[LaBs™)

Automated Control of Multiple Virtualized Resources

Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang,
Sharad Singhal, Arif Merchant

HP Laboratories
HPL-2008-123R1

Keyword(s):
virtualization, consolidation, service level objective, control, service differentiation

Abstract:

Virtualized data centers enable consolidation of multiple applications and sharing of multiple
resources among these applications. However, current virtualization technologies are inadequate
in achieving complex service level objectives (SLOs) for enterprise applications with time-
varying demands for multiple resources. In this paper, we present AutoControl, a resource
allocation system that automatically adapts to dynamic workload changes in a shared virtualized
infrastructure to achieve application SLOs. AutoControl is a combination of an online model
estimator and a novel multi-input, multi-output (MIMO) resource controller. The model
estimator captures the complex relationship between application performance and resource
allocations, while the MIMO controller allocates the right amount of resources to ensure
application SLOs. Our experimental results using RUBIS and TPC-W benchmarks along with
production-trace-driven workloads indicate that AutoControl can detect and adapt to CPU and
disk 1/0O bottlenecks that occur over time and across multiple nodes and allocate multiple
virtualized resources accordingly to achieve application SLOs. It can also provide service
differentiation according to the priorities of individual applications during resource contention.

External Posting Date: November 21, 2008 [Fulltext] - Approved for External Publication

Internal Posting Date: November 21, 2008 [Fulltext] (éfn

© Copyright 2008 Hewlett-Packard Development Company, L.P.

Automated Control of Multiple Virtualized Resources

Pradeep Padala, Kai-Yuan Hou
Kang G. Shin
The University of Michigan
{ppadala, karenhou, kgshin}@umich.edu

Abstract

Virtualized data centers enable consolidation of mul-
tiple applications and sharing of multiple resources
among these applications. However, current virtual-
ization technologies are inadequate in achieving com-
plex service level objectives (SLOs) for enterprise ap-
plications with time-varying demands for multiple re-
sources. In this paper, we present AutoControl, a
resource allocation system that automatically adapts
to dynamic workload changes in a shared virtualized
infrastructure to achieve application SLOs. AutoCon-
trol is a combination of an online model estimator and
a novel multi-input, multi-output (MIMO) resource
controller. The model estimator captures the complex
relationship between application performance and re-
source allocations, while the MIMO controller allo-
cates the right amount of resources to ensure appli-
cation SLOs. Our experimental results using RU-
BiS and TPC-W benchmarks along with production-
trace-driven workloads indicate that AutoControl can
detect and adapt to CPU and disk I/O bottlenecks
that occur over time and across multiple nodes and
allocate multiple virtualized resources accordingly to
achieve application SLOs. It can also provide service
differentiation according to the priorities of individual
applications during resource contention.

1. INTRODUCTION

Virtualization is causing a disruptive change in en-
terprise data centers and giving rise to a new paradigm:
shared virtualized infrastructure. In this new paradigm,
multiple enterprise applications share dynamically al-
located resources. These applications are also consol-
idated to reduce infrastructure and operating costs
while simultaneously increasing resource utilization.
As a result, data center administrators are faced with
growing challenges to meet service level objectives
(SLOs) in the presence of dynamic resource sharing
and unpredictable interactions across many applica-
tions. These challenges include:

e Complex SLOs: It is non-trivial to convert in-
dividual application SLOs to corresponding re-

Xiaoyun Zhu, Mustafa Uysal,
Zhikui Wang, Sharad Singhal, Arif Merchant
Hewlett Packard Laboratories
{firstname.lastname }@hp.com

100

CPU Util
—o— Disk Util

80

60

401

201

Resource Utilization (%)

0 i T d
19 21 23 01 03 05 07 09 11 13 15 17 19
Hour of Day (sampled every 5 minutes)

Figure 1: Resource usage in a production SAP appli-

cation server for a one-day period.

source shares in the shared virtualized platform.
For example, determining the amount of CPU
and the disk shares required to achieve a speci-
fied number of financial transactions is difficult.

e Time-varying resource requirements: The inten-
sity and the mix of enterprise application work-
loads change over time. As a result, the demand
for individual resource types changes over the
lifetime of the application. For example, Fig-
ure 1 shows the CPU and disk utilization of an
SAP application measured every 5 minutes dur-
ing a 24-hour period. The utilization of both
resources varies over time considerably, and the
peak utilization of the two resources occurred
at different times of the day. This implies that
static resource allocation can meet application
SLOs only when the resources are allocated for
peak demands, wasting resources.

o Distributed resource allocation: Multi-tier appli-
cations spanning multiple nodes require resource
allocations across all tiers to be at appropriate
levels to meet end-to-end application SLOs.

e Resource dependencies: Application-level per-
formance often depends on the application’s abil-
ity to simultaneously access multiple system-level
resources.

Researchers have studied capacity planning for such
an environment by using historical resource utiliza-

tion traces to predict the application resource require-
ments in the future and to place compatible sets of
applications onto the shared nodes [23]. Such an ap-
proach aims to ensure that each node has enough ca-
pacity to meet the aggregate demand of all the appli-
cations, while minimizing the number of active nodes.
However, past demands are not always accurate pre-
dictors of future demands, especially forWeb-based,
interactive applications. Furthermore, in a virtual-
ized infrastructure, the performance of a given ap-
plication depends on other applications sharing re-
sources, making it difficult to predict its behavior us-
ing pre-consolidation traces. Other researchers have
considered use of live VM migration to alleviate over-
load conditions that occur at runtime [27]. However,
the CPU and network overheads of VM migration
may further degrade application performance on the
already-congested node, and hence, VM migration is
mainly effective for sustained, rather than transient,
overload.

In this paper, we propose AutoControl, a feedback-
based resource allocation system that manages dy-
namic resource sharing within virtualized nodes and
that complements the capacity planning and work-
load migration schemes others have proposed to achieve
application-level SLOs on shared virtualized infras-
tructure.

Our main contributions are twofold: First, we de-
sign an online model estimator to dynamically de-
termine and capture the relationship between appli-
cation level performance and the allocation of indi-
vidual resource shares. Our adaptive modeling ap-
proach captures the complex behavior of enterprise
applications including varying resource demands over
time, resource demands from distributed application
components, and shifting demands across multiple
resources types. Second, we design a two-layered,
multi-input, multi-output (MIMO) controller to auto-
matically allocate multiple types of resources to mul-
tiple enterprise applications to achieve their SLOs.
The first layer consists of a set of application con-
trollers that automatically determines the amount of
resources necessary to achieve individual application
SLOs, using the estimated models and a feedback ap-
proach. The second layer is comprised of a set of
node controllers that detect resource bottlenecks on
the shared nodes and properly allocate resources of
multiple types to individual applications. In overload
cases, the node controllers can provide service differ-
entiation by prioritizing allocations among different
applications.

We have built a testbed using Xen [5], and evalu-
ated our controller in various scenarios. Our exper-
imental results show that, (i) AutoControl can de-
tect and adapt to bottlenecks in both CPU and disk
across multiple nodes; (ii) the MIMO controller can

¢ app1 web app1 db app3 F;
vm vm_] | vm_]

app2 app4 web app4 db <;:>
vm]| ! vm vm :

Xen VMM

Iy

Xen VMM Xen VMM

Figure 2: Physical organization: Each node hosts mul-
tiple applications running on VMs. Applications can

span multiple nodes.

handle multiple multitier applications running RU-
BiS and TPC-W benchmarks along with workloads
driven by production traces, and provide better per-
formance than work-conserving and static allocation
methods; and (iii) priorities can be enforced among
different applications during resource contention.

The remainder of the paper is organized as follows.
Section 2 provides an overview of AutoControl. This
is followed by a detailed description of the design of
the model estimator and the MIMO controller in Sec-
tion 3. Section 4 discusses experimental methodology
and testbed setup. We present experimental evalua-
tion results in Section 5, followed by a discussion of
related work in Section 6. Section 7 delineates some
of the limitations of this work along with suggestions
for future research, and conclusions are drawn in Sec-
tion 8.

2. OVERVIEW, ASSUMPTIONS AND
GOALS

In this section, we present an overview of our sys-
tem architecture and the assumptions and goals that
drive our design. We assume that applications are
hosted within containers or virtual machines (VM) [5]
to enable resource sharing within a virtualized server
node. A multi-tier application may run on multiple
VMs that span nodes. Figure 2 shows an example
with three nodes hosting four applications.

In AutoControl, operators can specify the SLO as
a tuple (priority; metric; target), where priority rep-
resents the priority of the application, metric speci-
fies the performance metric in the SLO (e.g., trans-
action throughput, response time), and target indi-
cates the desired value for the performance metric.
Currently, our implementation supports only a sin-
gle metric specification at a time, but the architec-
ture can be generalized to support different metrics
for different applications. AutoControl can manage
any resource that affects the performance metric of
interest and that can be allocated among the applica-
tions. In this paper, we use CPU and disk I/O as the
two resources, and application throughput or average
response time as the performance metric.

' performance |

targets |
i
,,,,,,,,,,,,,,,,,,,, i
. v Y y
app1 app2 app3 app4
controller | | controller | |controller | |controller|
. réquested allocation <
» S b\ 4
node1 node2 node3
controller controller controller

R PR

CPU || Disk CPU || Disk | | CPU | Disk
sched|sched| |sched||sched| [sched|sched|

Figure 3: Logical controller organization: Each appli-
Each node has

one node controller that arbitrates the requests from

cation has one application controller.
multiple application controllers.

We set the following design goals for AutoControl:

Performance assurance: If all applications can meet

their performance targets, AutoControl should
allocate resources properly to achieve them. If
they cannot be met, AutoControl should provide
service differentiation according to application
priorities.

Automation: While performance targets and cer-
tain parameters within AutoControl may be set
manually, all allocation decisions should be made
automatically without human intervention.

Adaptation: The controller should adapt to varia-
tions in workloads or system conditions.

Scalability: The controller architecture should be dis-
tributed so that it can handle many applications
and nodes; and also limit the number of variables
each controller deals with.

Based on these principles, we have designed Au-
toControl with a two-layered, distributed architec-
ture, including a set of application controllers (App-
Controllers) and a set of node controllers (NodeCon-
trollers). There is one AppController for each hosted
application, and one NodeController for each virtu-
alized node. Figure 3 shows the logical controller
architecture for the system shown in Figure 2. For
each application, its AppController periodically polls
an application performance sensor for the measured
performance. We refer to this period as the control
interval. The AppController compares this measure-
ment with the application performance target, and
based on the discrepancy, automatically determines
the resource allocations needed for the next control
interval, and sends these requests to the NodeCon-
trollers for the nodes that host the application.

Table 1: Notation

A set of all hosted applications

Ty set of all the tiers in application a € A,
e.g., T, = {web, db}

R set of all resource types controlled,
e.g., R = {cpu,disk}

k index for control interval

xz(k) | value of variable x in control interval k

requested allocation of resource type r
to tier ¢ of application a, 0 < ug (k) <1
(urq,, for single-tier applications)

Uq,r¢ | actual allocation of resource type r
to tier ¢ of application a, 0 < uq (k) <1
(uq,r for single-tier applications)

Ya measured performance of application a

YT performance target for application a

YNg normalized performance for application a,
where yng = ya/yra

Wq priority weight for application a

q stability factor in the AppController

For each node, based on the collective requests from
all relevant AppControllers, the corresponding Node-
Controller determines whether it has enough resource
of each type to satisfy all demands, and computes
the actual resource allocation using the methods de-
scribed in Section 3. The computed allocation values
are fed into the resource schedulers in the virtual-
ization layer for actuation, which allocate the corre-
sponding portions of the node resources to the VMs
in real time. Figure 3 shows CPU and disk schedulers
as examples.

The AutoControl architecture allows the placement
of AppControllers and NodeControllers in a distributed
fashion. NodeControllers can be hosted in the physi-
cal node they are controlling. AppControllers can be
hosted in a node where one of the application tiers
is located. We do not mandate this placement, how-
ever, and the data center operator can choose to host
a set of controllers in a node dedicated for control
operations.

We assume that all nodes in the data center are
connected with a high speed network, so that sensor
and actuation delays within AutoControl are small
compared to the control interval. We also require
that the underlying system-level resource schedulers
provide rich enough interfaces to dynamically adjust
resource shares for the VMs.

3. DESIGN AND IMPLEMENTATION

This section details the design of both AppCon-
troller and NodeController in the two-layered archi-
tecture of AutoControl. For easy reference, Table 1
summarizes the mathematical symbols that will be
used for key parameters and variables in these con-
trollers.

past allocation
(u (k-1), u (k-2), ...)

— Model Estimator |« (5a(skt_1p)er;o(rkn_1§)nce)

model(a, (k-1), a,(k-1), b (k-1), b,(k-1))

—» -—— stability factor q

new requested
allocation (ur (k))

performance
target (yr)

Figure 4: AppController’s internal structure

3.1 Design of AppController

As introduced in Section 2, every hosted applica-
tion has an AppController associated with it. In order
for each AppController to decide how much resource
is needed for the application to meet its performance
target, it first needs to determine the quantitative
and dynamic relationship between the application’s
resource allocation and its performance. Such a rela-
tionship is captured in the notion of “transfer func-
tion” in traditional control theory for modeling of
physical systems. However, most computing systems,
such as the one considered in this paper, cannot be
represented by a single, linear transfer function (or
model) because their behavior is often nonlinear and
workload-dependent. We assume, however, that the
behavior of the system can be approximately char-
acterized locally by a linear model. We periodically
re-estimate the model online based on real-time mea-
surements of the relevant variables and metrics, allow-
ing the model to adapt to different operating regimes
and workload conditions.

Every AppController has two modules as illustrated
in Figure 4: (1) a model estimator that automatically
learns in real time a model for the relationship be-
tween an application’s resource allocation and its per-
formance, and (2) an optimizer that predicts the re-
source allocation required for the application to meet
its performance target based on the estimated model.
For each application a € A, let y,(k) be the value
of its performance metric provided by an application
performance sensor at the end of control interval k,
and let yr, be the desired value for its performance.
Furthermore, we define yn, (k) = ya(k)/yra to be the
normalized performance value for interval k. We then
define the resource-allocation variable u, to be a vec-
tor that contains all the elements in the set {ug ¢ :
r € Rt € T,}. For example, for a two-tier applica-
tion whose performance depends on two critical re-
sources, e.g., T, = {web,db} and R = {cpu, disk},
u, is a 4-dimensional vector. wu,(k) represents the
resource-allocation values for application a during in-
terval k (we represent all vectors in boldface).

3.1.1 Model estimator

For every control interval, the model estimator re-
computes a linear model that approximates the non-
linear and time-varying relationship between the re-
source allocation to application a (u,) and its nor-
malized performance (yn,) around the current op-
erating point. More specifically, the following auto-
regressive-moving-average (ARMA) model is used to
represent this relationship:

yng(k) = a1(k) yna(k — 1) + aa(k) yna(k —2)
+bo” (k)ug (k) + by T (k)ua(k — 1), (1)

where the model parameters a;(k) and as(k) capture
the correlation between the application’s past and
present performance, and bg(k) and by (k) are vec-
tors of coefficients capturing the correlation between
the current performance and the recent resource al-
locations. Both u,(k) and u,(k — 1) are column vec-
tors, and bo” (k) and by (k) are row vectors. We
chose a linear model because it is easy to estimate
online and simplifies the corresponding controller de-
sign problem. In our experiments, we have found that
the second-order ARMA model in Eq. (1) (i.e., one
that takes into account the past two control inter-
vals) can predict the application performance with
adequate accuracy. (Some evidence of this will be
presented later in Section 5.)

The reason why we model the normalized perfor-
mance rather than the absolute performance is that
the latter can have an arbitrary magnitude. The nor-
malized performance yn, has values that are compa-
rable to those of the resource allocations in u,, which
are less than 1. This improves the numerical stability
of the algorithm.

Note that the model represented in Eq. (1) is adap-
tive itself, because all the model parameters ai, as,
bo and by are functions of time interval k. These
parameters can be re-estimated online using the re-
cursive least squares (RLS) method [4]. At the end of
every control interval £ — 1, the model estimator col-
lects the newly-measured performance value y,(k—1),
normalizes it by the performance target yr,, and uses
it to update the values for the model parameters. The
approach assumes that drastic variations in workloads
that cause significant model parameter changes occur
infrequently relative to the control interval, thus al-
lowing the the model estimator to converge locally
around an operating point and track changes in the
operating point. The recursive nature of RLS makes
the time taken for this computation negligible for con-
trol intervals longer than 10 seconds.

3.1.2 Optimizer

The main goal of the optimizer is to determine the
resource allocation required (ur,) in order for the ap-
plication to meet its target performance. An addi-

tional goal is to accomplish this in a stable manner,
without causing large oscillations in the resource al-
location. We achieve these goals by finding the value
of ur, that minimizes the following cost function:

Ja = (yna(k) = 1)* + qllura(k) —ua(k = D|*. (2)

To explain the intuition behind this function, we de-
fine J, = (ynq(k) —1)2, and J. = |Jura(k) — ua(k —
1)||2. It is easy to see that J, is 0 when y, (k) = yrq,
i.e., when application a is meeting its performance
target. Otherwise, J, serves as a penalty for the devi-
ation of the application’s measured performance from
its target. Therefore, we refer to J, as the perfor-
mance cost.

The second function J., referred to as the control
cost, is included to improve controller stability. The
value of J. is higher when the controller makes a
larger change in the resource allocation in a single
interval. Because J, = J, + ¢q - J., our controller
aims to minimize a linear combination of both the
performance cost and the control cost. Using the ap-
proximate linear relationship between the normalized
performance and the resource allocation, as described
by Eq. (1), we can derive the resource allocation re-
quired to minimize the cost function J,, in terms of
the recent resource allocation u, and the correspond-
ing normalized performance values yng:

ur’ (k) = (bobo” + ¢I)~ (1 — ay yna(k —1)
—ay yng(k —2) — b1 ua(k — 1))bg + qua(k — 1))(3)

This is a special case of the optimal control law de-
rived in [18]. Note that the dependency of the model
parameters ai, as, bg and by on the control interval
k has been dropped from the equation to improve its
readability.

To understand the intuition behind this control law
and the effect of the scaling factor ¢, we define Ayn,, (k)
1—ay yna(k —1) — az yna(k — 2) — by ua(k — 1).
This indicates the discrepancy between the model-
predicted value for yn,(k) and its target (which is
1) that needs to be compensated by the next alloca-
tion (ua(k)). For a small ¢ value, ur(k) is domi-
nated by the effect of Ayn,(k), and the controller re-
acts agressively to tracking errors in performance. As
the value of ¢ increases, ur’ (k) is increasingly domi-
nated by the previous allocation (ua(k — 1)), and the
controller responds slowly to the tracking error with
less oscillation in the resulting resource allocation. In
the extreme of an infinitely large ¢ value, we have
ur} (k) = ua(k — 1), meaning the allocation remains
constant. As a result, the scaling factor ¢ provides
us an intuitive way to control the trade-off between
the controller’s stability and its ability to respond to
changes in the workloads and performance, hence is
referred to as the stability factor.

3.2 Design of NodeController

For each of the virtualized nodes, a NodeController
determines the allocation of resources to the applica-
tions, based on the resources requested by the App-
Controllers and the resources available at the node.
This is required because the AppControllers act in-
dependently of one another and may, in aggregate,
request more resources than the node has available.
The NodeController divides the resources between the
applications as follows. For resources where the to-
tal resources requested are less than the available re-
sources, the NodeController divides each resource in
proportion to the requests from the AppControllers.
For resources that are contested, that is, where the
sum of the resource requests is greater than the avail-
able resource, the NodeController picks an allocation
that locally minimizes the discrepancy between the
resulting normalized application performance and its
target value. More precisely, the cost function used
is the weighted sum of the squared errors for the nor-
malized application performance, where each applica-
tion’s weight represents its priority relative to other
applications.

To illustrate this resource allocation method, let us
take nodel in Figures 2 and 3 as an example (de-
noted as “nl”). This node is being used to host the
web tier of application 1 and application 2. Suppose
CPU and disk are the two critical and controllable re-
sources being shared by the two applications. Then,
the resource request from application 1 consists of two
elements, Uy cpy,web ANd UT1 disk,web, ONE for each re-
source. Similarly, the resource request from applica-
tion 2 consists of ury cp, and urg gis,. Because re-
source allocation is defined as a percentage of the to-
tal shared capacity of a resource, the resource requests
from both applications need to satisfy the following
capacity constraints:

UT1, cpu,web + Ur2, cpu < 1 (4)

UTY, disk,web T UT2, disk < 1 (5)

When constraint (4) is violated, we say the virtu-
alized node suffers CPU contention. Similarly, disk
contention refers to the condition of the node when
constraint (5) is violated. Next, we describe the four
possible scenarios for the virtualized node n1, and the
NodeController algorithm for dealing with each sce-
nario.

3.2.1 Scenario I: No CPU or disk contention

In this case, the node has adequate CPU and disk
resources to meet all resource requests, and hence the
resources are divided in proportion to the resource

requests, as follows:

UL cpuweb = U cpuweb/ (U cpu,web + U2, cpu) (6)
U epu = UP2cpu/ (UL cpuyweb + U2, cpu) (7)
UL, disk,web = UT1, disk,web/ (UT'1 disk web + UT1 disk)(8)
Uodisk = UT2 disk/ (U, diskweb + UT2 disk) (9)

This allocation policy implies two things: (1) for each
application and each resource, the requested alloca-
tion should be satisfied; (2) the excess capacity for
each resource is allocated to both applications in pro-
portion to their requests.

3.2.2 Scenario II: CPU contention only

In this scenario, node nl has enough disk resource
to meet the requests from the AppControllers, but
not enough CPU resource; that is, constraint (4) is
violated while constraint (5) is satisfied. The Node-
Controller divides the disk resources in proportion to
the requests, as in the previous case, using Egs. (8)
and (9). However, the applications will receive less
CPU resource than requested; let us denote the defi-
ciencies as Aul,cpu,web = UT1,cpu,web — Ul,cpu,web and
AU cpy = UT2cpu — U2,epu. The resulting discrep-
ancy between the achieved and target normalized per-
formance of application 1 can then be estimated as
|8yn1/aul,cpu,webAul,cpu,web‘7 and similarly for appli-
cation 2. The sum of weighted mean squared discrep-
ancies of the normalized performance values across
the applications can then be estimated as:

Oyni
6U1,cpu,web

Oyna
QU2 cpu

_ 2
Jnl,cpu - ’LU1(Aul,cpu,web)

-|—’LU2(AuZ,cpu)Q

The CPU resource allocation is found by optimizing
this overall normalized performance discrepancy:

Minimize Jp1,cpu subject to

06 - Perf stats sensing C— i
— ’ Optimization EXX=X
3 CPU Actuation £z=z=
L 04 Disk Actuation Exzxzza 1
GEJ Total F
E 02F b
0

Figure 5: Average performance overhead

the case of two applications sharing the node. For
more than two applications, we use an off-theshelf
quadratic programming solver to compute the solu-
tion.

3.2.3 Scenario IlI: Disk contention only

In this scenario, the disk resource is under con-
tention but CPU is not; that is, constraint (5) is vio-
lated while constraint (4) is satisfied. The NodeCon-
troller follows the same policy for CPU allocation as
in Scenario I, and solves the following optimization
problem to compute the actual disk allocations:

dyny

e 2
Minimize Jp1 gisk = w1 AU disk,web)

aul,disk,web

8yn2
2
+’UJ2(7A’ZL2,diSk) s.t.
Oug, disk
AU disk,web + AU dgisk > UT1 disk,web + UT2,disk — 1 (13)
Aul,disk,web 2 0
Aug gisk > 0

3.2.4 Scenario 1V: CPU and disk contention

This is the scenario where both CPU and disk are
under contention. In this scenario, the actual alloca-
tions of CPU and disk for both applications will be
below the respective requested amounts. The Node-
Controller determines the actual allocations by solv-
ing the following optimization problem.

Aul,cpu,web + Au?,cpu > UT1, cpu,web + Ur, cpu — 1 (10) Minimi J dyna A 9
Aul cpu,web > 0 (11) HHIIZE 1 B wl(ZTER Ous,rweb ULT,MEb)
oyn 2
Atgepy > 0 (12) Fw2(Xorer fug s Atiar)”

Note that constraint (10) is simply the capacity
constraint (4), applied to actual allocations. Con-
straints (11) and (12) ensure that no application is
throttled to increase the performance of another ap-
plication beyond its target. In the minimization ob-
jective Ju1 cpu, the discrepancies for the applications
are weighted by their priority weights, so that higher
priority applications experience less performance degra-
dation.

From Eq. (1), we know that -—24™

UL cpu, web = bO,l,cpu,webv

= bo,2,cpu- Both coefficients can be ob-

trollers for both applications. This optimization prob-
lem is convex and a closed-form solution exists for

subject to Egs. (10), (11),(12),(13), (14), (15).

Note that the cost function here takes into account
the performance degradation of both applications as
a result of resource defficiencies in both CPU and disk,
and the capacity constraints for both resources need
to be considered. This requires solving a convex opti-
mization problem with the number of variables being
the number of resource types multiplied by the num-
ber of VMs on the node. We show later, empirically,
that the performance overhead due to the optimiza-
tion is small.

3.3 Implementation and performance
considerations

(1

(15)

)
5

measured performance

\

| App Node
i controllers | | controller

Disk I/O
scheduler

Dom0

CPU scheduler Xen VMM
(ask | (k2]

Figure 6: A virtualized node in the testbed

We have implemented the model estimator and the
controllers in Java, and written Python wrappers for
sensors and actuators provided by the system. The

controllers communicate with the clients and the Python

wrappers using XML-RPC. The optimization code is
written in Matlab and the Java program communi-
cates with Matlab using pipes. A more efficient im-
plementation can be developed using JNI (Java Na-
tive call Interface). The total number of lines of code
in AutoControl is about 3000. Our code is written to
be extensible and new controllers can be plugged into
the framework easily.

The controllers are designed to be scalable by limit-
ing the number of control variables each controller has
to deal with. More specifically, the number of vari-
ables for each AppController is the number of tiers
multiplied by the number of controlled resources, and
the number of variables for each NodeController is
the number of VMs on that node multiplied by the
number of controlled resources. The performance of
each decision in AutoControl is mainly affected by
three factors: (1) time taken to collect statistics from
clients, (2) Matlab optimization time, (3) actuation
time. Figure 5 shows the average time taken on our
testbed for each of these factors. The total time is
less than 1.5% of the control interval.

4. TESTBED AND EXPERIMENTATION

To evaluate AutoControl, we have built a testbed
consisting of three virtualized nodes, each running
multiple VMs hosting multiple applications. Clients
running on other nodes generate workloads for these
applications.

All the experiments were conducted on HP C-class
blades, each equipped with two dual-core 2.2 GHz 64-
bit processors with 4GB memory, two Gigabit Ether-
net cards and two 146 GB hard disks. The blades were
installed with OpenSuse 10.3 and we used the default
Xen (2.6.22.5-31-xen SMP) available in OpenSuse to
run the VMs. The VM images were built using the

same distribution, and no changes were made to the
kernel.

One network interface and one disk were dedicated
to Dom0, which ran the monitoring framework and
our controllers. The VMs were allocated the second
network interface and disk. The clients connected
to the VMs using the network interface dedicated to
the VMs. The controller used its own network inter-
face to poll application performance statistics from
the clients. In order to demonstrate CPU bottlenecks
more easily, we allocated one CPU to the VMs, and
used the remaining CPUs for Dom0. Our controller is
fully extensible to VMs sharing multiple processors as
long as the CPU scheduler allows arbitrary slicing of
CPU allocation. Figure 6 shows all the components
in our experiments.

These experiments were specifically designed to test
the following capabilities of AutoControl:

1. Automatically detect and mitigate resource bot-
tlenecks across time and across application tiers;

2. Enforce performance targets for metrics includ-
ing throughput and average response time;

3. Adapt resource allocations under time-varying
application workloads;

4. Prioritize among applications during resource con-
tention.

We used three different applications in our experi-
ments: RUBIS [2], an online auction site benchmark,
a Java implementation of the TPC-W benchmark [6],
and a custom-built secure media server.

RUBIS and TPC-W use a multi-tier setup consist-
ing of web and database tiers. They both provide
workloads of different mixes and time-varying inten-
sity. For RUBIS, we used a workload mix called the
browsing mix that simulates a user browsing through
an auction site. For TPC-W, we used the shopping
mix, which simulates a user browsing through a shop-
ping site. The browsing mix stresses the web tier,
while the shopping mix exerts more demand on the
database tier.

The custom-built secure media (smedia) server is
a representation of a media server that can serve en-
crypted media streams. The smedia server runs a
certain number of concurrent threads, each serving a
client that continuously requests media files from the
server. A media client can request an encrypted or
unencrypted stream. Upon receiving the request, the
server reads the particular media file from the disk (or
from memory if it is cached), optionally encrypts it,
and sends it to the client. A closed-loop client model
is used where a new file is only requested after the
previous request is complete. Reading a file from the
disk consumes disk I/O resource, and encryption re-
quires CPU resource. For a given number of threads,

0 30 60 90 120 150 180 210 240 270 300 330
70 T T T T T T T T

T T
Real trace
Simulated trace

50 [

40 -

ol \/\% N / k\ /’%’P\JJ |]

,/\\A]

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300
Time (every 10 seconds)

Figure 7: Simulating production traces

by changing the fraction of the client requests for en-
crypted media, we can vary the amount of CPU or
disk I/O resource used. This flexibility allowed us to
study our controller’s behavior for CPU and disk I/O
bottlenecks.

4.1 Simulating production traces

To test whether AutoControl can handle the dy-
namic variations in resource demands seen by typical
enterprise applications, we also used resource utiliza-
tion traces from an SAP application server running in
production at a customer data center. These traces
were collected every 5 minutes using the HP Open-
View MeasureWare agents. We dynamically varied
the number of concurrent threads for RUBiS, TPC-
W or smedia to recreate the the resource consumption
of these workloads on our test nodes. For example, to
create 40% average CPU utilization over a 5 minute
period, we used 500 threads simulating 500 concur-
rent users for RUBIS. Note that we only matched the
CPU utilization in the production trace. We did not
attempt to recreate the disk utilization, because the
traces did not contain the needed metadata.

Figure 7 shows the result of simulating the SAP
application server CPU utilization using RUBIS. You
can see that the CPU utilization in the production
trace is closely followed by carefully selecting the num-
ber of threads in RUBiS that produce similar CPU
consumption.

We also used traces generated from a media work-
load generator called MediSyn [25]. MediSyn gener-
ates traces that are based on analytical models drawn
from real-world traces collected at an HP Labs pro-
duction media server. It captures important proper-
ties of streaming media workloads, including file du-
ration, popularity, encoding bit rate, and streaming
session time. We re-created the access pattern of the
trace by closely following the start times, end times,
and bitrates of the sessions. We did not attempt to
re-create the disk access pattern, because of the lack
of metadata.

node 1 node 2 node 2 node 3
\F{ubis web == Rubis db ‘ ‘ smedia 3 ‘
‘ smedia 1 ‘ ‘ smedia 3 ‘ ‘ smedia 1 ‘ . _
| smedia 2| | smedia 4 = ‘ tpcw db ‘
Xen VMM Xen VMM Xen VMM Xen VMM -XenVMM
(a) Scenario 1 (b) Scenario 2

Figure 8: Experimental setup

4.2 Sensors

Our sensors periodically collect two types of statis-
tics: real-time resource utilizations and performance
of applications. CPU utilization statistics are col-
lected using Xen’s xm command. Disk utilization
statistics are collected using the iostat command,
which is part of the sysstat package. In our testbed,
we measured both the application throughput and the
server-side response time directly from the applica-
tion, where throughput is defined as the total num-
ber of client requests serviced, and for each client re-
quest, response time is defined as the amount of time
taken to service the request. In a real data center,
application-level performance may be obtained from
application logs or using tools like HP Open View.

4.3 Actuators

Our actuators included Xen’s credit-based CPU sched-

uler and a custom-built proportional disk I/O sched-
uler. The credit scheduler provided by Xen allows
each domain (or VM) to be assigned a cap. We used
the cap to specify a CPU share for each VM. This non-
work-conserving mode of CPU scheduling provided
better performance isolation among applications run-
ning in different VMs. The proportional share sched-
uler for disk I/O was designed to maximize the effi-
ciency of the disk access [11]. The scheduler is log-
ically interposed between the virtual machines and
the physical disks: we implemented it as a driver in
the Dom0. The controller interacts with the disk I/O
scheduler by assigning a share to each VM in every
control interval.

S. EVALUATION RESULTS

We evaluated AutoControl in a number of exper-
imental scenarios to answer the questions posed in
Section 4. In all of the experiments, a control inter-
val of 20 seconds was used. This control interval was
carefully chosen by considering the tradeoff between
smaller noise in the sensor measurements (requiring
a longer sampling interval) and faster response in the
controller (requiring a shorter control interval).

In this section, we present the performance evalu-
ation results from these experiments.

Throughput (Requests/sec) Throughput (Requests/sec) Throughput (Requests/sec) Throughput (Requests/sec)

Throughput (Requests/sec)

250 1 work-conserving ©-
static

200

150

100 BT AR

AutoControl —e— |

Sy e AR W

CATATA A AA AL A A ALK A A A A

0 cs DB cB
0 1 1 1 1 1

0 15 30 45 60 75
Time intervals (every 20 secs)

(a) RUBIS throughput

90

800
AutoControl —e—
700 - work-conserving @]
o static |
600 target -~
500 PAcp b -Aral |
400 i
300 RfY-ee-e DB
200 .\A.n Aot Mi DO oD a0,
100 %"0"-0"9‘-9--0”6--0--@-.6..9...
. cr o R
0 : | 1 ! |

0 15 30 45 60 75
Time intervals (every 20 secs)

(b) Smedial throughput

90

800
AutoControl —e—
700 | work-conserving @]
- static ---4--- |
600 target e
500 i
400 i
300 DB
200 i
100 X
0 1 !
45 60 75

Time intervals (every 20 secs)

(c) Smedia2 throughput

800

90

700 - work-conserving -
| static
600 target -

400
300

AutoControl —e—

200 K-
100
0

Time intervals (every 20 secs)

(d) Smedia3 throughput

800
AutoControl —e—
700 - work-conserving
| static
600 target

0 I I I

0 15 30 45
Time intervals (every 20 secs)

(e) Smedia4 throughput

Figure 9: Application throughput with bottlenecks in
CPU or disk I/O and across multiple nodes. The time
periods with a CPU bottleneck are labeled as “CB”
and those with a disk bottleneck are labeled as “DB.”

100

rubis-web-cpu-alloc —e—
smedial-cpu-alloc @
A

80 smedia2-cpu-alloc -

60 B

Percentage of shared CPU

20 e 3 b . T

0 15 30 45 60 75 90
Time intervals (every 20 secs)

(a) CPU allocations on node 1

100
rubis-web-dsk-alloc —e—
smedial-dsk-alloc -

80 - smedia2-dsk-alloc «--A:-- b

Percentage of shared 1/0

Time intervals (every 20 secs)

(b) Disk allocations on node 1

100
rubis-db-cpu-alloc —e—
smedia3-cpu-alloc @

80 smediad-cpu-alloc, ;- 4---
T ..

60

Percentage of shared CPU

Time intervals (every 20 secs)

(¢) CPU allocations on node 2

100
rubis-db-dsk-alloc —e—
smedia3-dsk-alloc @

80 | smedia4-dsk-alloc b

Percentage of shared 1/0

0 I I I I I

0 15 30 45 60 75 90
Time intervals (every 20 secs)

(d) Disk allocations on node 2

Figure 10: Resource allocations to different applica-

tions or application tiers on different nodes.

5.1 Scenario 1: Detecting and mitigating re-
source bottlenecks in multiple resources
and across multiple application tiers

This scenario was designed to validate the following
claims about AutoControl:

e Claim 1: It can automatically detect resource
bottlenecks and allocate the proper amount of
resources to each application such that all the
applications can meet their performance targets
if possible. This occurs for different types of
resource bottlenecks that occur over time and

Table 2: Percentage of encrypted streams in each sme-

dia application in different time intervals

Intervals | smedial | smedia2 | smediad | smedia4
1-29 50% 50% 2% 2%
30-59 2% 2% 2% 2%
60-89 2% 2% 50% 50%

across multiple tiers of an application.

e Claim 2: It can automatically detect the shift
of a bottleneck from one type of resource to an-
other, and still allocate resources appropriately
to achieve application-level goals.

We use the experimental setup shown in Figure
8(a), where two physical nodes host one RUBIS ap-
plication spanning two nodes, and four smedia ap-
plications. For RUBIS, we used the default browsing
mix workload with 600 threads emulating 600 concur-
rent clients connecting to the RUBIS server, and used
100 requests/sec as the throughput target. Each of
the smedia applications was driven with 40 threads
emulating 40 concurrent clients downloading media
streams at 350KB/sec. We ran calibration experi-
ments to measure the total throughput achievable for
each smedia application alone. We observe that, with
50% of clients requesting encrypted streams, the ap-
plication is CPU-bound and the maximum through-
put is just above 700 requests/sec. If, however, only
2% of clients are requesting encrypted streams, the
application becomes disk-bound and the maximum
throughput is around 300 requests/sec.

We then ran an experiment for 90 control inter-
vals and varied the percentage of encrypted streams
to create a shift of the resource bottleneck in each of
the virtualized nodes. Table 2 illustrates these transi-
tions. For the first 29 intervals, smedial and smedia2
on node 1 were CPU-bound, whereas smedia3 and
smediad on node 2 were disk-bound. We considered
a scenario where smedial and smedia3 always had a
throughput target of 200 requests/sec each. We then
set the throughput targets for smedia2 and smedia4
at 500 and 100 requests/sec, respectively. At inter-
val 30, smedial and smedia2 on node 1 were switched
to disk-bound, and so the throughput target for sme-
dia2 was changed to 100 requests/sec. At interval
60, smedia3 and smediad on node 2 were switched to
CPU-bound, and so the throughput target for sme-
dia4 was adjusted to 500 requests/sec. The targets
were chosen such that both nodes were running near
their capacity limits for either CPU or disk I/0.

Figure 9 shows the throughput of all the five appli-
cations as functions of the control interval. For the
first 29 intervals, the RUBIS web tier, smedial and
smedia2 contended for CPU on node 1, and the RU-
BiS db tier, smedia3 and smedia4 contended for disk
I/O on node 2. AutoControl was able to achieve the

10

targets for all the applications in spite of the fact that
(i) the resource bottleneck occurs either in the CPU
or in the disk; (ii) both tiers of the RUBIS application
distributed across two physical nodes experienced re-
source contention.

To help understand how the targets were achieved,
Figures 10(a) and 10(b) show the CPU and disk I/O
allocations to the RUBIS web tier, smedial and sme-
dia2 on node 1. For the first 29 intervals, these three
VMs were contending for CPU. The controller gave
different portions of both CPU and disk resources to
the three VMs such that all of their targets could be
met. In the same time period (first 29 intervals), on
node 2, the RUBIS database tier, smedia3 and sme-
diad were contending for the disk I/O. Figures 10(c)
and 10(d) show the CPU and disk I/O allocations for
all the three VMs on this node. The controller not
only allocated the right proportion of disk I/O to sme-
dia3 and smedia4 for them to achieve their through-
put targets, it also allocated the right amount of CPU
to the RUBIS database tier so that the two-tier ap-
plication could meet its target.

At interval 30, the workloads for the smedia ap-
plications on node 1 were switched to be disk-heavy.
As a result, smedial and smedia2 were contending
for disk I/O, since RUBIS web tier uses minimal disk
resource. The controller recognized this change in
resource bottleneck automatically and ensured that
both smedial and smedia2 could meet their new through-
put targets by allocating the right amount of disk re-
sources to both smedia applications (see Figure 10(b)).

At interval 60, the workloads for the smedia ap-
plications on node 2 were switched to be CPU-heavy.
Because the RUBIS db tier also requires a non-negligible
amount of CPU (around 20%), smedia3 and smedia4
started contending for CPU with the RUBiS db tier
on node 2. Again, the controller was able to auto-
matically translate the application-level goals into ap-
propriate resource allocations to the three VMs (see
Figure 10(c)).

For comparison, we repeated the same experiment
using two other resource allocation methods that are
commonly used on consolidated infrastructure, a work-
conserving mode and a static mode. In the work-
conserving mode, the applications run in the default
Xen settings, where a cap of zero is specified for the
shared CPU on a node, indicating that the applica-
tions can use any amount of CPU resources. In this
mode, our proportional share disk scheduler was un-
loaded to allow unhindered disk access. In the static
mode, the three applications sharing a node were al-
located CPU and disk resources in the fixed ratio
20:50:30. The resulting application performance from
both approaches is shown in Figure 9 along with the
performance from AutoControl. As can be seen, nei-
ther approach was able to offer the degree of perfor-

smedial -by-CPU ————
2 | smedial -by-DSK ------- i
smedial - a;

Model parameters

0
0 15 30 45 60 75 90
Time intervals (every 20 secs)

(a) Model parameter values for sme-

dial
__ 1000
3 Throughput —e—
2 800 Pred throughput =@~
o
2 600
H
2 400
2
o 200
< :]
= I I I 1 I

0
0 15 30 45 60 75 90
Time intervals (every 20 secs)

(b) Measured and model-predicted
throughput for smedia2

Figure 11: Internal workings of the AppController -
model estimator performance

mance assurance provided by AutoControl.

For the work-conserving mode, RUBiS was able
to achieve a throughput much higher than its tar-
get at the cost of performance degradation in the
other applications sharing the same infrastructure.
The remaining throughput on either node was equally
shared by smedial and smedia2 on node 1, and sme-
dia3 and smedia4 on node 2. This mode did not pro-
vide service differentiation between the applications
according to their respective performance targets.

For the static mode, RUBIS was never able to reach
its performance target given the fixed allocation, and
the smedia applications exceeded their targets at some
times and missed the targets at other times. Given
the changes in workload behavior for the smedia ap-
plications, there is no fixed allocation ratio for both
CPU and disk I/O that will guarantee the perfor-
mance targets for all the applications. We chose to
allocate both CPU and disk resources in the ratio
20:50:30, as a human operator might.

To understand further the internal workings of Au-
toControl, we now demonstrate a key element of our
design - the model estimator in the AppController
that automatically determines the dynamic relation-
ship between an application’s performance and its re-
source allocation. Our online estimator continuously
adapts the model parameters as dynamic changes oc-
cur in the system. Figure 11(a)(a) shows the model
parameters (bocpu, bo,disk; and a;) for smedial as
functions of the control interval. For lack of space,
we omit the second-order parameters and the param-
eter values for the other applications. As we can see,

11

Table 3: Predictive accuracy of linear models (in per-

centage)
rubis | smedial | smedia2 | smedia3 | smedia4
R? 79.8 91.6 92.2 93.3 97.0
MAPE | 4.2 5.0 6.9 4.5 8.5

the values of by cpy, representing the correlation be-
tween application performance and CPU allocation,
dominated the by gisk, and a; parameters for the first
29 intervals. The disk allocation also mattered, but
was not as critical. This is consistent with our ob-
servation that node 1 had a CPU bottleneck during
that period. After the 30th interval, when disk be-
came a bottleneck on node 1, while CPU became less
loaded, the model coefficient by gisr exceeded by, cpsy
and became dominant after a period of adaptation.

To assess the overall prediction accuracy of the lin-
ear models, we computed two measures, the coeffi-
cient of determination (R?) and the mean absolute
percentage error (MAPE), for each application. R?
and MAPE can be calculated as

k(g (k) — yna(k))?
Zk(yna(k) - yna,avg)2

K
1 yn, (k) — yna(k)
MAPE = = 5 |Ylal®) — UNallF)
K2 |

where K is the total number of samples, yn, (k) and
yng (k) are the model-predicted value and the mea-
sured value for the normalized performance of ap-
plication a, and yng qvg is the sample mean of yn,.
Table 3 shows the values of these two measures for
all the five applications. As an example, we also
show in Figure 11(b)(b) the measured and the model-
predicted throughput for smedia2. From both the ta-
ble and the figure, we can see that our model is able
to predict the normalized application performance ac-
curately, with R? above 80% and MAPE below 10%.
This validates our belief that low-order linear mod-
els, when adapted online, can be good enough local
approximations of the system dynamics even though
the latter is nonlinear and time-varying.

R*=1-

5.2 Scenario 2: Enforcing application prior-
ities
In this scenario, we use the experimental setup shown
in Figure 8(b) to substantiate the following two claims:

e Claim 3: AutoControl can support different
multi-tier applications.

e Claim 4: During resource contention, if two
applications sharing the same resource have dif-
ferent priority weights, the application with a
higher priority weight will see a lower normalized
tracking error (|yn, — 1|) in its performance.

In this setup, we have two multi-tier applications,

RUBIS and TPC-W, and four smedia applications
spanning three nodes. We ran the same workloads
used in Scenario 1 for RUBIS, smedial and smedia2.
TPC-W was driven with the shopping mix workload
with 200 concurrent threads. Each of the smedia ap-
plications on node 3 was driven with a workload of 40
concurrent users, where 50% of clients requested en-
crypted streams (making it CPU-bound). We assume
that the TPC-W application is of higher priority than
the two smedia applications sharing the same node.
Therefore, TPC-W is assigned a priority weight of
w = 2 while the other applications have w = 1 in
order to provide service differentiation.

Unlike the setup used in Scenario 1, there was no
resource contention on node 2. For the first 29 inter-
vals, all the six applications were able to meet their
goals. Figure 12 shows the throughput target and
the achieved throughput for TPC-W and smedia3.
(The other four applications are not shown to save
space.) At interval 30, 800 more threads were added
to the TPC-W client, simulating increased user activ-
ity. The throughput target for TPC-W was adjusted
from 20 to 50 requests/sec to reflect this change. This
increases the CPU load on the database tier creating a
CPU bottleneck on node 3. AutoControl responds to
this change automatically and correctly re-distributes
the resources. Note that not all three applications
(TPC-W, smedia3, and smediad) on node 3 can reach
their targets. But the higher priority weight for TPC-
W allowed it to still meet its throughput target while
degrading performance for the other two applications.

The result from using the work-conserving mode
for the same scenario is also shown in Figure 12. In
this mode, smedia3 and smediad4 took up more CPU
resource, causing TPC-W to fall below its target.

We also use this example to illustrate how a tradeoff
between controller stability and responsiveness can be
handled by adjusting the stability factor ¢q. Figure 13
shows the achieved throughput for TPC-W and sme-
dia3 under the same workload condition, for ¢ values
of 1, 2, and 10. The result for ¢ = 2 is the same
as in Figure 12. For ¢ = 1, the controller reacts to
the workload change more quickly and aggressively,
resulting in large oscillations in performance. For
q = 10, the controller becomes much more sluggish
and does not adjust resource allocations fast enough
to track the performance targets.

5.3 Scenario 3: Production-trace-driven work-

loads

The last scenario is designed to substantiate the
following two claims for AutoControl:

e Claim 5: It can be used to control application
response time.

e Claim 6: It can manage workloads that are

12

AutoControl —e—
work-conserving ---e---

75

50

» B0 00

1 1 1
0 15 30 45
Time intervals (every 20 secs)

(a) TPC-W throughput

Throughput (Requests/sec)

60

500
400
300

200
AutoControl —e—

Throughput (Requests/sec)

100 - work-conserving --
target
0 1 1
0 15 30 45 60

Time intervals (every 20 secs)
(b) Smedia3 throughput

Figure 12: Performance comparison between AutoCon-
trol and work-conserving mode, with different priority
weights for TPC-W (w = 2) and smedia3 (w = 1).

Throughput (regs/sec)

0 10
Time intervals (every 20 secs)

(a) TPC-W throughput

20 30 40 50

1000

800 - B
600 B

400

Throughput (regs/sec)

200

q
=10 ---a---
target -

R

0 10 20 30 40
Time intervals (every 20 secs)

(b) Smedia3 throughput

0

Figure 13: Performance results for TPC-W and sme-
dia3 with stability factor ¢ =1,2,10

driven by real production traces.

In this scenario, we use the same setup as in Sce-
nario 1, shown in Figure 8(a). We simulated the pro-
duction workloads using the trace-driven approach as
described in Section 4. Each of the RUBIS, smedial
and smedia2 applications was driven by a production
trace, while both smediad and smedia4 run a work-
load with 40 threads with a 2% chance of requesting

T T T T T T T T
RUBIS —e—
B smedial 7] B
L smedia2 ---4--- | L
target -

T T T T
RUBIS —e—
smedial 7] B 7]
smedia2 ---4--- | o 4
target -

) L]

O P N W M OO N
T
1

O P N W b~ U1 O N
T

Response time (in secs)
Response time (in secs)

el |

O P N W b~ 01O N
T

Response time (in secs)

iy

A f

0 10 20 30 40 50 60 70 80 90

(a) AutoControl

0 10 20 30 40 50 60 70 80

(b) Work-conserving mode

90 0 10 20 30 40 50 60 70 80 90

(c) Static allocation mode

Figure 14: Performance comparison of AutoControl, work-conserving mode and static allocation mode, while

running RUBIS, smedial and smedia2 with production-trace-driven workloads.

an encrypted stream (making it disk-bound).
In this experiment, we use response time as the
performance metric for two reasons.

1. Response time behaves quite nonlinearly with
respect to the resource allocation and can be
used to evaluate how AutoControl copes with
nonlinearity in the system.

It is possible to specify the same response time
target for all applications even if they are differ-
ent, whereas specifying throughput targets are
harder since they may depend on the offered
load.

For brevity, we only show the results for the three
applications running on node 1. Figures 14(a), 14(b)
and 14(c) show the measured average response time
of RUBIS, smedial and smedia2 as functions of the
control interval, using AutoControl, work-conserving
mode, and static allocation mode, respectively. We
use a response time target of 1.5 second for all the
three applications, and set the CPU allocation at a
fixed 33% for each application in the static mode. The
dark-shaded regions show the time intervals when a
CPU bottleneck occurred.

In the first region, for the work-conserving mode,
both smedial and smedia2 had high CPU demands,
causing not only response time target violations for
themselves, but also a large spike of 6 second in the
response time for RUBIS at the 15th interval. In com-
parison, AutoControl allocated to both smedial and
smedia2 higher shares of the CPU without overly pe-
nalizing RUBIS. As a result, all the three applications
were able to meet the response time target most of the
time, except for the small spike in RUBIS.

In the second shaded region, the RUBIS applica-
tion became more CPU intensive. Because there is no
performance assurance in the work-conserving mode,
the response time of RUBIS surged and resulted in a
period of target violations, while both smedial and
smedia2 had response times well below the target. In
contrast, AutoControl allocated more CPU capacity

13

to RUBIS when needed by carefully reducing the re-
source allocation to smedia2. The result was that
there were almost no target violations for any of the
three applications.

The performance result from the static allocation
mode was similar to that from the work-conserving
mode, except that the RUBIS response time was even
worse in the second region.

Despite the fact that response time is a nonlin-
ear function of resource allocation, and that the real
traces used here were much more dynamic than the
static workloads with step changes tested in Scenario
1 and 2, AutoControl was still able to balance the re-
sources and minimize the response time violations for
all three applications.

6. RELATED WORK

In recent years, control theory has been applied
to computer systems for resource management and
performance control [13, 16]. Examples of its ap-
plication include web server performance guarantees
[1], dynamic adjustment of the cache size for multi-
ple request classes [19], CPU and memory utilization
control in web servers [9], adjustment of resource de-
mands of virtual machines based on resource avail-
ability [28], and dynamic CPU allocations for multi-
tier applications [18, 22]. These concerned themselves
with controlling only a single resource (usually CPU),
used mostly single-input single-output (SISO) con-
trollers (except in [9]), and required changes in the
applications. In contrast, our MIMO controller op-
erates on multiple resources (CPU and storage) and
uses the sensors and actuators at the virtualization
layer and external QoS sensors without requiring any
modifications to applications.

In [9], the authors apply MIMO control to adjust
two configuration parameters within Apache to regu-
late CPU and memory utilization of the Web server.
They used static linear models, which are obtained by
system identification for modeling the system. Our
earlier attempts at static models for controlling CPU
and disk resources have failed, and therefore, we used

a dynamic adaptive model in this paper. Our work
also extends MIMO control to controlling multiple re-
sources and virtualization, which has more complex
interactions than controlling a single web server.

Prior work on controlling storage resources inde-
pendent of CPU includes systems that provide per-
formance guarantees in storage systems [7, 10, 14,
20]. However, one has to tune these tools to achieve
application-level guarantees. Our work builds on top
of our earlier work, where we developed an adaptive
controller [17] to achieve performance differentiation,
and efficient adaptive proportional share scheduler
[11] for storage systems.

Traditional admission control to prevent comput-
ing systems from being overloaded has focused mostly
on web servers. Control theory was applied in [15]
for the design of a self-tuning admission controller for
3-tier web sites. In [17], a self-tuning adaptive con-
troller was developed for admission control in stor-
age systems based on online estimation of the rela-
tionship between the admitted load and the achieved
performance. These admission control schemes are
complementary to the our approach, because the for-
mer shapes the resource demand into a server system,
whereas the latter adjusts the supply of resources for
handling the demand.

Dynamic resource allocation in distributed systems
has been studied extensively, but the emphasis has
been on allocating resources across multiple nodes
rather than in time, because of lack of good isolation
mechanisms like virtualization. It was formulated as
an online optimization problem in [3] using periodic
utilization measurements, and resource allocation was
implemented via request distribution. Resource pro-
visioning for large clusters hosting multiple services
was modeled as a “bidding” process in order to save
energy in [8]. The active server set of each service
was dynamically resized adapting to the offered load.
In [24], an integrated framework was proposed com-
bining a cluster-level load balancer and a node-level
class-aware scheduler to achieve both overall system
efficiency and individual response time goals. How-
ever, these existing techniques are not directly appli-
cable to allocating resources to applications running
in VMs. They also fall short of providing a way of
allocating resources to meet the end-to-end SLOs.

7. DISCUSSION AND FUTURE WORK

This section describes some of the design issues in
AutoControl, alternative methods and future research
work.

7.1 Migration for dealing with bottlenecks

Migration of VMs can also be used to handle an
overloaded physical node [27]. The black box migra-
tion strategy uses resource-utilization statistics to in-

14

fer which VMs need to be migrated, and may not
know about SLO violations. The gray box migra-
tion strategy uses application statistics to infer the
resource requirements using queuing theory. How-
ever, requirements for complex applications requir-
ing multiple resources cannot be easily predicted us-
ing queuing theory. In addition, migration of state-
ful applications (e.g., databases) might take too long
to mitigate an SLO violation; in fact, the impact on
the SLOs is compounded during the migration. In
a heavily-consolidated data center where most of the
nodes are highly utilized, migration may not be vi-
able. Finally, security concerns in migration [21] may
cause the vendors to add security features that will
make migration much slower.

Despite these shortcomings, migration is useful when
there is a long-term mismatch between node resources
and application requirements. Migration can be added
as an actuator to our system. The migration actua-
tor works at a much more coarse-grained time-scale,
and as future work, we plan to extend AutoControl to
utilize the migration actuator along with the resource
allocation schedulers.

7.2 Actuator & sensor behavior, network and
memory control

The behavior of sensors and actuators affects our
control. In existing systems, most sensors return ac-
curate information, but many actuators are poorly de-
signed. We observed various inaccuracies with Xen’s
earlier SEDF scheduler and credit scheduler that are
identified by other researchers [12] as well. These in-
accuracies cause VMs to gain more or less CPU than
set by the controller. Empirical evidence shows that
our controller is resistant to CPU scheduler’s inaccu-
racies.

Our intial efforts in adding network resource con-
trol have failed, because of inaccuracies in network
actuators. Since Xen’s native network control is not
fully implemented, we tried to use Linux’s existing
traffic controller (tc) to allocate network resources to
VMs. We found that the network bandwidth setting
in (tc) is not enforced correctly when heavy network
workloads are run. We plan to fix these problems and
add network control as well. The theory we developed
in this paper is directly applicable to any number of
resources.

The memory ballooning supported in VMware [26]
provides a way of controlling the memory required by
a VM. However, the ballooning algorithm does not
know about application goals or multiple tiers, and
only uses the memory pressure as seen by the operat-
ing system. In the future, we also plan to add memory
control actuators to our system.

Throughpu.

Figure 15: Combined metrics, thr,.; = 25, rt,..; = 10,
a=1,8=1,thr=0-50, rt =0— 15

7.3 Handling a combination of multiple tar-
gets

AutoControl is shown to be able to handle differ-
ent metrics, including throughput and response time
as performance metrics. How do we handle appli-
cations that want to specify a combination of met-
rics for performance? We have developed a prelim-
inary utility-based framework, where we introduce
the concept of utility that is a representative of the
“value” of application. For example, a utility func-
tion like U(y) = max{a(l — e¥~¥f 0)} represents
higher utility for an application as it reaches its tar-
get metric y,.y. Continuing this, we can create a
utility function using two or more metrics that are
of interest to the application. An example utility
function using both response time and throughput
is: U(thr,rt) = g(rt — rtyes + f(thryes —thr)), where
g(@) = (1 +erflaxa))/2 and f(x) = 3 * g(a).

A 3-D visualization of the function is shown in Fig-
ure 15.

8. CONCLUSIONS

In this paper, we presented AutoControl, a feed-
back control system to dynamically allocate compu-
tational resources to applications in shared virtual-
ized environments. AutoControl consists of an on-
line model estimator that captures the relationship
between application-level performance and resource
allocation and a novel MIMO resource controller that
determines appropriate allocation of multiple resources
to achieve application-level SLOs. We evaluated Au-
toControl using a testbed consisting of Xen virtual
machines and various single-tier and multi-tier appli-
cations and benchmarks. Our experimental results
confirm that AutoControl can detect CPU and disk
bottlenecks across multiple nodes and can adjust re-
source allocation to achieve end-to-end application-
level SLOs. In addition, AutoControl can cope with
shifting resource bottlenecks and provide a level of
service differentiation according to the priority of in-

15

dividual applications. Finally, we showed that Auto-
Control can enforce performance targets for different
application-level metrics, including throughput and
response time.

9.
(1]

REFERENCES

ABDELZAHER, T., SHIN, K., AND BHATTI, N.
Performance guarantees for web server end-systems:
A control-theoretical approach. IEEE Transactions
on Parallel and Distributed Systems 138 (2002).
AmzaA, C., CH, A., Cox, A., ELNIKETY, S., GIL,
R., Rajamani, K., CECCHET, E., AND
MARGUERITE, J. Specification and implementation
of dynamic Web site benchmarks. In Proc. of IEEE
5th Annual Workshop on Workload
Characterization (Oct. 2002).

ARON, M., DRUSCHEL, P., AND ZWAENEPOEL, W.
Cluster reserves: A mechanism for resource
management in cluster-based network servers. In
Proc. of ACM SIGMETRICS (2000), pp. 90-101.
AsTtrOM, K., AND WITTENMARK, B. Adaptive
Control. Addition-Wesley, 1995.

BarHAaM, P., DrAGOVIC, B., FRASER, K., HAND,
S., Harris, T., Ho, A., NEUGEBAUER, R., PRATT,
1., AND WARFIELD, A. Xen and the art of
virtualization. In Proc. of the 19th ACM Symposium
on Operating Systems Principles (SOSP) (Oct.
2003), pp. 164-177.

CaiN, H., RAJWAR, R., MARDEN, M., AND
LipasTi, M. H. An architectural evaluation of java
TPC-W. In HPCA (2001), pp. 229-240.
CHAMBLISS, D., ALVAREZ, G., PANDEY, P., JADAV,
D., Xu, J., MENON, R., AND LEE, T. Performance
virtualization for large-scale storage systems. In
Proc. of Symp. on Reliable Distributed Systems
(SRDS) (Oct. 2003), pp. 109-118.

CHASE, J., ANDERSON, D., THAKAR, P., VAHDAT,
A., AND DOYLE, R. Managing energy and server
resources in hosting centers. In Proc. of Symposium
on Operating Systems Principles (SOSP) (October
2001).

Diao, Y., GANDHI, N., HELLERSTEIN, J., PAREKH,
S., AND TILBURY, D. MIMO control of an apache
web server: Modeling and controller design. In Proc.
of American Control Conference (ACC) (2002).
GovAL, P., MoDHA, D., AND TEWARI, R.
CacheCOW: providing qoS for storage system
caches. In Proc. of ACM SIGMETRICS (2003),
pp- 306-307.

GULATI, A., MERCHANT, A., UYSAL, M., AND
VARMAN, P. Efficient and adaptive proportional
share I/O scheduling. Tech. Rep. HPL-2007-186, HP
Labs, Nov 2007.

GupTA, D., CHERKASOVA, L., GARDNER, R., AND
VAHDAT, A. Enforcing performance isolation across
virtual machines in xen. In Proc. of International
Middleware Conference (2006), vol. 4290,

pp. 342-362.

HELLERSTEIN, J. L. Designing in control
engineering of computing systems. In Proc. of
American Control Conference (2004).

JiN, W., CHASE, J., AND KAUR, J. Interposed
proportional sharing for a storage service utility. In
Proc. of ACM SIGMETRICS (2004), pp. 37-48.
KAMRA, A., MIsrA, V., AND NAHUM, E. Yaksha:
A self-tuning controller for managing the

2

3]

[4

5

6

8

[9

[10]

(11]

[12]

[13]

[14]

(15]

[21]

22]

[24]

[25]

performance of 3-tiered web sites. In Proc. of the
International Workshop on Quality of Service
(IWQoS) (June 2004).

KaraMANOLIS, C., KARLSSON, M., AND ZHU, X.
Designing controllable computer systems. In Proc.
of HOTOS (June 2005), pp. 49-54.

KARLssON, M., KaAramaNoOLIS, C., AND ZHU, X.
Triage: Performance isolation and differentiation for
storage systems. In Proc. of IEEE Int. Workshop on
Quality of Service (IWQoS) (2004).

L, X., Zau, X., PADALA, P., WANG, Z., AND
SINGHAL, S. Optimal multivariate control for
differentiated services on a shared hosting platform.
In Proc. of the IEEE Conference on Decision and
Control (CDC) (2007).

Lu, Y., ABDELZAHER, T., AND SAXENA, A. Design,
implementation, and evaluation of differentiated
caching serives. IEEE Transactions on Parallel and
Distributed Systems 15, 5 (May 2004).

LumB, C., MERCHANT, A., AND ALVAREZ, G.
Fagade: Virtual storage devices with performance
guarantees. In Proc. of File and Storage
Technologies (FAST) (2003), USENIX.
OBERHEIDE, J., COOKE, E., AND JAHANIAN, F.
Empirical exploitation of live virtual machine
migration. In Proc. of BlackHat DC convention
(2008).

PabparLa, P., Zuu, X., UysaL, M., WANG, Z.,
SINGHAL, S., MERCHANT, A., SALEM, K., AND
SHIN, K. G. Adaptive control of virutalized
resources in utility computing environments. In
ACM Proc. of the EuroSys (2007).

Rovria, J., CHERKASOVA, L., ARLIT, M., AND
ANDRZEJAK, A. A capacity management service for
resource pools. In Proc. of the 5th International
Workshop on Software and Performance (WOSP)
(July 2005).

SHEN, K., TaANG, H., YaNng, T., AND CHuU, L.
Integrated resource management for cluster-based
internet services. ACM SIGOPS Operating Systems
Review 36, SI (2002), 225 — 238.

TanG, W., Fu, Y., CHERKASOVA, L., AND
VAHDAT, A. Long-term streaming media server
workload analysis and modeling. Tech. Rep.
HPL-2003-23, HP Labs, Feb. 07 2003.
WALDSPURGER, C. Memory resource management
in VMware ESX server. In Proc. of Symposium on
Operating Systems Design and Implementation
(0OSDI) (Dec. 2002).

Woob, T., SHENOY, P. J., VENKATARAMANI, A.,
AND YOUsIF, M. S. Black-box and gray-box
strategies for virtual machine migration. In NSDI
(2007), USENIX.

ZHANG, Y., BESTAVROS, A., GUIRGUIS, M.,
MatTA, I., AND WEST, R. Friendly virtual
machines: leveraging a feedback-control model for
application adaptation. In Proc. of the Virtual
Ezecution Environments, VEE (2005), pp. 2-12.

16

