraeeds to
be included during modeling. We conjecture and show expsrim
tally that linear combination of power models can be useddate
a power model for multiple applications hosted on the sameese
We present the architecture and implementation of an agifiic-
aware scalable power mefédratt App that uses only a linear num-
ber of experimental runs to create a power model with errss le
than5%.

We had also investigated the feasibility of building an &alon-
aware model using per-application CPU utilization as tipeiipa-
rameter in place of application throughput. In this work, pve-

Second (IDS) and memory bandwidth (accesses per second). Th ferred to use an application-aware application-level pomedel

model is fairly accurate to ascertain power consumed by mgmo
subsystem and reasonably accurate for processor poweevgow
performance event counters like memory bandwidth are reit-av
able on some platforms (e.g, IBM Power5) and expensive to-mon
itor on the platforms they are available on. Further, duedn-n
linear nature of some of these parameters, estimating thesrtar-

get server is non-trivial. The issues in translating systeomters

for two reasons: (i) In the managed server clusters we iigastd,
CPU utilization for each application was not monitored. Viweé
observed that application throughput is often the only patar
monitored in SLA-driven server clusters. The same is likgdy
ing to be the case for emerging clouds that provide apptinati
level resource abstractions. (ii) Application throughalso has the
advantage of accurately reflecting resource usage, as eppos



Method Accuracy | Usable Param$ Predictable Inpuf Speed| Heterogenity Suppor]
Simulator vV X X X V4
CPU-based N v v/ VvV X

Event Countery  /y/ X X N4 vV

Coarse X VvV vV Vv X

WattApp VvV VvV v VvV VYV

Table 5: Power Modeling M ethodol ogies

resource-specific metrics like CPU utilization that may iecicu-
rate for workload that uses other resources. Our detailpdrex
mental study validated our intuition. This has been inddpatly
noted by Chokt al. [19] as well. Further, if application throughput
is not available in a cluster, our technique can be extermietbtiel
power based on any other parameter that is (a) applicatiemea
and (b) accurately captures the resource usage of an appilica
thus underlining the applicability to a wide variety of datnters.
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