CS347m Operating Systems
Spring 2020-21
Lab 1

N

This lab consists of questions related to processes and basic system calls.

2. Write the programs in C and follow the guidelines mentioned in the questions strictly.
Not following the instructions may result in deduction in the marks. If your code does not
compile, then straight up zero marks for that question.

3. Strictly follow the submission guidelines mentioned on the last page.

Total Marks: 20

5. Due date: 29th January, 11.55 pm (via Moodle)

s

Some Basics

System calls are required for the problems of this lab. System calls are a mechanism for
user programs to interact and request services from the operating system. The system
call interface is provided as a function.

You can read the man pages for the system call functions for information on semantics
and usage of each.

Use the command “man <system call>" on Linux. For example, man fork

An (incomplete) list of useful system calls for this lab are as follows:

1. fork 6. open
2. wait 7. close
3. getpid 8. read
4. getppid 9. write

5. exec, execvp, execve

Two C files, runme.c and sample.c, are provided in the Lab1 handout. The two C files will be
used in problems of the Lab.

Common command line operations
® gcc [programName].c -o outputName
The above commmand creates an executable with name outputName which needs to be
executed .
e . /outputName
To run the executable file

Questions

Q1.a) Baby steps 1.0 [Marks: 1.0]
Write a program p_1a.c that forks a child. Both parent and child processes should print
messages.

The parent process should print:
Parent: My process ID: <parent pid>
Parent: Child’s process ID: <child pid>

The child process should print:
Child: My process ID: <child pid>
Child: Parent’s process ID: <parent pid>

Running Commands:
gcc p_lac-op_la
Jp_a

Sample Output :

Parent: My process |D: 9648
Parent: Child's process |ID: 9649
Child: My process ID: 9649
Child: Parent's process ID: 9648

Q1.b) Baby steps 2.0 [Marks: 2.0]

Write a program p_1b.c that does exactly the same as the previous question, but the
parent must print its message only after the child has terminated. The parent must wait
for the child to terminate, and then print its message.

The child should print:

Child process ID: <child pid>

The parent should print:

The child process with process ID <child pid> has terminated.

Running Commands:
gcc p_lb.c-op_lb
Jo_1b

Sample Output :
Child process ID: 24116
The child process with process ID 24116 has terminated.

Q2) Mixing things up [Marks: 3.0]
Write a program p_2.c that creates 1 parent process and 3 child process and prints

| am parent with PID 1234

| am child with PID 4532 from PPID 1234
I am child with PID 4543 from PPID 1234
| am child with PID 4534 from PPID 1234

Running Commands:
gcc p_2.c-o p_2
Jo_2

Sample Output :

| am parent with PID 1234

I am child with PID 4532 from PPID 1234
| am child with PID 4543 from PPID 1234
| am child with PID 4534 from PPID 1234

Q3) To exec is to compute [Marks: 3.0]
Provided in the handout is a c file, runme.c, which prints an ascii art as given in the
sample output of this question. Write a program p_3.c that forks a child and the child
process executes the binary program of runme.c (compile runme.c beforehand). The
parent process waits for the child process to terminate.

Running Commands:
gcc runme.c -o runme
gcc p_3.c-op_3

Jo_3

Sample Output :

/N

(:

AN\
(—) |
(— |
(—)—
()

Q4) Let there be write! [Marks: 3.0]

Write a program p_4.c which takes a flename as command line argument. The program
should open the file, and then fork a child. Both parent and the child should write
contents to the file. Verify that the child can write to the file without opening it.

The parent should write
Hello world! | am parent
The child should write
Hello world! | am child

The parent should wait for the child to terminate and print the child exit message
The child process with process ID <child pid> has terminated.

Running commands:
gcc p_4.c -0 p_4
Jo_4 <filename>

Sample Output:
After running “./p1_4 hello.txt”, the file hello.txt will contain:

Hello world! | am parent
Hello world! I am child

Q5) Input redirection magic [Marks: 3.0]

Write a program p_5.c that takes a filename as command line argument. The program
opens the file and then forks a child. The objective here is to print the contents of the file
to stdout. The child process should execute the binary program of sample.c (compile it
beforehand), it reads input from stdin and prints to stdout. The parent should wait for the
child to terminate before exiting.

Constraints: Parent of the child cannot use printf, scanf, read, write, cin.
Hint1: close of a file results in its descriptor to be used in subsequent open.
Note: No changes to be made in sample.c

Running commands:

gcc sample.c -o sample
gcc p_5c-op_5

.Jo_5 <filename>

Sample Output:

Say a file “abc.txt” contains
Hello world! This is abc.txt

After running the command “./p1_5 abc.txt”, the terminal stdout will be
Hello world! This is abc.txt

Q6) Orphan Process [Marks: 2.0]
Write a program p_6.c that forks a child. The child should print

Child: Child process ID: <child pid>

Child: Parent process ID: <parent pid>

and then sleep for 2 seconds and print the same message again after waking up. The
parent should wait for 1 second and then print

Parent: Parent process ID: <parent pid>

and exit.

Running Commands:

gcc p_6.c -0 p_6

Jp_6

Sample Output :

Child: Child process ID: 20967
Child: Parent process ID: 20966
Parent: Parent process ID: 20966
Child: Child process ID: 20967
Child: Parent process ID: 1849

Q7) Zombie Process [Marks: 3.0]

Write a program p_7.c that forks a child. The parent should print its process ID as
“Parent: <pid>" and then sleep for 1 minute, and then wait for the child process to exit
and print “Exiting Parent: <pid>" at the end of parent execution. The child process
should print its process ID as “Child: <pid>" and wait for keyboard input.

Check status of a process using the command ps -o pid,stat <pid>

Check the status of the child process while it is waiting for the keyboard input and
after providing keyboard input. Copy the ps command outputs to a p_7.txt file.
The final p_7.txt file should have two lines of text, corresponding to the ps command
outputs (1) before keyboard input is provided (2) after keyboard input is provided.

Running Commands:

gcc p_7.c-o p_7

Jp_7

Sample solution text in p_7.txt:
85194 S+

85194 Z+

Submission Guidelines

-_—

Make a new directory with your roll number as its name.

2. Create a README file and place any references to external websites/videos...etc that
you have referred for this assignment, along with any instructions specific to compiling
and running your submission (if any).

Add the honor code text(given on the next page) in HonorCode.txt

4. Place your submission files

w

The directory structure look something like this:

[roll_number-1lab1]

+-- README
+-- HonorCode.txt

5. Compress the main submission directory using
tar -cvf [roll_number-lab1].tar.gz [roll_number-lab1]

6. Submit the compressed tar file to Moodle.

(PS: Make sure to see the final page (next page) in this doc !!!)

*** IMPORTANT ***

Please cross-check that your tar file has all the necessary files in it (and that they are the ones
you want to submit) before submitting. You can check it by extracting the tar file by doing the
following:

tar -xvf [roll_number-lab1].tar.gz

Cribs related to code changes, compilation errors, missing files, corrupt files etc. will not
be entertained after the deadline has passed.

Honor Code:
The following text needs to be added in HonorCode.txt

l, , confirm that my submission has no material, in total or in parts, that is
plagiarized or copied.

All the work (documents, code) that I am submitting is my own and is prepared and written by me
alone.

None of the submission is copy in full or in parts of any submission that does not belong to and has
been prepared by me.

Note: Discussions with peers and study of material from books and online resources is
acceptable and encouraged.

