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Abstract- Recent advances have demonstrated the potential
benefits of coordinated management of thermal load in data
centers, including reduced cooling costs and improved resistance
to cooling system failures. A key unresolved obstacle to the
practical implementation of thermal load management is the
ability to predict the effects of workload distribution and cooling
configurations on temperatures within a data center enclosure.
The interactions between workload, cooling, and temperature
are dependent on complex factors that are unique to each
data center, including physical room layout, hardware power
consumption, and cooling capacity; this dictates an approach
that formulates management policies for each data center based
on these properties.
We propose and evaluate a simple, flexible method to infer a

detailed model of thermal behavior within a data center from
a stream of instrumentation data. This data - taken during
normal data center operation - includes continuous readings
taken from external temperature sensors, server instrumentation,
and computer room air conditioning units. Experimental results
from a representative data center show that automatic thermal
mapping can predict accurately the heat distribution resulting
from a given workload distribution and cooling configuration,
thereby removing the need for static or manual configuration of
thermal load management systems. We also demonstrate how our
approach adapts to preserve accuracy across changes to cluster
attributes that affect thermal behavior- such as cooling settings,
workload distribution, and power consumption.

I. INTRODUCTION

Power consumption and heat management have emerged as
key design challenges in creating new data center architectures.
In addition to the increased cooling costs resulting from larger
installations, heat dissipation can also adversely impact system
reliability and availability. This problem will be exacerbated
by ongoing trends towards greater consolidation and increased
density [1], [2]. For example, popular "blade" systems pack
more computing in the same volume, increasing heat densities
by up to a factor of seven in the next few years [2].

The growing importance of this problem has led to the
development of several thermal management solutions, both
at the facilities and at the IT (systems) level. Facilities-level
solutions include the development of better cooling solutions
both at the component level (e.g., better air conditioning units)
and at the data center level (e.g., aisle layout to improve cool-
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ing efficiency [3]). More recently, Patel et al. [4] have shown
that fine-grained cold air delivery based on a detailed thermal
profile of the data center can provide significant additional
efficiency improvements. Similarly, at the systems level, past
work has focused on power consumption and heat dissipation
at the component level (e.g., at the front-end servers [5],
[6]) and at the data center level (e.g., power-aware resource
provisioning [7], [8], [6], [9]). More recent work has focused
on fine-grained thermal control through temperature-aware
resource provisioning [10] and temperature-aware resource
throttling [1 1].
A key challenge in these and other future optimizations is

the need to predict the heat profile, the temperature at individ-
ual locations throughout the data center. This is determined by
the thermal topology of the data center. The thermal topology
describes how and where heat flows through a data center and
determines the heat profile for a given configuration. Once
the heat profile is known, it can be used to determine the
properties of that configuration; this includes cooling costs,
cooling efficiency, long-term component reliability, and the
number of individual servers in danger of triggering their
internal thermal "kill" switch (among others).

However, understanding the thermal topology and predicting
the heat profile is often complex and non-intuitive. The thermal
topology is a function of several factors, including the physical
topology of the room, the distribution of cooling, and the
heat generated by the individual servers (we discuss these
further in Section II). Furthermore, many of these parameters
change continuously during the day-to-day operation of the
data center and have non-linear interactions with the ther-
mal topology. Past work on thermal optimizations laid the
foundation for thermal management through the use of simple
methods. These include using either proxies or heuristics
i.e., using the overall power consumption [7] or a single-point
temperature [12] to characterize the "goodness" of the so-
lution, running time-consuming thermo-dynamics simulations,
or conducting elaborate calibration experiments requiring
the entire data center to be taken offline to evaluate the heat
profile for each configuration [10]. However, as optimizations
focus on power and cooling control at a finer granularity [1],
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it becomes more important to formulate better models of the
data center thermal topology, predicting the heat profile in real
time and at low cost.

Our work addresses this challenge by developing automated,
online, predictive thermal management for data centers. We
make two key contributions:
We demonstrate automated modeling of data center ther-

mal topology. Weatherman, our proof-of-concept prototype,
uses standard machine learning techniques to show that it is
possible to learn and predict the complexities of the thermal
topology of a 1000-plus-node data center using measurements
from day-to-day operations. The experimental results show
that our approach is accurate. Over 90% of our predictions
are within 0.87°C of the actual temperature, while achieving
more than a 10,000-fold improvement in running time.

Second, we discuss the benefits of an online approach to
predicting the heat profile for a given data center configura-
tion. In particular, we focus on a temperature-aware resource

provisioning algorithm that uses coordinate-space search in
conjunction with our model. Our algorithm performs as well as

the previously published best algorithm reducing cooling
costs by 13% to 25% during moderate to heavy data center
utilization while eliminating the "offline" requirements
of the prior work. In addition to cost savings, our model
enables a quantitative comparison between proposed workload
distributions, giving the data center owner greater flexibility to
optimize operations using multiple metrics.

Section II further discusses the challenges with modeling
thermal topologies and past work. Section III presents a formal
problem statement, while Section IV describes our approach
using machine learning methods. Section V discusses the
benefits from our model and its use in temperature-aware
workload distribution. Section VI concludes the paper.

II. MOTIVATION AND RELATED WORK

The goal of this work is to explore the feasibility of creating
a model that predicts how facilities components such as

computer room air conditioning (CRAC) units, the physical
layout of the data center, and IT components will affect
the heat profile of a data center. An accurate thermal topology
of a data center can:

Enable holistic IT-facilities scheduling. One of the signif-
icant advantages of a thermal topology model is the ability
to to quantify the total costs associated with a configuration.
Being able to measure the absolute differences in the costs,
as opposed to a simple relative ordering of configurations,
can help when considering holistic QoS-aware IT/facilities
optimizations [13] targeted at the total cost of ownership.

Increase hardware reliability. A recent study [3] indicated
that in order to avoid thermal redlining, a typical server should
have the air temperature at its front inlets be in the range of
20°C - 30°C. Every 10°C increase over 21°C decreases the
long-term reliability of electronics, particularly disk drives, by
50% [3], [14], [15].

Decrease cooling costs. In a 30,000 ft2 data center with
1000 standard computing racks, each consuming 10 kW, the

initial cost of purchasing and installing the CRAC units is $2 -

$5 million; with an average electricity cost of $100/MWhr, the
annual costs for cooling alone are $4 - $8 million [4].

Decrease response times to transients and emergencies.
Data center conditions can change rapidly. In data center
with high heat densities, severe transient conditions such
as those caused by utilization spikes [16], [17] or cooling
failure [10] can result in disruptive downtimes in a matter
of minutes or seconds.

Increase compaction and improve operational efficiencies.
A high ratio of cooling power to compute power limits
the compaction and consolidation possible in data centers,
correspondingly increasing the management costs.

A. Challenges

At a high level, we are attempting to model the injection,
flow, and extraction of hot air. The main obstacles to achieving
this goal are the non-intuitive nature of heat flow and non-

linear equations governing certain aspects of heat transfer.
Prior work demonstrated how the thermal effects of increased
server utilization could be spatially uncorrelated with that
server or group of servers [10]. Additionally, while some

parameters to fluid mechanics equations have linear effects
such as temperature and heat other parameters have non-

linear effects including air velocity and buoyancy.
If we can enumerate the primary factors that serve as inputs

(I) to the thermal topology of a data center (T) we can model
the effects of those factors on the resulting thermal map (M):

M = T(I)

Therefore, a robust model that accurately describes all linear
and non-linear thermal behavior within the data center can

predict values of M for all values of I.
A primary challenge in characterizing the thermal topology

is the variability of the numerous components in the data
center. For example, the power distribution is influenced by
the utilization pattern of the data center (which for most
Internet workloads is quite noisy) as well as the application
and resource usage characteristics of the workload. Several
factors affect the air-flow in the data center, including unin-
tentional obstructions to the air-flow from vents, open rack
doors, fan or CRAC failure, etc. In addition, intentional
variation to the cooling such as that proposed in [4] can also
change the thermal topology. Second-order variations such as

temperature-sensitive variations in power consumption and air-
flow properties as well variation in the speeds of the fan and
the associated variability in their heat dissipation adds other
variability to the thermal topology.

It is possible to calculate the exact thermal topology model
using three-dimensional numerical analysis solving for the
laws of thermodynamics; these are at the heart of computa-
tional fluid dynamics (CFD) applications [18]. CFD solvers
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use discretization techniques to transform the partial differen-
tial equations into algebraic form, iterating over the equation
solutions until it reaches a a suitable convergence level.

However, CFD models have several drawbacks that prevent
their use in online management algorithms. Both the initial
costs (model creation) and recurring costs (model execution)
of a CFD approach can take hours or days, depending on

the complexity of the data center model. The transformation
from differential equations to algebraic forms leads to a set of
partial differential equations that are highly coupled and non-

linear. Our desired method would produce an accurate answer

in an online fashion, rather than a perfect answer in an offline
fashion.

B. Related Work
Past work on data center thermal management took a

modular approach by addressing different classes of chal-
lenges separately. For example, several projects reduced data
center cooling costs using a variety of approaches, such as

optimizing cooling delivery [4], minimizing global power

consumptions [19], [7], [20], and efficient heat distribution [3],
[10], [8], [21]. Each of these methods approaches the problem
heuristically. Rather than calculate the complete thermal topol-
ogy of the data center, they select a data center property that
is associated with an efficient thermal topology such as low
server power consumption, a lower CRAC return temperature,
a uniform exhaust profile, or minimal mixing of hot and cold
air and alter the power or cooling profiles to optimize along
these specific metrics.

These selective approaches have obvious benefits and draw-
backs. The primary benefits are efficiency and simplicity,
both in the time required to create a model of how power

and cooling profiles affect the metric, and the accuracy of
predicting metric values given a power and cooling profile.
For example, our work in temperature-aware workload place-
ment [10] divides the data center into "pods" and measures

the global level of mixing between cold air and the hot air
coming from servers in each pod. Even though this approach
is agnostic as to the location of such mixing, it enables
significant data center cooling cost savings.
The primary drawback, though, is an incomplete view of

the thermal topology. These approaches are state of the art
heuristic methods, and are feasible because they assume a

portion of the power or cooling profile is fixed, or they
make simplifying assumptions regarding secondary effects.
For example, [10] assumes that, as the number of utilized
servers increases, the temperature of the air supplied by the
CRAC units will change uniformly; that is, all CRAC units
supply cold air at the same temperature, and that temperature
changes simultaneously on all units. Any changes to individual
supply temperatures or the fan speed of any CRAC unit will
alter the amount of mixing that occurs between the incoming
cold air and the hot exhaust from servers, thereby changing the
relative efficiencies of the servers. The workload distribution
algorithm would need a complete new set of input data for its
heuristic.

The other consequence of the incomplete thermal topology
is that, while these prior approaches can help determine the
qualitative benefits across multiple configurations (such as a

ranked list of servers, ordered by how much they increase
cooling costs), they cannot quantify the final effects of their
decisions. In some optimizations it may be beneficial to choose
a configuration with slightly inferior thermal properties so that
a different metric (e.g., locality, network congestion) can be
optimized for a better overall total cost of ownership.

III. PROBLEM FORMULATION

Before selecting an appropriate technique to model data
center thermal topology, we must formalize our problem state-
ment. In this section we define the relevant model parameters;
that is parameters that are necessary to construct any thermal
topology, independent of the method chosen to implement
that model. In Section IV we discuss the implementation
parameters that are specific to our prototype.

A. Problem Statement
In Section I1-A we described the thermal topology as being

a function by which we predict the thermal map that will result
from a given set of input factors:

M = T(I)

In order to formulate a problem statement, we must enu-

merate the variables in I that affect the thermal topology, and
what instrumentation values are sufficient to provide a useful
M.

There are three primary input factors:
Workload distribution (W), which includes utilization data

for any hardware that produces measurable amounts of heat.
Servers, storage, network switches, and other hardware falls
into this category. In practice, we can obtain this data
including, but not limited to, CPU utilization, disk I/O rates
and rotate speed, memory I/O rates, and network activity
from any number of available instrumentation infrastructures.

Cooling configuration (C) of the room, including the num-

ber and distribution of CRAC units, their air flow velocity, and
the temperature of the air they supply to the data center. This
configuration also includes non-CRAC factors that affect air
flow in a data center, including fan speeds of the servers.

Physical topology (P). The physical topology consists of the
objects in the room, including the locations of server racks,
walls, doors, and slotted floor tiles.
We represent each of these factors as a one-dimensional

array of values. For example, if there are X servers in the
data center, we represent W as

W = [WOWI ... Wx]

We make a similar generalization for the thermal map,

specifying a set of instrumentation values that provide an
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accurate representation of the map. This results in our formal
problem statement:

M T(W,C,P)

The set of values contained in W, C, and P are the input
to our function, and the set of values contained in M are our

output.

IV. WEATHERMAN

This section discusses the specific input parameters, math-
ematical methods, source data, and software systems used
to implement Weatherman, our prototype model construction
application.

A. Data Collection

The first step in implementing Weatherman is to collect the
data necessary to construct our model.

Since the model is constructed off-line, it is not necessary

to aggregate the data as readings are taken; it is sufficient
to timestamp the reading as it is taken for later aggregation
and correlation. Server utilization is available through any

number of standard monitoring infrastructures [22], [23], [24].
CRAC data such as fan speeds and air temperature is
available through instrumentation infrastructures on modem
systems [25]. The output data sensors that measure ambient
air temperature can be collected through any number of
available hardware and software infrastructures [26], [25].

Prior to model construction, we tag the readings with meta-
data to indicate the object of origin. For input data, this will
be the server or CRAC from which the readings came. The
server of origin for output data will come from the external
temperature sensor that is located directly in front of that
server.

B. Machine Learning

Exact solutions using CFD methods are too complex and
time-consuming for online scheduling. Therefore, we turn
to methods that provide approximate solutions. The field
of machine learning contains several methods for finding
approximate solutions of complex problems with large data
sets. Additionally, there are several "off-the-shelf" machine
learning development libraries, enabling us to leverage these
techniques rapidly. In essence, our thermal topology model
"learns" how the values of dynamic input parameters affect
heat flow, allowing us to predict the heat profile that results
from a given power and cooling profile.
The first step in using machine learning is identifying

the necessary properties of our thermal topology, and using
these properties to select an effective learning technique. Our
technique must be capable of producing outputs that fall
within a continuous range and can be the product of non-

linear relationships between the inputs; these criteria rule out
classification techniques such as decision trees, tree induction
algorithms, and propositional learning systems.

Neural nets, on the other hand, contain all the necessary

properties [27], [28]. Additionally, they present a reasonable
analogy to our thermal topology, as input values "flow"
through the net to the output values in much the same way

that air flows through our data center. Just as the strength
of the relationship between particular input and output values
of a neural net depends on the internal structure of the net,
the correlation between air injection and observed temperature
depends on the structure of the data center.

In Weatherman, the data sets are pairs of power profiles
and heat profiles, taken while the data center is at a temporary
steady-state. The strength of this approach is that it allows us to
add measurements to our training set during normal operation
of the data center. Furthermore, the more often we operate
at a given utilization level, and the more unique workload
distributions we capture at that utilization level, the better the
model "learns" the thermal topology for that utilization level.
For example, a data center that hosts long-running batch jobs
using a scheduler that deploys jobs randomly can collect a

significant number of unique power and heat profiles. In turn,
the model uses these unique pairings to predict heat profiles
for all possible power profiles without the need to "see" every

possible unique power profile.
It is important to note that we are not claiming neural

nets are the best modeling method. Instead we show that, as

an instance of a machine-learning-based approach, they are

capable of producing models that have the properties we desire
in our solution. Ultimately, newer methods such as support
vector machines may produce results superior to those
possible with neural networks. However, this work should be
seen as only the first attempt to merge thermal mapping with
machine learning techniques.

C. Implementation

There are several off-the-shelf neural net development li-
braries, enabling us to leverage these techniques rapidly. We
selected the Fast Artificial Neural Net (FANN) development
library [29]. FANN implements standard neural net training
and execution functions, allowing us to focus on exploring
effective methods of constructing our models rather than
routine implementation details.
Weatherman leverages the properties of neural nets to pre-

dict how heat is generated and flows within the data center. For
a data center X workload parameters, Y cooling settings, and
Z room layout measurements, there will be N = X + Y + Z
inputs to our model. The output of our model will be the M
measurements that comprise our thermal map.

Between the input layer and the output layer, there are L
internal or hidden layers. Each layer contains a set of elements
known as neurons. Each neuron i accepts Ni inputs from the
previous layer, applies a weighting factor Wi,a to each input
xa, and uses the sum of the weighted inputs as the x-value
for its activation function, g. The result of this function, yi is
passed to neurons in the next layer.
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Fig. 1. Effects of steepness on two sigmoid functions: s = 0.5, 82 = 2.0.
Smaller s-values provide a greater ability to make subtle distinctions during
training, but can lead to over-training.

Ni

Yi = E( wi,a xa)

a=O

Of the three activation functions implemented in the FANN
library, the sigmoid activation function meets the necessary

criteria. It only allows positive output values from neurons

and outputs contiguous values.

g(x)
1

1+ e-(X.S)

The sigmoid parameter s controls the steepness of the output
slope, and is an implementation parameter of interest. Figure 1

shows the shape of two sigmoid functions with different s-

parameters. An overly steep sigmoid function requires precise
inputs at all stages of the neural net to produce accurate
outputs; small errors grow as they pass through the network,
producing incorrect outputs. However, a sigmoid function that
is "flat" may result in an overly trained network. In other
words, it can make accurate predictions for inputs similar to
previously-seen data, but is not general enough to provide
accurate answers for new input sets.

D. Preprocessing, Training, Testing, and Validation
The first stage in constructing our model is preprocessing

our input and output data sets. Given that output values from
the net will be in the range [0,1] due to the sigmoid
function we scale all input and output values to fall within
this range. This provides consistency between input and output
data, and allows the model to predict a wide range of thermal
map temperatures.

Next, we select a set of values for our model and implemen-
tation parameters and construct a neural net by calculating the
weights for each input to each neuron. This phase of creating
a single neural net is known as training the network. The
training phase involves providing a set of inputs and outputs,

and adjusting the weights to minimize the mean square error

(MSE) between the predicted outputs and actual outputs over

the entire set of training data.
Training is, in essence, an optimization problem that min-

imizes the MSE. It can leverage techniques such as genetic
algorithms, simulated annealing, or back-propagation. The
back-propagation algorithm in FANN works by calculating the
MSE at the output neurons, and adjusting the weights through
the layers back to the input neurons. FANN trains on each
individual input/output pair and performing back-propagation
sequentially, rather than training on the combined data. This
method results in faster training times, but makes the ordering
of the data sets significant.

This iterative training process continues until the MSE
reaches a user-defined minimum threshold or the training pro-

cess has executed a specified number of iterations. Therefore,
MSE is an implementation parameter of interest.
The third stage of model construction and the second

stage in constructing a single neural net is testing the
network. Testing involves using the neural net to predict the
outputs for a given set of inputs that were not present in the
training data. Testing examines to what extent the neural net
is generally applicable, and that the training session did not
create a net that is overly trained to inputs it has already seen.

Finally, we quantify the suitability of a given set of model
and implementation parameters by calculating the sum of
squared error (SSE) across multiple neural nets. A small SSE
indicates the model and implementation parameters generate
suitably accurate models. Using standard analysis of variance
techniques, we can isolate the effects of parameter selection
on the accuracy of our models.

V. RESULTS

We now present the results using Weatherman to learn
a thermal topology. We describe the training process, and
demonstrate Weatherman's ability to predict the heat profile
resulting from new workload distributions.

A. Data Center Simulations

We study a typical medium-sized data center, as shown
in Figure 2. The data center contains four rows of seven

racks, containing a total of 1120 servers. The data center has
alternating "hot" and "cold" aisles. The cold aisles, B and D,
have vented floor tiles that direct cold air upward towards the
server inlets. The servers eject hot air into the remaining aisles:
A, C, and E. The data center also contains four CRAC units.
Each CRAC pushes air chilled to 15°C into the plenum at a

rate of 10,000 ftin.m The CRAC fans consume 10 kW each.
Each 1U server has a measured power consumption of

150W when idle and 285W with both CPUs at 100% utiliza-
tion. The total power consumed and heat generated by the data
center is 168 kW while idle and 319.2 kW at full utilization.
Percent utilization is measured as the number of machines that
are running a workload. For example, when 672 of the 1120
servers are using both their CPUs at 100% and the other 448
are idle, the data center is at 60% utilization.
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Fig. 2. Data center layout, containing 1120 servers in four rows of seven

racks. The racks are arranged in a standard hot-aisle/cold-aisle configura-
tion [3]. Four CRAC units push cold air into a plenum, which then enters the
room through floor vents in aisles B and D. Servers eject hot air into aisles
A, C, and E.

IDI
A
B |

D _

Parameter
Block Size
KW Scale
Target MSE
Sigmoid

P1
4

200
o-,5,

I* 10-4

P2
10

300
5 10-5
5 10-4

P3
20

400
2.5 10 4
2.5 10 3

TABLE I

THE LIST OF MODEL PARAMETERS (A) AND IMPLEMENTATION

PARAMETERS (B, C AND D), AND THE LIST OF POSSIBLE VALUES WE

ASSIGN TO THEM DURING TRAINING.

Ideally, to validate accuracy, we would like to compare the
heat profile from our model with that from instrumentation
of a real data center. Given the costs and difficulties of
instrumenting and performing experiments on this sized data
center, we instead used the CFD approach discussed earlier
with Flovent [18], a commercially available simulator. At the
conclusion of each simulation, Flovent provides the inlet and
exhaust temperature for each object in the data center. Previous
work validated the accuracy of Flovent-based simulations with
experiments on a real data center [12].

B. Configuration
The first step in constructing our model is to obtain the data

for the training sets. From previous work [10], [12], we had a

library of nearly 360 Flovent runs which tested over 25 unique
workload distribution algorithms at multiple levels of data
center utilization. We selected 75 simulations as representing
how an actual data center might distribute batch workloads of
varying sizes. Data from the remaining experiments was used
to test the accuracy of our models.
We selected a neural net configuration after discussing the

system requirements with an Al researcher. All the neural nets
we trained consisted of four layers: one input layer, two hidden
layers, and one output layer. This configuration allows the
nets to capture the complex, non-linear thermal relationships

Order % of VarianCe
ABCD 19.2
ABD 10.2
AB 10.0
BCD 8.7
ABC 8.7
ACD 7.8
CD 5.7
AD 5.3
BC 5.2
BD 5.2
AC 4.5
B 3.7
D 3.2
C 1.8
A 0.8

TABLE II

BREAKDOWN OF VARIANCE IN MODEL ACCURACY BY PARAMETER

INTERACTIONS; SEE TABLE I FOR PARAMETER NAMES AND VALUES.

inherent in the data center environment. The size of the input
layer is dependent on the number of servers, the block size
(parameter A), and the number of CRAC units. The two hidden
layers are each twice the size of the input layer. Finally, the
output layer has a neuron for each temperature we would like
to predict. In our model, this translates to one neuron for each
block.

Given that a model which represented each server with a

single input would be too large for our four-layer net it
would contain 6.3 trillion neurons we divided the servers

into contiguous blocks. The value of each input neuron was

the sum of the power consumed by all servers in that block.
We then divide the kilowatts consumed by each block by a

scaling factor, as described in Section IV-C. This simplification
is based on the assumption that the heat generated by adjacent
servers a 1U server is 1.75" tall are not significant
compared to other data center properties.

Table I specifies the model and implementation parameters
we explored in creating Weatherman models; in all, we trained
81 models. For each parameter we attempted to select one

value that was overly aggressive and likely to result in an

overly-trained net, one value that would result in a significantly
less accurate net, and one "ideal" target value. If our assump-

tions regarding target accuracy, block size, or scaling were

invalid, an analysis of the results would indicate a statistically
significant difference in the accuracy of the nets that were

trained using those parameters.

C. Accuracy

Table II shows the sensitivity of our models to changes
in parameter values. Changing an individual parameter has
little effect on the accuracy of a model; changing multiple
parameters in concert accounts for the most variance in model
accuracy. For example, simultaneous changes in block size
(A), the target MSE (C) and the sigmoid exponent (D) account
for 7.8% of the variance in model accuracy.
The model we ultimately selected has a 4U block size, a

160

176

I1



30

28

a1)

5.

a1)
0-

E

a)

1--

0

.0

26 _

24 _

22 _

20 _

18 _

16 _

14
14 16 18 20 22 24 26

Actual Temperature (C)

Fig. 3. Scatter-plot of predicted values versus actual values. J

would create a straight line with a slope of one. Our predicti(
across the 15°C range of values.

U)

0

70

a1)

0-

0~a1)
C1)a)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.5 1 1.5 2

Absolute Prediction Error (C)

Fig. 4. CDF of the error between actual and predicted value
predictions are accurate within 0.87°C; the median error is (

200 KW scaling value, and small MSE and sigi
This produces a model that is accurate and a

how subtle differences in the input values affects
profile. Figure 3 shows a scatter plot of predicted
value distribution versus the actual distribution fof
experiments (a total of 313,600 data points), wt

shows a CDF of the accuracy of our predictions. (
our predictions are within 0.5°C, and 92% are ah

Given that the accuracy of most hardware
sensors is within 1.0°C [26], this demonstrate
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is within the margin of error for off-the-shelf
sensors. To our knowledge, ours is the first w(
that such an approach is feasible, using data av
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D. Workload Placement
Here we describe one possible use of our thermal topology:

temperature-aware workload placement. We provide a brief
background in the thermodynamics of cooling cycles and how
we calculate cooling costs. We then discuss how to leverage
the thermal topology in selecting servers that lead to reduced
cooling costs.

1) Thermodynamics: The efficiency of a cooling cycle is
quantified by a Coefficient ofPerformance (COP). The COP is
the ratio of heat removed (Q) to the amount of work necessary

(W) to remove that heat. Conversely, a larger COP indicates
a more efficient process, requiring less work to remove a

constant amount of heat.

Q
A perfect model COP
)flS are accurate

However, the COP for a cooling cycle is not constant, increas-
ing with the temperature of the air the CRAC unit pushes into
the plenum. By raising the temperature of the air supplied to
the room, we operate the CRAC units more efficiently. For
example, if air returns to the CRAC unit at 20°C and we

remove 10 kW of heat, cooling that air to 15°C, we expend
5.26 kW. However, if we raise the plenum supply temperature
to 20°C, everything in the data center warms by 5°C. Cooling
the same volume of air to 20°C removes the same 10 kW of
heat, but only expends 3.23 kW; this is a power savings of
almost 40%.

For a thorough discussion of the relevant thermodynamics,
see [10].

2) Calculating Cooling Costs: We calculate the cooling
costs for each run based on a maximum safe server inlet
temperature, Tsafen of 25°C, and the maximum observed
server inlet temperature, max We adjust the CRAC supply

2.5 3 temperature, Ts,p by Tadj, where

s. Over 90% of T Tn i
D.22 C. ad s max

If Tadj is negative, it indicates that a server inlet exceeds
our maximum safe temperature. In response, we lower Ts5p
to bring the servers back below the system redline level. Our

moid values. cooling costs can be calculated as
[ble to learn
i the thermal C QPfan
temperature COP(T = Tsup + Tadj)
rour 280 test where Q is the amount of power the servers consume,

iile Figure 4 COP(T = Tsup + Tadj) is our COP at Tsup + Tadj, and
Over 75% of Pfan is the total power required to drive the CRAC fans.
iithin 1.0 C. 3) Baseline Algorithms: We study three workload distri-

temperature bution algorithms as points of comparison to our thermal-
es that it is topology-based approach. UNIFORMWORKLOAD takes the
Lose accuracy total power consumption of the N servers in the data center,
temperature and assigns h of that power to each server. UNIFORM-
ork to prove WORKLOAD emulates the behavior of a random scheduler
iailable from over time, as each server is equally likely to use the same

amount of power over a long enough time window.
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MINHR and MAxHR are the best and worst workload
distributions as described in [10]. They attempt to minimize
and maximize, respectively, the amount of hot exhaust air that
mixes with the cold air streams coming from the CRAC units.

4) Using Weatherman for Workload Placement: The diffi-
culty in using the thermal topology to select a desirable set
of servers for a given data center utilization is that we are

attempting to "invert" the topology. Instead of using a known
power profile to calculate a heat profile, we are attempting to
discover an unknown power profile that has a desirable heat
profile. For any workload that uses N of the M servers in
the data center, there are (M) possible unique power profiles;
for example, even if we constrain ourselves to use servers in
blocks of five all five are either used or idle there are

over 1066 possible unique power profiles at 50% utilization.
We are faced with a new challenge, in that we must use a

heuristic to search this space to locate a reasonable power

profile.

The method we selected is a coordinate-space search, a

two-stage workload placement heuristic. In the first stage we

calculate the cooling costs at the initial state; depending on

the data center owner's policy, this could involve having all
machine sitting on but idle, or having all machines turned off.
We then calculate the cooling costs at this initial state.

The second stage consists of selecting on which servers

we will place our workload. We maintain two lists: an active
list and an idle list. The active list contains the current set
of servers we will use and is initially empty, while the idle
list initially contains all servers. We operate at the granularity
of a server block, as defined in Table I. In each iteration of
our search, we determine which block of servers in the idle
list would if utilized result in the smallest increase in
cooling costs. We can perform each iteration through a simple
linear scan of the current servers in the idle list. We then add
the selected block of servers to the active list and begin a new

iteration. The search terminates when the active list contains
enough servers to run our workload.

Our heuristic has several desirable properties. First, its
runtime is O(N M), significantly smaller than (M). Second,
it is deterministic; this allows us to preprocess the results for a

set of discrete utilization levels. Third, it creates a ranked list
of servers. This simplifies the process of integrating the results
of our workload placement algorithm with existing tools, such
as batch queues.

5) Cooling Costs: Figures 5 and 6 demonstrate the effec-
tiveness of using thermal topology for data center workload
placement. Note that workload distributions based on predic-
tions using a thermal topology reduce hot air recirculation
as much as if not more so than MINHR, which uses

extensive a priori knowledge specifically for the purpose of
reducing such recirculation. Furthermore, our distribution al-
gorithm results in cooling costs comparable to those produced
by MINHR, and Weatherman achieves a 13% - 25% reduction
in cooling costs over the UNIFORMWORKLOAD algorithm.
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Fig. 5. Heat recirculation for our three baseline algorithms and our thermal-
topology-based algorithm. Weatherman reduces the recirculation of hot air as

well as, if not better than, the MINHR algorithm.
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Fig. 6. Cooling costs for our three baseline algorithms and our thermal-
topology-based algorithm. The Weatherman-based workload placement algo-
rithm achieves savings comparable to the previous best in temperature-aware
workload placement.

E. Discussion

1) Workload Placement Observations: The differences in
cooling costs between MINHR and Weatherman-based work-
load placement are due to two primary considerations.

First, Weatherman is a generalized method for making quan-

titative predictions about data center conditions, while MINHR
is a specialized and qualitative workload placement algorithm.
The workload placement component of Weatherman is limited
by the accuracy of its model and the search heuristic.

Our workload placement heuristic assumes the computer
infrastructure only had two power states: idle and used.
However, many data center management infrastructure com-

ponents such as networked power switches, blade control
planes, and Wake-On-LAN-enabled Ethernet cards allow us

to consider "off" as another power state. Combining Weather-
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man with more sophisticated placement heuristics can leverage
additional power states and enable greater power savings.

Furthermore, it is likely that superior modeling and search
methods would yield better results. Yet even with off-the-shelf
neural net software and greedy search algorithms, Weatherman
performs comparably to a specialized placement algorithm.

Second, these Weatherman models use less data 75
simulations than the source data for MINHR 112
simulations. Adding training data that represents a broader
range of workload placement combinations would produce
better models, allowing Weatherman to predict a more accurate
thermal map.

2) Instrumentation: The work discussed in this paper as-

sumes an instrumentation infrastructure in the data center that
can provide accurate temperature and power readings at a fine
granularity. Given that the data used to construct the models
we analyzed were from a CFD simulation, we had access to
temperature readings with three decimal places at arbitrary
locations within the model. These two temperature instrumen-
tation properties accuracy and extensive coverage do not
exist in current data centers, and would degrade the quality of
source data available to construct Weatherman models.
While we are uncertain how the "noise" in the source data

stream would degrade the quality of Weatherman models, we

feel there are reasonable mitigating factors. Fundamentally,
machine learning methods are useful in scenarios where either
the source data or the relationships between data points are

non-intuitive, complex, or not accurate 100% of the time.
Current efforts in data center instrumentation aim to reduce the
granularity of temperature sensor coverage by using machine
learning techniques to infer the ambient temperature in front
of a server. Temperature instrumentation, both off-the-shelf
hardware sensors and the machine learning software solution,
does not introduce a systematic bias in the source data. Addi-
tionally, more sophisticated modeling methods and increased
training and test data could offset errors in the underlying
instrumentation.

VI. CONCLUSION

Cooling and heat management are fast becoming the key
limiters for emerging data center environments. As data centers
grow during the foreseeable future, we must expand our under-
standing of their thermal properties beyond simple heuristics-
based techniques.

In this paper we explore factors that motivate modeling the
complete thermal topology of a data center. We demonstrate a

simple method by which one may construct these models using
existing instrumentation culled from the day-to-day operation
of a representative data center. The software used to construct
these models leverages simple, off-the-shelf modules. The
resulting accuracy of these models our predictions are

within 1.0°C of actual values over 92% of the time show
that even an naive approach is capable of yielding accurate
predictions. Finally, we demonstrate that simple heuristics to
search the large space of possible workload distributions result
in energy-efficient solutions. We were able to improve upon

existing heuristic-based workload distribution algorithms that
were oblivious to the thermal topology and based management
decisions on the metric of global heat recirculation.
Though we demonstrate the benefits of using Weatherman

to minimize cooling costs, our models are also applicable to
scenarios such as graceful degradation under thermal emer-

gencies. In these cases, thermal-topology-aware measures can

improve the response to failures and emergencies. Similarly,
the principles underlying our heuristics can be leveraged in
the context of dynamic control algorithms.

Overall, our work demonstrates that it is possible to have ac-

curate, automated, online, and cost-effective thermal topology
prediction. Most importantly, we provide the ability to make
quantitative predictions as to the results of workload distribu-
tion and cooling decisions. To the best of our knowledge, our

work is the first to demonstrate this. Our results demonstrate
that such models can be beneficial in a variety of ways

including improving previously-proposed techniques as well
as enabling new approaches to data center heat management.
As the problem of heat management becomes more and more

critical, we believe that these and more sophisticated models
will be an integral part of future designs.
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