
Containers:
Design, Application & Hands-on

CS 695 - Presentation

Getting Your Attention !

• Today’s talk will be applicable to many domains in CS

 Cloud providers – IAAS, PAAS

 HPC and Big Data

 Support for heavy compute in ML

 Application development

 Resource accounting

• Hot topic in virtualization and app development

• Wide area to explore for your CS695 projects

2

Introduction
• IAAS – Provides resources as service
• Virtual machines (VM) helps resource

 Partitioning
 Scaling

3

Issues with VM-based IAAS

• Memory for each VM’s OS
 VM allocates memory for an OS leading to additional use of memory if host OS is same

• Start up latency

 Booting the OS from power off causes delays

• Dual control loop

 Scheduling for each resource happens at guest and host, leading to delays

• Complete hardware stack emulation
 Full virtualization requires emulation of hardware which utilizes compute resources

The issues mentioned above leads to overheads which in turn leads to bad cost-
benefit ratios which adversely affects customers by overpricing services offer by IAAS

4

Requirements of IAAS provider

Desired features for a Virtual Environment (VE)

1. Resource control

 Limit the amount of resource being utilized

2. Isolation
 Running of application in one VE shouldn’t be affect by the other VEs executing

3. Accounting of resource
 Each resource utilized by an VE must be accountable

4. Resource provisioning
 Deterministic – Maintain desired behavior
 Elastic – Change resources provisioned (if desired)

5. Reuse of host OS functionality
 Reusing host features whenever possible to avoid overheads when enforcing above

5

Container

“ Container is a virtual environment that contains a set of
processes grouped along with its dependent resources into a

single logical OS entity. “

 Also known as OS-Virtualization (Reason: Next Slide)

6

7

Reference: [16]

8

Control Groups (cgroups)

• Resource controller for each resource
• 12 different subsystems – CPU, memory etc.
• Perform Accounting
• Enforcing resource Restriction
• Follows hierarchy
• User space API – pseudo file-system

9

Reference: [1]

Situation

• You have 5 processes (PIDs 1-5) and you wish to divide them into two
groups of processes with following constrains

 Group 1

 PIDs: 1,2
 4 CPUs, 4GB RAM, 2x Disk access rate

 Group 2
 PIDs: 3, 4, 5
 1 CPU, 4GB RAM, 1x Disk access rate

• Also you must be able to track their resource usage for each group

10

Fig: Control groups illustration using 3 controllers

11

LABELS

Violet:
Resource controller

Green:
Kernel Data structures

Blue:
Pointers for group 1

Blue:
Pointers for group 2

Black Boxes:
Directories used to
manage cgroup nodes

• Demo with memory (and cpu depending on time) cgroup

• Creating process attaching to cgroup, accounting, and setting limit

12

Namespaces

• Isolated system views, 6 namespaces, Each namespaces has multiple
isolated environments.

• Each container is attached to 1 isolated namespace in all 6 types (similar
to cgroups)

1. Mount – Each container its own view of system files
2. PID – Container processes are isolated from other container processes
3. Network – Only aware of its network resources
4. IPC – IPC communication local to container
5. UTS – Host names and domain names can be different
6. User – Users in each container are local

• API – passing flags to clone()

13

Reference: [2], [3]

Situation

A situation where you have N processes, and you wish to isolate them from
other processes in the system in such a way that,

 Our processes must not be able to see/interact with other processes
in the system

 We have our own range of PIDs for our processes

14

15

Fig: Example of PID Namespace in which pids 6,8,9 in parent map to 1,2,3 in child

16

Fig: Kernel Data structure modifications to account for
cgroups and namespaces

LABELS

Orange
Cgroup/subsystem

Green
Namespaces

Container Disk Images

• Provides new mount point – avoid changing data of host
• New ROOTFS – mount namespace
• Smaller than the normal OS-disk image – No kernel
• Disk image could also contain only application

17

Fig: mount namespace used to mount a new container root

18

Types of
Containers

System
Containers

Application
Containers

System Containers

• Environment similar to native machine
• Install, configure, run – apps, libraries, demons
• Used by cloud providers
• Have been used for a while
• Examples

1. Linux Containers (LXC)
2. Parallels virtuizzo
3. Solaris zones
4. Google lmctfy

19

Reference: [7], [8]

Linux Containers (LXC)

• API to deploy system containers
• Configured via CLI
• Image fetched from online repository – first time
• There after – local cache
• New container – image copied

20

Application containers

• Develop, build, test, ship and even run apps
• Recent – 2013
• Multiple apps – 1 container for each
• Cloud-native apps
• Examples

1. Docker
2. Rocket

21

Reference: [6]

Docker Architecture

Fig: Docker Architecture, source: [6]

22

COMPONENTS

1. Client: UI to manage

containers

2. Host: Build & Run
containers

3. Registry: Image store

4. Images:
Read-only template

5. Containers:
Created from image

Docker Image layers

Fig: Docker image layers

23

POINTS

• Stackable image layers

• Reuse layers

• Copy-On-Write (CoW)

• Container adds Read-

Write layer on image

• Commit makes layer

read only

• Short demo

• Starting a container with Lxc/Docker and how they differ

24

Application of containers

• System containers
1. Cloud providers (IAAS/PAAS)
2. Data centers
3. Potentially anywhere instead of VM

• Application containers

1. HPC clusters
2. Application development

 Sandboxing applications with dependencies
 Micro services & Scalability
 Version Control – Github alternative

25

Reference: [5], [10]

Kubernetes

Fig: Container orchestration using Kubernetes, source [5]

26

• Container Orchestration Tool,
originally designed by Google

• Automated Deployment,
Management and Scaling

• Groups application into
logical units – pods

• Minion is PM

• Manages services and also
batch processes

Merits and Demerit of containers

Merits
• Startup latency minimal
• No hardware emulation
• No multiple OS copies
• Overheads - close to native

Demerits
• Only base kernel type containers
• Security

27

Comparing Containers to VMs

Container is better at
• Memory Usage – VM takes 11-60x container’s usage
• Disk I/O – VM takes 2x
• CPU utilization – Marginally better
• Startup Latency – VM typically takes about 50-100x

VM is better at

• Network – VM is 1.2x better here
• Live-Migration – Better in VMs
• Support for guest of OS of different kernel
• Security

28

Reference: [9], [10], [11], [12], [13]

Related Works

• CoreOS – Linux distro for container management
• OSv - OS designed for the Cloud and is treated as a library operating

system
• LXD - Next generation hypervisor for containers
• Disk Image Standardization

29

Reference: [17], [18], [19], [20]

Conclusion

• Performance overheads - Big win
• Tremendous potential
• Limitation of a container is the ability to only run OS of host kernel type

30

Possible Projects (Future Work)

Disk & Storage
• Comparative study of the different container imaging formats and

providing use cases for each imaging format
• Extending BLKIO cgroup support to SSDs

Memory
• Design a per memory cgroup accounting enable/disable knob
• Shared pages accounting in containers charges the first cgroup that

accesses it, design and implement solution to rectify this

Network
• Explore network cgroups, come up with drawbacks and propose new

solutions to fix issues (will have to work with tc application)

31

Possible Projects (Future Work)

Application-level
• Deploy multi tier applications using Kubernetes and come up different

ways to achieve load balance.
• Comparative study of LXD versus Docker and provide use cases

Miscellaneous
• Study the feasibility for reusing of host OS packages inside containers by

implementing the same
• Live migration of containers – Look into CRIU

32

33

Components of container
[1] P. B. Menage, “Adding generic process containers to the linux kernel," in Proceedings of the Linux
Symposium , vol. 2, pp. 45{57, Citeseer, 2007.
[2] M. Kerrisk, “Lwn namespaces overview," 2013.
[3] Michael Kerrisk “namespaces in operation”, https://lwn.net/Articles/531114/, 2013

Container
[4] G. Banga, P. Druschel, and J. C. Mogul, "Resource containers: A new facility for resource management
in server systems," in OSDI , vol. 99, pp. 45{58, 1999.
[5 http://blog.arungupta.me/wp-content/uploads/2015/01/kubernetes-key-concepts.png
[6] D. Inc., “Docker offical documentation," 2016.
[7] K. Kolyshkin, “Virtualization in linux,“ White paper, OpenVZ , vol. 3, p. 39, 2006.
[8] S. Soltesz, H. Potzl, M. E. Fiuczynski, A. Bavier, and L. Peterson, “Container-based operating system
virtualization: a scalable, high-performance alternative to hypervisors," in ACM SIGOPS Operating
Systems Review, vol. 41, pp. 275{287, ACM, 2007.
[16] http://image.slidesharecdn.com/linuxcontainers-thefutureofiaas-140620073031-phpapp02/95/linux-
containers-the-future-of-iaas-4-638.jpg?cb=1403249627

References

34

Comparison with VMs
[9] K. Agarwal, B. Jain, and D. E. Porter, “Containing the hype," in Proceedings of the 6th Asia-Pacific
Workshop on Systems , p. 8, ACM, 2015.
[10] D. Beserra, E. D. Moreno, P. Takako Endo, J. Barreto, D. Sadok, and S. Fernandes, “Performance
analysis of lxc for hpc environments," in Complex, Intelligent, and Software Intensive Systems(CISIS), 2015
Ninth International Conference on, pp. 358{363, IEEE, 2015.
[11] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance comparison of virtual
machines and linux containers," in Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium On, pp. 171{172, IEEE, 2015.
[12] R. Morabito, J. Kjallman, and M. Komu, "Hypervisors vs. lightweight virtualization: a performance
comparison," in Cloud Engineering (IC2E), 2015 IEEE International Conference on , pp. 386{393, IEEE,
2015.
[13] M. S. Rathore, M. Hidell, and P. Sj•odin, "Kvm vs. lxc: comparing performance and isolation of
hardware-assisted virtual routers,“ American Journal of Networks and Communications , vol. 2, no. 4, pp.
88{96, 2013

Disk I/O and storage driver optimizations
[14] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Slacker: Fast distribution
with lazy docker containers,"
[15] J. Kang, B. Zhang, T. Wo, C. Hu, and J. Huai, “Multilanes: providing virtualized storage for os-level
virtualization on many cores," in Proceedings of the 12th USENIX Conference on File and Storage
Technologies (FAST 14), pp. 317{329, 2014.

35

Related Works
[17] CoreOS – https://coreos.com/
[18] Osv – https://osv.io/
[19] LXD – https://linuxcontainers.org/lxd/
[20] Disk Image Standarization - http://thenewstack.io/open-container-initiative-launches-container-
image-format-spec/

Not meant for presentation

36

37

• Increasing number of guests and how it
effects memory size

• lower the better
• 11-60x better in containers
• Source [9]

• Increasing number of guests and how it
effects I/O throughput

• higher the better
• Optimization: direct map in VM
• source [9]

• Effect on RTT – client-server
• lower the better
• VM (80%) > container (100%)
• source [11]

• Increasing number of guests in HPC
environment and how it effects CPU
throughput

• Higher the better
• 2-22% lesser in VM
• source [10]

38

Memory Cgroups Commands

• cd /sys/fs/cgroup

• mkdir memory

• mount -t cgroup -o memory cgroup
/sys/fs/cgroup/memory

• echo {{pid}} > cgroups.procs

• memory.stat

• echo 128M > memory.limit in bytes

• cat memory.usage in bytes

39

Container commands

• lxc-create -n test-container -t ubuntu

• lxc-ls –fancy

• lxc-start -n test-container –d

• lxc-console -n test-container

• /var/lib/lxc/test-container/config

• docker -m 512M -it ubuntu /bin/bash

• docker ps -a

40

