
BASIL: Automated IO Load Balancing Across Storage Devices

Ajay Gulati
VMware, Inc.

agulati@vmware.com

Chethan Kumar
VMware, Inc.

ckumar@vmware.com

Irfan Ahmad
VMware, Inc.

irfan@vmware.com

Karan Kumar
Carnegie Mellon University

karank@andrew.cmu.edu

Abstract
Live migration of virtual hard disks between storage

arrays has long been possible. However, there is a dearth
of online tools to perform automated virtual disk place-
ment and IO load balancing across multiple storage ar-
rays. This problem is quite challenging because the per-
formance of IO workloads depends heavily on their own
characteristics and that of the underlying storage device.
Moreover, many device-specific details are hidden behind
the interface exposed by storage arrays.

In this paper, we introduce BASIL, a novel software
system that automatically manages virtual disk placement
and performs load balancing across devices without as-
suming any support from the storage arrays. BASIL uses
IO latency as a primary metric for modeling. Our tech-
nique involves separate online modeling of workloads
and storage devices. BASIL uses these models to rec-
ommend migrations between devices to balance load and
improve overall performance.

We present the design and implementation of BASIL in
the context of VMware ESX, a hypervisor-based virtual-
ization system, and demonstrate that the modeling works
well for a wide range of workloads and devices. We eval-
uate the placements recommended by BASIL, and show
that they lead to improvements of at least 25% in both
latency and throughput for 80 percent of the hundreds
of microbenchmark configurations we ran. When tested
with enterprise applications, BASIL performed favorably
versus human experts, improving latency by 18-27%.

1 Introduction

Live migration of virtual machines has been used exten-
sively in order to manage CPU and memory resources,
and to improve overall utilization across multiple physi-
cal hosts. Tools such as VMware’s Distributed Resource
Scheduler (DRS) perform automated placement of vir-
tual machines (VMs) on a cluster of hosts in an efficient

and effective manner [6]. However, automatic placement
and load balancing of IO workloads across a set of stor-
age devices has remained an open problem. Diverse IO
behavior from various workloads and hot-spotting can
cause significant imbalance across devices over time.

An automated tool would also enable the aggregation
of multiple storage devices (LUNs), also known as data
stores, into a single, flexible pool of storage that we call
a POD (i.e. Pool of Data stores). Administrators can
dynamically populate PODs with data stores of similar
reliability characteristics and then just associate virtual
disks with a POD. The load balancer would take care of
initial placement as well as future migrations based on
actual workload measurements. The flexibility of sep-
arating the physical from the logical greatly simplifies
storage management by allowing data stores to be effi-
ciently and dynamically added or removed from PODs
to deal with maintenance, out of space conditions and
performance issues.

In spite of significant research towards storage config-
uration, workload characterization, array modeling and
automatic data placement [8, 10, 12, 15, 21], most stor-
age administrators in IT organizations today rely on rules
of thumb and ad hoc techniques, both for configuring a
storage array and laying out data on different LUNs. For
example, placement of workloads is often based on bal-
ancing space consumption or the number of workloads
on each data store, which can lead to hot-spotting of IOs
on fewer devices. Over-provisioning is also used in some
cases to mitigate real or perceived performance issues
and to isolate top-tier workloads.

The need for a storage management utility is even
greater in virtualized environments because of high de-
grees of storage consolidation and sprawl of virtual disks
over tens to hundreds of data stores. Figure 1 shows a typ-
ical setup in a virtualized datacenter, where a set of hosts
has access to multiple shared data stores. The storage
array is carved up into groups of disks with some RAID
level configuration. Each such disk group is further di-



Virtualized Hosts

SAN Fabric

VMs

Storage Arrays

Data
Migration

Figure 1: Live virtual disk migration between devices.

vided into LUNs which are exported to hosts as storage
devices (referred to interchangeably as data stores). Ini-
tial placement of virtual disks and data migration across
different data stores should be guided by workload char-
acterization, device modeling and analysis to improve
IO performance as well as utilization of storage devices.
This is more difficult than CPU or memory allocation
because storage is a stateful resource: IO performance
depends strongly on workload and device characteristics.

In this paper, we present the design and implementa-
tion of BASIL, a light-weight online storage management
system. BASIL is novel in two key ways: (1) identify-
ing IO latency as the primary metric for modeling, and
(2) using simple models both for workloads and devices
that can be obtained efficiently online. BASIL uses IO
latency as the main metric because of its near linear re-
lationship with application-level characteristics (shown
later in Section 3). Throughput and bandwidth, on the
other hand, behave non-linearly with respect to various
workload characteristics.

For modeling, we partition the measurements into two
sets. First are the properties that are inherent to a work-
load and mostly independent of the underlying device
such as seek-distance profile, IO size, read-write ratio
and number of outstanding IOs. Second are device de-
pendent measurements such as IOPS and IO latency. We
use the first set to model workloads and a subset of the
latter to model devices. Based on measurements and the
corresponding models, the analyzer assigns the IO load
in proportion to the performance of each storage device.

We have prototyped BASIL in a real environment with
a set of virtualized servers, each running multiple VMs
placed across many data stores. Our extensive evalua-
tion based on hundreds of workloads and tens of device
configurations shows that our models are simple yet effec-
tive. Results indicate that BASIL achieves improvements
in throughput of at least 25% and latency reduction of at
least 33% in over 80 percent of all of our test configura-
tions. In fact, approximately half the tests cases saw at
least 50% better throughput and latency. BASIL achieves
optimal initial placement of virtual disks in 68% of our
experiments. For load balancing of enterprise applica-
tions, BASIL outperforms human experts by improving
latency by 18-27% and throughput by up to 10%.

The next section presents some background on the rele-
vant prior work and a comparison with BASIL. Section 3
discusses details of our workload characterization and
modeling techniques. Device modeling techniques and
storage specific issues are discussed in Section 4. Load
balancing and initial placement algorithms are described
in Section 5. Section 6 presents the results of our ex-
tensive evaluation on real testbeds. Finally, we conclude
with some directions for future work in Section 7.

2 Background and Prior Art

Storage management has been an active area of research
in the past decade but the state of the art still consists of
rules of thumb, guess work and extensive manual tuning.
Prior work has focused on a variety of related problems
such as disk drive and array modeling, storage array con-
figuration, workload characterization and data migration.

Existing modeling approaches can be classified as ei-
ther white-box or black-box, based on the need for de-
tailed information about internals of a storage device.
Black-box models are generally preferred because they
are oblivious to the internal details of arrays and can be
widely deployed in practice. Another classification is
based on absolute vs. relative modeling of devices. Ab-
solute models try to predict the actual bandwidth, IOPS
and/or latency for a given workload when placed on a stor-
age device. In contrast, a relative model may just provide
the relative change in performance of a workload from
device A to B. The latter is more useful if a workload’s
performance on one of the devices is already known. Our
approach (BASIL) is a black-box technique that relies on
the relative performance modeling of storage devices.

Automated management tools such as Hippo-
drome [10] and Minerva [8] have been proposed in
prior work to ease the tasks of a storage administrator.
Hippodrome automates storage system configuration
by iterating over three stages: analyze workloads,
design the new system and implement the new design.
Similarly, Minerva [8] uses a declarative specification
of application requirements and device capabilities
to solve a constraint-based optimization problem for
storage-system design. The goal is to come up with the
best array configuration for a workload. The workload
characteristics used by both Minerva and Hippodrome
are somewhat more detailed and different than ours.
These tools are trying to solve a different and a more
difficult problem of optimizing overall storage system
configuration. We instead focus on load balancing of
IO workloads among existing storage devices across
multiple arrays.

Mesnier et al. [15] proposed a black-box approach
based on evaluating relative fitness of storage devices
to predict the performance of a workload as it is moved



from its current storage device to another. Their approach
requires extensive training data to create relative fitness
models among every pair of devices. Practically speak-
ing, this is hard to do in an enterprise environment where
storage devices may get added over time and may not be
available for such analysis. They also do very extensive
offline modeling for bandwidth, IOPS and latency and we
derive a much simpler device model consisting of a single
parameter in a completely online manner. As such, our
models may be somewhat less detailed or less accurate,
but experimentation shows that they work well enough in
practice to guide our load balancer. Their model can po-
tentially be integrated with our load balancer as an input
into our own device modeling.

Analytical models have been proposed in the past for
both single disk drives and storage arrays [14, 17, 19, 20].
Other models include table-based [9] and machine learn-
ing [22] techniques. These models try to accurately pre-
dict the performance of a storage device given a particular
workload. Most analytical models require detailed knowl-
edge of the storage device such as sectors per track, cache
sizes, read-ahead policies, RAID type, RPM for disks etc.
Such information is very hard to obtain automatically
in real systems, and most of it is abstracted out in the
interfaces presented by storage arrays to the hosts. Oth-
ers need an extensive offline analysis to generate device
models. One key requirement that BASIL addresses is
using only the information that can be easily collected on-
line in a live system using existing performance monitor-
ing tools. While one can clearly make better predictions
given more detailed information and exclusive, offline ac-
cess to storage devices, we don’t consider this practical
for real deployments.

3 Workload Characterization

Any attempt at designing intelligent IO-aware placement
policies must start with storage workload characterization
as an essential first step. For each workload in our sys-
tem, we currently track the average IO latency along the
following parameters: seek distance, IO sizes, read-write
ratio and average number of outstanding IOs. We use
the VMware ESX hypervisor, in which these parameters
can be easily obtained for each VM and each virtual disk
in an online, light-weight and transparent manner [7]. A
similar tool is available for Xen [18]. Data is collected for
both reads and writes to identify any potential anomalies
in the application or device behavior towards different
request types.

We have observed that, to the first approximation, four
of our measured parameters (i.e., randomness, IO size,
read-write ratio and average outstanding IOs) are inherent
to a workload and are mostly independent of the underly-
ing device. In actual fact, some of the characteristics that

we classify as inherent to a workload can indeed be par-
tially dependent on the response times delivered by the
storage device; e.g., IO sizes for a database logger might
decrease as IO latencies decrease. In previous work [15],
Mesnier et al. modeled the change in workload as it is
moved from one device to another. According to their
data, most characteristics showed a small change except
write seek distance. Our model makes this assumption
for simplicity and errors associated with this assumption
appear to be quite small.

Our workload model tries to predict a notion of load
that a workload might induce on storage devices using
these characteristics. In order to develop a model, we
ran a large set of experiments varying the values of each
of these parameters using Iometer [3] inside a Microsoft
Windows 2003 VM accessing a 4-disk RAID-0 LUN on
an EMC CLARiiON array. The set of values chosen for
our 750 configurations are a cross-product of:

Outstanding IOs {4, 8, 16, 32, 64}
IO size (in KB) {8, 16, 32, 128, 256, 512}

Read% {0, 25, 50, 75, 100}
Random% {0, 25, 50, 75, 100}

For each of these configurations we obtain the values of
average IO latency and IOPS, both for reads and writes.
For the purpose of workload modeling, we next discuss
some representative sample observations of average IO la-
tency for each one of these parameters while keeping the
others fixed. Figure 2(a) shows the relationship between
IO latency and outstanding IOs (OIOs) for various work-
load configurations. We note that latency varies linearly
with the number of outstanding IOs for all the configu-
rations. This is expected because as the total number of
OIOs increases, the overall queuing delay should increase
linearly with it. For very small number of OIOs, we may
see non-linear behavior because of the improvement in
device throughput but over a reasonable range (8-64) of
OIOs, we consistently observe very linear behavior. Sim-
ilarly, IO latency tends to vary linearly with the variation
in IO sizes as shown in Figure 2(b). This is because the
transmission delay increases linearly with IO size.

Figure 2(c) shows the variation of IO latency as we
increase the percentage of reads in the workload. In-
terestingly, the latency again varies linearly with read
percentage except for some non-linearity around corner
cases such as completely sequential workloads. We use
the read-write ratio as a parameter in our modeling be-
cause we noticed that, for most cases, the read latencies
were very different compared to write (almost an order
of magnitude higher) making it important to characterize
a workload using this parameter. We believe that the dif-
ference in latencies is mainly due to the fact that writes
return once they are written to the cache at the array and
the latency of destaging is hidden from the application.
Of course, in cases where the cache is almost full, the



0 

20 

40 

60 

80 

100 

120 

0 10 20 30 40 50 60 70 

Av
er

ag
e 

IO
 L

at
en

cy
 (i

n 
m

s)
 

Outstanding IOs 

8K, 100% Read, 100% Randomness 
16K, 75% Read, 75% Randomness 
32K, 50% Read, 50% Randomness 
128K, 25% Read, 25% Randomness 
256K, 0% Read, 0% Randomness 

0 

50 

100 

150 

200 

250 

300 

350 

0 50 100 150 200 250 300 

Av
er

ag
e 

IO
 L

at
en

cy
 (i

n 
m

s)
 

IO Size 

8 OIO, 25% Read, 25% Randomness 
16 OIO, 50% Read, 50% Randomness 
32 OIO, 75% Read, 75% Randomness 
64 OIO, 100% Read, 100% Randomness 

(a) (b)

0 

10 

20 

30 

40 

50 

0 20 40 60 80 100 

Av
er

ag
e 

IO
 L

at
en

cy
 (i

n 
m

s)
 

% Read 

8 OIO, 32K, 25% Randomness 
16 OIO, 32K, 50% Randomness 
32 OIO, 16K, 75% Randomness 
64 OIO, 8K, 100% Randomness 

0 

10 

20 

30 

40 

50 

60 

70 

80 

0 20 40 60 80 100 

Av
er

ag
e 

IO
 L

at
en

cy
 (i

n 
m

s)
 

% Randomness 

4 OIO, 256K, 0% Read 
8 OIO, 128K, 25% Read 
16 OIO, 32K, 50% Read 
32 OIO, 16K, 75% Read 
64 OIO, 8K, 100% Read 

(c) (d)

Figure 2: Variation of IO latency with respect to each of the four workload characteristics: outstanding IOs, IO size, %
Reads and % Randomness. Experiments run on a 4-disk RAID-0 LUN on an EMC CLARiiON CX3-40 array.

writes may see latencies closer to the reads. We believe
this to be fairly uncommon especially given the burstiness
of most enterprise applications [12]. Finally, the variation
of latency with random% is shown in Figure 2(d). Notice
the linear relationship with a very small slope, except for
a big drop in latency for the completely sequential work-
load. These results show that except for extreme cases
such as 100% sequential or 100% write workloads, the
behavior of latency with respect to these parameters is
quite close to linear1. Another key observation is that the
cases where we typically observe non-linearity are easy
to identify using their online characterization.

Based on these observations, we modeled the IO la-
tency (L) of a workload using the following equation:

L =
(K1 +OIO)(K2 + IOsize)(K3 +

read%
100

)(K4 +
random%

100
)

K5
(1)

We compute all of the constants in the above equation
using the data points available to us. We explain the
computation of K1 here, other constants K2,K3 and K4 are
computed in a similar manner. To compute K1, we take
two latency measurements with different OIO values but
the same value for the other three workload parameters.
Then by dividing the two equations we get:

L1

L2
=

K1 +OIO1

K1 +OIO2
(2)

1The small negative slope in some cases in Figure 2(d) with large
OIOs is due to known prefetching issues in our target array’s firmware
version. This effect went away when prefetching is turned off.

K1 =
OIO1−OIO2 ∗L1/L2

L1/L2−1
(3)

We compute the value of K1 for all pairs where the
three parameters except OIO are identical and take the
median of the set of values obtained as K1. The values of
K1 fall within a range with some outliers and picking a
median ensures that we are not biased by a few extreme
values. We repeat the same procedure to obtain other
constants in the numerator of Equation 1.

To obtain the value of K5, we compute a linear fit be-
tween actual latency values and the value of the numera-
tor based on Ki values. Linear fitting returns the value of
K5 that minimizes the least square error between the ac-
tual measured values of latency and our estimated values.

Using IO latencies for training our workload model
creates some dependence on the underlying device and
storage array architectures. While this isn’t ideal, we
argue that as a practical matter, if the associated errors
are small enough, and if the high error cases can usually
be identified and dealt with separately, the simplicity of
our modeling approach makes it an attractive technique.

Once we determined all the constants of the model
in Equation 1, we compared the computed and actual
latency values. Figure 3(a) (LUN1) shows the relative
error between the actual and computed latency values
for all workload configurations. Note that the computed
values do a fairly good job of tracking the actual values in
most cases. We individually studied the data points with
high errors and the majority of those were sequential IO



Figure 3: Relative error in latency computation based on our formula and actual latency values observed.

or write-only patterns. Figure 3(b) plots the same data
but with the 100% sequential workloads filtered out.

In order to validate our modeling technique, we ran the
same 750 workload configurations on a different LUN on
the same EMC storage array, this time with 8 disks. We
used the same values of K1, K2,K3 and K4 as computed
before on the 4-disk LUN. Since the disk types and RAID
configuration was identical, K5 should vary in proportion
with the number of disks, so we doubled the value, as the
number of disks is doubled in this case. Figure 3 (LUN
2) again shows the error between actual and computed
latency values for various workload configurations. Note
that the computed values based on the previous constants
are fairly good at tracking the actual values. We again
noticed that most of the high error cases were due to the
poor prediction for corner cases, such as 100% sequential,
100% writes, etc.

To understand variation across different storage archi-
tectures, we ran a similar set of 750 tests on a NetApp
FAS-3140 storage array. The experiments were run on a
256 GB virtual disk created on a 500 GB LUN backed
by a 7-disk RAID-6 (double parity) group. Figures 4(a),
(b), (c) and (d) show the relationship between average
IO latency with OIOs, IO size, Read% and Random%
respectively. Again for OIOs, IO size and Random%, we
observed a linear behavior with positive slope. However,
for the Read% case on the NetApp array, the slope was
close to zero or slightly negative. We also found that the
read latencies were very close to or slightly smaller than
write latencies in most cases. We believe this is due to a
small NVRAM cache in the array (512 MB). The writes
are getting flushed to the disks in a synchronous manner
and array is giving slight preference to reads over writes.
We again modeled the system using Equation 1, calcu-
lated the Ki constants and computed the relative error in
the measured and computed latencies using the NetApp
measurements. Figure 3 (NetApp) shows the relative er-
ror for all 750 cases. We looked into the mapping of cases

with high error with the actual configurations and noticed
that almost all of those configurations are completely se-
quential workloads. This shows that our linear model
over-predicts the latency for 100% sequential workloads
because the linearity assumption doesn’t hold in such ex-
treme cases. Figures 2(d) and 4(d) also show a big drop
in latency as we go from 25% random to 0% random.
We looked at the relationship between IO latency and
workload parameters for such extreme cases. Figure 5
shows that for sequential cases the relationship between
IO latency and read% is not quite linear.

In practice, we think such cases are less common and
poor prediction for such cases is not as critical. Earlier
work in the area of workload characterization [12,13] con-
firms our experience. Most enterprise and web workloads
that have been studied including Microsoft Exchange, a
maps server, and TPC-C and TPC-E like workloads ex-
hibit very little sequential accesses. The only notable
workloads that have greater than 75% sequentiality are
decision support systems.

Since K5 is a device dependent parameter, we use the
numerator of Equation 1 to represent the load metric (L )
for a workload. Based on our experience and empirical
data, K1, K2, K3 and K4 lie in a narrow range even when
measured across devices. This gives us a choice when
applying our modeling on a real system: we can use a
fixed set of values for the constants or recalibrate the
model by computing the constants on a per-device basis
in an offline manner when a device is first provisioned
and added to the storage POD.

4 Storage Device Modeling

So far we have discussed the modeling of workloads
based on the parameters that are inherent to a workload.
In this section we present our device modeling technique
using the measurements dependent on the performance of
the device. Most of the device-level characteristics such



0 

100 

200 

300 

400 

500 

600 

0 10 20 30 40 50 60 70 

Av
er

ag
e 

IO
 L

at
en

cy
 (i

n 
m

s)
 

Outstanding IOs 

8K, 100% Read, 100% Randomness 
16K, 75% Read, 75% Randomness 
32K, 50% Read, 50% Randomness 
128K, 25% Read, 25% Randomness 
256K, 0% Read, 0% Randomness 

0 

200 

400 

600 

800 

1000 

1200 

0 100 200 300 400 500 

Av
er

ag
e 

IO
 L

at
en

cy
 (i

n 
m

s)
 

IO Size 

8 OIO, 25% Read, 25% Randomness 
16 OIO, 50% Read, 50% Randomness 
32 OIO, 75% Read, 75% Randomness 
64 OIO, 100% Read, 100% Randomness 

(a) (b)

0 

20 

40 

60 

80 

100 

120 

140 

160 

0 20 40 60 80 100 

Av
er

ag
e 

IO
 L

at
en

cy
 (i

n 
m

s)
 

% Read 

8 OIO, 32K, 25% Randomness 
16 OIO, 32K, 50% Randomness 
32 OIO, 16K, 75% Randomness 
64 OIO, 8K, 100% Randomness 

0 

10 

20 

30 

40 

50 

60 

70 

80 

0 20 40 60 80 100 

Av
er

ag
e 

IO
 L

at
en

cy
 (i

n 
m

s)
 

% Randomness 

4 OIO, 256K, 0% Read 
8 OIO, 128K, 25% Read 
16 OIO, 32K, 50% Read 
32 OIO, 16K, 75% Read 
64 OIO, 8K, 100% Read 

(c) (d)

Figure 4: Variation of IO latency with respect to each of the four workload characteristics: outstanding IOs, IO size, %
Reads and % Randomness. Experiments run on a 7-disk RAID-6 LUN on a NetApp FAS-3140 array.

0 

10 

20 

30 

40 

50 

0 20 40 60 80 100 

Av
er

ag
e 

IO
 L

at
en

cy
 (i

n 
m

s)
 

% Read 

4 OIO, 512K, 0% Randomness 
16 OIO, 128K, 25% Randomness 
32 OIO, 32K, 0% Randomness 
64 OIO, 16K, 0% Randomness 

Figure 5: Varying Read% for the Anomalous Workloads

as number of disk spindles backing a LUN, disk-level
features such as RPM, average seek delay, etc. are hid-
den from the hosts. Storage arrays only expose a LUN
as a logical device. This makes it very hard to make load
balancing decisions because we don’t know if a workload
is being moved from a LUN with 20 disks to a LUN with
5 disks, or from a LUN with faster Fibre Channel (FC)
disk drives to a LUN with slower SATA drives.

For device modeling, instead of trying to obtain a
white-box model of the LUNs, we use IO latency as the
main performance metric. We collect information pairs
consisting of number of outstanding IOs and average IO
latency observed. In any time interval, hosts know the av-
erage number of outstanding IOs that are sent to a LUN
and they also measure the average IO latency observed
by the IOs. This information can be easily gathered using

existing tools such as esxtop or xentop, without any extra
overhead. For clustered environments, where multiple
hosts access the same LUN, we aggregate this informa-
tion across hosts to get a complete view.

We have observed that IO latency increases linearly
with the increase in number of outstanding IOs (i.e., load)
on the array. This is also shown in earlier studies [11].
Given this knowledge, we use the set of data points of the
form 〈OIO,Latency〉 over a period of time and compute
a linear fit which minimizes the least squares error for
the data points. The slope of the resulting line would
indicate the overall performance capability of the LUN.
We believe that this should cover cases where LUNs have
different number of disks and where disks have diverse
characteristics, e.g., enterprise-class FC vs SATA disks.

We conducted a simple experiment using LUNs with
different number of disks and measured the slope of the
linear fit line. An illustrative workload of 8KB random
IOs is run on each of the LUNs using a Windows 2003
VM running Iometer [3]. Figure 6 shows the variation of
IO latency with OIOs for LUNs with 4 to 16 disks. Note
that the slopes vary inversely with the number of disks.

To understand the behavior in presence of different
disk types, we ran an experiment on a NetApp FAS-3140
storage array using two LUNs, each with seven disks and
dual parity RAID. LUN1 consisted of enterprise class
FC disks (134 GB each) and LUN2 consisted of slower
SATA disks (414 GB each). We created virtual disks of
size 256 GB on each of the LUNs and ran a workload



0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70

A
ve

ra
g

e 
IO

 L
at

en
cy

 (
in

 m
s)

Outstanding IOs

16 disks 1/Slope = 8.3

12 disks 1/Slope = 6.2

8 disks 1/Slope = 4

4 disks 1/Slope = 2

Figure 6: Device Modeling: different number of disks

0 

50 

100 

150 

200 

250 

0 20 40 60 

Av
er

ag
e 

IO
 L

at
en

cy
 (i

n 
m

s)
 

Outstanding IOs 

"LUN1 (SATA Disk)" 

"LUN2 (FC Disk)" 
Slope=3.49  

Slope=1.13 

Figure 7: Device Modeling: different disk types

with 80% reads, 70% randomness and 16KB IOs, with
different values of OIOs. The workloads were generated
using Iometer [3] inside a Windows 2003 VM. Figure 7
shows the average latency observed for these two LUNs
with respect to OIOs. Note that the slope for LUN1 with
faster disks is 1.13, which is lower compared to the slope
of 3.5 for LUN2 with slower disks.

This data shows that the performance of a LUN can be
estimated by looking at the slope of relationship between
average latency and outstanding IOs over a long time
interval. Based on these results, we define a performance
parameter P to be the inverse of the slope obtained by
computing a linear fit on the 〈OIO,Latency〉 data pairs
collected for that LUN.

4.1 Storage-specific Challenges
Storage devices are stateful, and IO latencies observed
are dependent on the actual workload going to the LUN.
For example, writes and sequential IOs may have very
different latencies compared to reads and random IOs,
respectively. This can create problems for device mod-
eling if the IO behavior is different for various OIO val-
ues. We observed this behavior while experimenting with
the DVD Store [1] database test suite, which represents a
complete online e-commerce application running on SQL
databases. The setup consisted of one database LUN and
one log LUN, of sizes 250 GB and 10 GB respectively.
Figure 8 shows the distribution of OIO and latency pairs
for a 30 minute run of DVD Store. Note that the slope

Slope = -0.2021 

0 

2 

4 

6 

8 

10 

12 

0 5 10 15 20 25 30 35 

A
ve

ra
g

e 
(A

ll 
IO

s)
 L

at
en

cy
 (

in
 m

s)
 

Outstanding IOs 

Linear Fit (DVD Store)

DVD Store

Figure 8: Negative slope in case of running DVD Store
workload on a LUN. This happens due to a large number
of writes happening during periods of high OIOs.

Slope = 0.3525

Slope = 0.7368

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16

A
ve
ra
g
e
R
ea
d
IO
L
at
en
cy
(i
n
m
s)

Outstanding IOs

Linear Fit (DVD Store 4‐disk LUN) 
Linear Fit (DVD Store 8‐disk LUN) 

Figure 9: This plot shows the slopes for two data stores,
both running DVD Store. Writes are filtered out in the
model. The slopes are positive here and the slope value
is lower for the 8 disk LUN.

turned out to be slightly negative, which is not desirable
for modeling. Upon investigation, we found that the data
points with larger OIO values were bursty writes that have
smaller latencies because of write caching at the array.

Similar anomalies can happen for other cases: (1) Se-
quential IOs: the slope can be negative if IOs are highly
sequential during the periods of large OIOs and random
for smaller OIO values. (2) Large IO sizes: the slope can
be negative if the IO sizes are large during the period of
low OIOs and small during high OIO periods. All these
workload-specific details and extreme cases can adversely
impact the workload model.

In order to mitigate this issue, we made two modifica-
tions to our model: first, we consider only read OIOs and
average read latencies. This ensures that cached writes
are not going to affect the overall device model. Second,
we ignore data points where an extreme behavior is de-
tected in terms of average IO size and sequentiality. In
our current prototype, we ignore data points when IO size
is greater than 32 KB or sequentiality is more than 90%.
In the future, we plan to study normalizing latency by IO
size instead of ignoring such data points. In practice, this
isn’t a big problem because (a) with virtualization, single
LUNs typically host VMs with numerous different work-
load types, (b) we expect to collect data for each LUN



over a period of days in order to make migration deci-
sions, which allows IO from various VMs to be included
in our results and (c) even if a single VM workload is se-
quential, the overall IO pattern arriving at the array may
look random due to high consolidation ratios typical in
virtualized systems.

With these provisions in place, we used DVD Store
again to perform device modeling and looked at the slope
values for two different LUNs with 4 and 8 disks. Fig-
ure 9 shows the slope values for the two LUNs. Note that
the slopes are positive for both LUNs and the slope is
lower for the LUN with more disks.

Cache size available to a LUN can also impact the
overall IO performance. The first order impact should be
captured by the IO latency seen by a workload. In some
experiments, we observed that the slope was smaller for
LUNs on an array with a larger cache, even if other char-
acteristics were similar. Next, we complete the algorithm
by showing how the workload and device models are used
for dynamic load balancing and initial placement of vir-
tual disks on LUNs.

5 Load Balance Engine

Load balancing requires a metric to balance over multi-
ple resources. We use the numerator of Equation 1 (de-
noted as Li), as the main metric for load balancing for
each workload Wi. Furthermore, we also need to consider
LUN performance while doing load balancing. We use
parameter P j to represent the performance of device D j.
Intuitively we want to make the load proportional to the
performance of each device. So the problem reduces to
equalizing the ratio of the sum of workload metrics and
the LUN performance metric for each LUN. Mathemati-
cally, we want to equate the following across devices:

∑
∀ Wi on D j

Li

P j
(4)

The algorithm first computes the sum of workload met-
rics. Let N be the normalized load on a device:

N j = ∑Li

P j
(5)

Let Avg({N}) and σ({N}) be the average and stan-
dard deviation of the normalized load across devices.
Let the imbalance fraction f be defined as f ({N}) =
σ({N})/Avg({N}). In a loop, until we get the imbalance
fraction f ({N}) under a threshold, we pick the devices
with minimum and maximum normalized load to do pair-
wise migrations such that the imbalance is lowered with
each move. Each iteration of the loop tries to find the
virtual disks that need to be moved from the device with

Algorithm 1: Load Balancing Step
foreach device D j do

foreach workload Wi currently placed D j do
S+ = Li

N j←− S/P j

while f ({N}) > imbalanceT hreshold do
dx←− Device with maximum normalized load
dy←− Device with minimum normalized load
Nx,Ny←− PairWiseRecommendMigration(dx, dy)

maximum normalized load to the one with the minimum
normalized load. Perfect balancing between these two de-
vices is a variant of subset-sum problem which is known
to be NP-complete. We are using one of the approxima-
tions [16] proposed for this problem with a quite good
competitive ratio of 3/4 with respect to optimal. We have
tested other heuristics as well, but the gain from trying
to reach the best balance is outweighed by the cost of
migrations in some cases.

Algorithm 1 presents the pseudo-code for the load bal-
ancing algorithm. The imbalance threshold can be used
to control the tolerated degree of imbalance in the sys-
tem and therefore the aggressiveness of the algorithm.
Optimizations in terms of data movement and cost of mi-
grations are explained next.
Workload/Virtual Disk Selection: To refine the recom-
mendations, we propose biasing the choice of migration
candidates in one of many ways: (1) pick virtual disks
with the highest value of Li/(disk size) first, so that
the change in load per GB of data movement is higher
leading to smaller data movement, (2) pick virtual disks
with smallest current IOPS/Li first, so that the immedi-
ate impact of data movement is minimal, (3) filter for
constraints such as affinity between virtual disks and data
stores, (4) avoid ping-ponging of the same virtual disk be-
tween data stores, (5) prevent migration movements that
violate per-VM data reliability or data protection poli-
cies (e.g., RAID-level), etc. Hard constraints (e.g., access
to the destination data store at the current host running
the VM) can also be handled as part of virtual disk se-
lection in this step. Overall, this step incorporates any
cost-benefit analysis that is needed to choose which VMs
to migrate in order to do load balancing. After computing
these recommendations, they can either be presented to
the user as suggestions or can be carried out automati-
cally during periods of low activity. Administrators can
even configure the times when the migrations should be
carried out, e.g., migrate on Saturday nights after 2am.
Initial Placement: A good decision for the initial place-
ment of a workload is as important as future migrations.
Initial placement gives us a good way to reduce potential
imbalance issues in future. In BASIL, we use the over-



all normalized load N as an indicator of current load on
a LUN. After resolving user-specified hard constraints
(e.g., reliability), we choose the LUN with the minimum
value of the normalized load for a new virtual disk. This
ensures that with each initial placement, we are attempt-
ing to naturally reduce the overall load imbalance among
LUNs.

Discussion: In previous work [12], we looked at the im-
pact of consolidation on various kinds of workloads. We
observed that when random workloads and the underly-
ing devices are consolidated, they tend to perform at least
as good or better in terms of handling bursts and the over-
all impact of interference is very small. However, when
random and sequential workloads were placed together,
we saw degradation in throughput of sequential work-
loads. As noted in Section 3, studies [12, 13] of several
enterprise applications such as Microsoft Exchange and
databases have observed that random access IO patterns
are the predominant type.

Nevertheless, to handle specific workloads such as log
virtual disks, decision support systems, and multi-media
servers, we plan to incorporate two optimizations. First,
identifying such cases and isolating them on a separate
set of spindles to reduce interference. Second, allocat-
ing fewer disks to the sequential workloads because their
performance is less dependent on the number of disks as
compared to random ones. This can be done by setting
soft affinity for these workloads to specific LUNs, and
anti-affinity for them against random ones. Thus we can
bias our greedy load balancing heuristic to consider such
affinity rules while making placement decisions.

Whereas we consider these optimizations as part of
our future work, we believe that the proposed techniques
are useful for a wide variety of cases, even in their cur-
rent form, since in some cases, administrators may isolate
such workloads on separate LUNs manually and set hard
affinity rules. We can also assist storage administrators
by identifying such workloads based on our online data
collection. In some cases users may have reliability or
other policy constraints such as RAID-level or mirroring,
attached to VM disks. In those cases a set of devices
would be unsuitable for some VMs, and we would treat
that as a hard constraint in our load balancing mecha-
nism while recommending placements and migrations.
Essentially the migrations would occur among devices
with similar static characteristics. The administrator can
choose the set of static characteristics that are used for
combining devices into a single storage POD (our load
balancing domain). Some of these may be reliabilitity,
backup frequency, support for de-duplication, thin provi-
sioning, security isolation and so on.

Type OIO range IO size %Read %Random
Workstation [4-12] 8 80 80
Exchange [4-16] 4 67 100

OLTP [12-16] 8 70 100
Webserver [1-4] 4 95 75

Table 1: Iometer workload configuration definitions.

6 Experimental Evaluation

In this section we discuss experimental results based on
an extensive evaluation of BASIL in a real testbed. The
metrics that we use for evaluating BASIL are overall
throughput gain and overall latency reduction. Here over-
all throughput is aggregated across all data stores and
overall latency is the average latency weighted by IOPS
across all data stores. These metrics are used instead of
just individual data store values, because a change at one
data store may lead to an inverse change on another, and
our goal is to improve the overall performance and uti-
lization of the system, and not just individual data stores.

6.1 Testing Framework
Since the performance of a storage device depends greatly
on the type of workloads to which it is subjected, and
their interference, it would be hard to reason about a
load balancing scheme with just a few representative test
cases. One can always argue that the testing is too limited.
Furthermore, once we make a change in the modeling
techniques or load balancing algorithm, we will need to
validate and compare the performance with the previous
versions. To enable repeatable, extensive and quick eval-
uation of BASIL, we implemented a testing framework
emulating a real data center environment, although at a
smaller scale. Our framework consists of a set of hosts,
each running multiple VMs. All the hosts have access to
all the data stores in the load balancing domain. This con-
nectivity requirement is critical to ensure that we don’t
have to worry about physical constraints during our test-
ing. In practice, connectivity can be treated as another
migration constraint. Our testing framework has three
modules: admin, modeler and analyzer that we describe
in detail next.
Admin module: This module initiates the workloads in
each VM, starts collecting periodic IO stats from all hosts
and feeds the stats to the next module for generation of
workload and device models. The IO stats are collected
per virtual disk. The granularity of sampling is config-
urable and set to 2-10 seconds for experiments in this
paper. Finally, this module is also responsible for apply-
ing migrations that are recommended by the analyzer. In
order to speed up the testing, we emulate the migrations
by shifting the workload from one data store to another,
instead of actually doing data migration. This is possible
because we create an identical copy of each virtual disk



Before Running BASIL After Running BASIL
Iometer BASIL Online Workload Model Latency Throughput Location Latency Throughput Location

Workload [OIO, IOsize, Read%, Random%] (ms) (IOPS) (ms) (IOPS)
oltp [7, 8, 70, 100] 28 618 3diskLUN 22 1048 3diskLUN
oltp [16, 8, 69, 100] 35 516 3diskLUN 12 1643 9diskLUN

workstation [6, 8, 81, 79] 60 129 3diskLUN 24 338 9diskLUN
exchange [6, 4, 67, 100] 9 940 6diskLUN 9 964 6diskLUN
exchange [6, 4, 67, 100] 11 777 6diskLUN 8 991 6diskLUN

workstation [4, 8, 80, 79] 13 538 6diskLUN 21 487 9diskLUN
webserver [1, 4, 95, 74] 4 327 9diskLUN 29 79 9diskLUN
webserver [1, 4, 95, 75] 4 327 9diskLUN 45 81 9diskLUN
Weighted Average Latency or Total Throughput 16.7 4172 14.9 (-11%) 5631 (+35%)

Table 2: BASIL online workload model and recommended migrations for a sample initial configuration. Overall
average latency and IO throughput improved after migrations.

Before BASIL After BASIL
Data Stores # Disks P =1/Slope Latency (ms) IOPS Latency (ms) IOPS

3diskLUN 3 0.7 34 1263 22 1048
6diskLUN 6 1.4 10 2255 8 1955
9diskLUN 9 2.0 4 654 16 2628

Table 3: BASIL online device model and disk migrations for a sample initial configuration. Latency, IOPS and overall
load on three data stores before and after recommended migrations.

on all data stores, so a VM can just start accessing the
virtual disk on the destination data store instead of the
source one. This helped to reduce our experimental cycle
from weeks to days.
Modeler: This module gets the raw stats from the admin
module and creates both workload and device models.
The workload models are generated by using per virtual
disk stats. The module computes the cumulative distribu-
tion of all four parameters: OIOs, IO size, Read% and
Random%. To compute the workload load metric Li, we
use the 90th percentile values of these parameters. We
didn’t choose average values because storage workloads
tend to be bursty and the averages can be much lower and
more variable compared to the 90th percentile values. We
want the migration decision to be effective in most cases
instead of just average case scenarios. Since migrations
can take hours to finish, we want the decision to be more
conservative rather than aggressive.

For the device models, we aggregate IO stats from dif-
ferent hosts that may be accessing the same device (e.g.,
using a cluster file system). This is very common in vir-
tualized environments. The OIO values are aggregated as
a sum, and the latency value is computed as a weighted
average using IOPS as the weight in that interval. The
〈OIO,Latency〉 pairs are collected over a long period of
time to get higher accuracy. Based on these values, the
modeler computes a slope Pi for each device. A device
with no data, is assigned a slope of zero which also mim-
ics the introduction of a new device in the POD.
Analyzer: This module takes all the workload and device
models as input and generates migration recommenda-
tions. It can also be invoked to perform initial placement
of a new virtual disk based on the current configuration.

The output of the analyzer is fed into the admin module
to carry out the recommendations. This can be done iter-
atively till the load imbalance is corrected and the system
stabilizes with no more recommendations generated.

The experiments presented in the next sections are run
on two different servers, one configured with 2 dual-core
3 GHz CPUs, 8 GB RAM and the other with 4 dual-core
3 GHz CPUs and 32 GB RAM. Both hosts have access
to three data stores with 3, 6 and 9 disks over a FC SAN
network. These data stores are 150 GB in size and are
created on an EMC CLARiiON storage array. We ran
8 VMs for our experiments each with one 15 GB OS
disk and one 10 GB experimental disk. The workloads
in the VMs are generated using Iometer [3]. The Iometer
workload types are selected from Table 1, which shows
Iometer configurations that closely represent some of the
real enterprise workloads [5].

6.2 Simple Load Balancing Scenario
In this section, we present detailed analysis for one of
the input cases which looks balanced in terms of number
of VMs per data store. Later, we’ll also show data for a
large number of other scenarios. As shown in Table 2,
we started with an initial configuration using 8 VMs,
each running a workload chosen from Table 1 against
one of the three data stores. First we ran the workloads in
VMs without BASIL; Table 2 shows the corresponding
throughput (IOPS) and latency values seen by the work-
loads. Then we ran BASIL, which created workload and
device models online. The computed workload model
is shown in the second column of Table 2 and device
model is shown as P (third column) in Table 3. It is
worth noting that the computed performance metrics for



Before Running BASIL After Running BASIL
Iometer BASIL Online Workload Model Latency Throughput Location Latency Throughput Location

Workload [OIO, IOsize, Read%, Random%] (ms) (IOPS) (ms) (IOPS)
exchange [8, 4, 67, 100] 37 234 6diskLUN 62 156 6diskLUN
exchange [8, 4, 67, 100] 39 227 6diskLUN 12 710 3diskLUN
webserver [2, 4, 95, 75] 54 43 6diskLUN 15 158 9diskLUN
webserver [2, 4, 95, 75] 60 39 6diskLUN 18 133 9diskLUN

workstation [7, 8, 80, 80] 41 191 6diskLUN 11 657 9diskLUN
workstation [8, 8, 80, 80] 51 150 6diskLUN 11 686 9diskLUN

oltp [8, 8, 70, 100] 64 402 6diskLUN 28 661 6diskLUN
oltp [8, 8, 70, 100] 59 410 6diskLUN 28 658 6diskLUN

Weighted Average Latency or Total Throughput 51.6 1696 19.5 (-62%) 3819 (+125%)

Table 4: New device provisioning: 3DiskLUN and 9DiskLUN are newly added into the system that had 8 workloads
running on the 6DiskLUN. Average latency, IO throughput and placement for all 8 workloads before and after migration.

Before BASIL After BASIL
Data Stores # Disks P =1/Slope Latency (ms) IOPS Latency (ms) IOPS

3diskLUN 3 0.6 0 0 12 710
6diskLUN 6 1.4 51 1696 31 1475
9diskLUN 9 1.7 0 0 11 1634

Table 5: New device provisioning: latency, IOPS and overall load on three data stores.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 25 50 75 10
0

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

% Improvement

Throughput
Latency

Figure 10: CDF of throughput and latency improvements
with load balancing, starting from random configurations.

devices are proportional to their number of disks. Based
on the modeling, BASIL suggested three migrations over
two rounds. After performing the set of migrations we
again ran BASIL and no further recommendations were
suggested. Tables 2 and 3 show the performance of work-
loads and data stores in the final configuration. Note that
5 out of 8 workloads observed an improvement in IOPS
and reduction in latency. The aggregated IOPS across all
data stores (shown in Table 2) improved by 35% and over-
all weighted latency decreased by 11%. This shows that
for this sample setup BASIL is able to recommend migra-
tions based on actual workload characteristics and device
modeling, thereby improving the overall utilization and
performance.

6.3 New Device Provisioning
Next we studied the behavior of BASIL during the well
known operation of adding more storage devices to a
storage POD. This is typically in response to a space
crunch or a performance bottleneck. In this experiment,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

‐2
5 0 25 50 75 10

0
12
5

15
0

17
5

20
0

22
5

25
0

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Latency
Throughput

% Improvement

Figure 11: CDF of latency and throughput improvements
from BASIL initial placement versus random.

we started with all VMs on the single 6DiskLUN data
store and we added the other two LUNs into the sys-
tem. In the first round, BASIL observed the two new
data stores, but didn’t have any device model for them
due to lack of IOs. In a full implementation, we have the
option of performing some offline modeling at the time of
provisioning, but currently we use the heuristic of placing
only one workload on a new data store with no model.

Table 4 shows the eight workloads, their computed
models, initial placement and the observed IOPS and
latency values. BASIL recommended five migrations
over two rounds. In the first round BASIL migrated one
workload to each of 3DiskLUN and 9DiskLUN. In the
next round, BASIL had slope information for all three
data stores and it migrated three more workloads from
6DiskLUN to 9DiskLUN. The final placement along with
performance results are again shown in Table 4. Seven
out of eight workloads observed gains in throughput and
decreased latencies. The loss in one workload is offset
by gains in others on the same data store. We believe



that this loss happened due to unfair IO scheduling of
LUN resources at the storage array. Such effects have
been observed before [11]. Overall data store models and
performance before and after running BASIL are shown
in Table 5. Note that the load is evenly distributed across
data stores in proportion to their performance. In the
end, we observed a 125% gain in aggregated IOPS and
62% decrease in weighted average latency (Table 4). This
shows that BASIL can handle provisioning of new stor-
age devices well by quickly performing online modeling
and recommending appropriate migrations to get higher
utilization and better performance from the system.

6.4 Summary for 500 Configurations

Having looked at BASIL for individual test cases, we ran
it for a large set of randomly generated initial configura-
tions. In this section, we present a summary of results
of over 500 different configurations. Each test case in-
volved a random selection of 8 workloads from the set
shown in Table 1, and a random initial placement of them
on three data stores. Then in a loop we collected all the
statistics in terms of IOPS and latency, performed online
modeling, ran the load balancer and performed workload
migrations. This was repeated until no further migrations
were recommended. We observed that all configurations
showed an increase in overall IOPS and decrease in over-
all latency. There were fluctuations in the performance
of individual workloads, but that is expected given that
load balancing puts extra load on some data stores and
reduces load on others. Figure 10 shows the cumulative
distribution of gain in IOPS and reduction in latency for
500 different runs. We observed an overall throughput in-
crease of greater than 25% and latency reduction of 33%
in over 80% of all the configurations that we ran. In fact,
approximately half the tests cases saw at least 50% higher
throughput and 50% better latency. This is very promis-
ing as it shows that BASIL can work well for a wide
range of workload combinations and their placements.

6.5 Initial Placement

One of the main use cases of BASIL is to recommend
initial placement for new virtual disks. Good initial place-
ment can greatly reduce the number of future migrations
and provide better performance from the start. We eval-
uated our initial placement mechanism using two sets of
tests. In the first set we started with one virtual disk,
placed randomly. Then in each iteration we added one
more disk into the system. To place the new disk, we used
the current performance statistics and recommendations
generated by BASIL. No migrations were computed by
BASIL; it ran only to suggest initial placement.

BASIL Online Workload Model
Workload [OIO, IOsize, Read%, Random%]
dvdstore-1 [5, 8, 100, 100]
dvdstore-2 [3, 62, 100, 100]
dvdstore-3 [6, 8, 86, 100]

swing-1 [13, 16, 67, 100]
swing-2 [31, 121, 65, 100]

fb-mail-1 [4, 5, 16, 99]
fb-mail-2 [5, 6, 52, 99]
fb-mail-3 [7, 6, 47, 99]
fb-mail-4 [5, 5, 60, 99]
fb-oltp-1 [1, 2, 100, 100]
fb-oltp-2 [6, 8, 86, 100]
fb-web-1 [8, 18, 99, 98]
fb-web-2 [5, 5, 60, 99]

Table 6: Enterprise workloads. For the database VMs,
only the table space and index disks were modeled.

Data Stores # Disks RAID LUN Size P =1/Slope
EMC 6 FC 5 450 GB 1.1

NetApp-SP 7 FC 5 400 GB 0.83
NetApp-DP 7 SATA 6 250 GB 0.48

Table 7: Enterprise workload LUNs and their models.

We compared the performance of placement done by
BASIL with a random placement of virtual disks as long
as space constraints were satisfied. In both cases, the
VMs were running the exact same workloads. We ran
100 such cases, and Figure 11 shows the cumulative dis-
tribution of percentage gain in overall throughput and
reduction in overall latency of BASIL as compared to
random selection. This shows that the placement recom-
mended by BASIL provided 45% reduction in latency
and 53% increase in IOPS for at least half of the cases, as
compared to the random placement.

The second set of tests compare BASIL with an oracle
that can predict the best placement for the next virtual
disk. To test this, we started with an initial configuration
of 7 virtual disks that were randomly chosen and placed.
We ran this configuration and fed the data to BASIL to
find a data store for the eighth disk. We tried the eighth
disk on all the data stores manually and compared the
performance of BASIL’s recommendation with the best
possible placement. To compute the rank of BASIL com-
pared to the oracle, we ran 194 such cases and BASIL
chose the best data store in 68% of them. This indicates
that BASIL finds good initial placements with high accu-
racy for a wide variety of workload configurations.

6.6 Enterprise Workloads

In addition to the extensive micro-benchmark evaluation,
we also ran enterprise applications and filebench work-
load models to evaluate BASIL in more realistic scenar-
ios. The CPU was not bottlenecked in any of the ex-
periments. For the database workloads, we isolated the
data and log virtual disks. Virtual disks containing data



Workload T Space-Balanced After Two BASIL Rounds Human Expert #1 Human Expert #2
Units R T Location R T Location R T Location R T Location

dvd-1 opm 72 2753 EMC 78 2654 EMC 59 2986 EMC 68 2826 NetApp-SP
dvd-2 opm 82 1535 NetApp-SP 89 1487 EMC 58 1706 EMC 96 1446 EMC
dvd-3 opm 154 1692 NetApp-DP 68 2237 NetApp-SP 128 1821 NetApp-DP 78 2140 EMC

swing-1 tpm n/r 8150 NetApp-SP n/r 8250 NetApp-SP n/r 7500 NetApp-DP n/r 7480 NetApp-SP
swing-2 tpm n/r 8650 EMC n/r 8870 EMC n/r 8950 EMC n/r 8500 NetApp-DP

fb-mail-1 ops/s 38 60 NetApp-SP 36 63 NetApp-SP 35 61 NetApp-SP 15 63 EMC
fb-mail-2 ops/s 35 84 NetApp-SP 37 88 NetApp-SP 34 85 NetApp-SP 16 88 EMC
fb-mail-3 ops/s 81 67 NetApp-DP 27 69 NetApp-DP 30 73 NetApp-SP 28 74 NetApp-SP
fb-mail-4 ops/s 9.2 77 EMC 14 75 EMC 11 76 EMC 16 75 EMC
fb-oltp-1 ops/s 32 25 NetApp-SP 35 25 NetApp-SP 70 24 NetApp-DP 44 25 NetApp-DP
fb-oltp-2 ops/s 84 22 NetApp-DP 40 22 NetApp-DP 79 22 NetApp-DP 30 23 NetApp-SP
fb-web-1 ops/s 58 454 NetApp-DP 26 462 NetApp-SP 56 460 NetApp-DP 22 597 EMC
fb-web-2 ops/s 11 550 EMC 11 550 EMC 21 500 NetApp-SP 14 534 EMC

Table 8: Enterprise Workloads. Human expert generated placements versus BASIL. Applying BASIL recommendations
resulted in improved application as well as more balanced latencies. R denotes application-reported transaction response
time (ms) and T is the throughput in specified units.

Space-Balanced After Two BASIL Rounds Human Expert #1 Human Expert #2
Latency (ms) IOPS Latency (ms) IOPS Latency (ms) IOPS Latency (ms) IOPS

EMC 9.6 836 12 988 9.9 872 14 781
NetApp-SP 29 551 19 790 27 728 26 588
NetApp-DP 45 412 23 101 40 317 17 340
Weighted Average Latency
or Total Throughput

23.6 1799 15.5 1874 21.2 1917 18.9 1709

Table 9: Enterprise Workloads. Aggregate statistics on three LUNs for BASIL and human expert placements.

were placed on the LUNs under test and log disks were
placed on a separate LUN. We used five workload types
as explained below.

DVDStore [1] version 2.0 is an online e-commerce test
application with a SQL database, and a client load gener-
ator. We used a 20 GB dataset size for this benchmark, 10
user threads and 150 ms think time between transactions.

Swingbench [4] (order entry workload) represents an
online transaction processing application designed to
stress an underlying Oracle database. It takes the num-
ber of users, think time between transactions, and a set
of transactions as input to generate a workload. For this
workload, we used 50 users, 100-200 ms think time be-
tween requests and all five transaction types (i.e., new
customer registration, browse products, order products,
process orders and browse orders with variable percent-
ages set to 10%, 28%, 28%, 6% and 28% respectively).

Filebench [2], a well-known application IO modeling
tool, was used to generate three different types of work-
loads: OLTP, mail server and webserver.

We built 13 VMs running different configurations of
the above workloads as shown in Table 6 and ran them
on two quad-core servers with 3 GHz CPUs and 16 GB
RAM. Both hosts had access to three LUNs with dif-
ferent characteristics, as shown in Table 7. To eval-
uate BASIL’s performance, we requested domain ex-
perts within VMware to pick their own placements us-
ing full knowledge of workload characteristics and de-
tailed knowledge of the underlying storage arrays. We

requested two types of configurations: space-balanced
and performance-balanced.

The space-balanced configuration was used as a base-
line and we ran BASIL on top of that. BASIL recom-
mended three moves over two rounds. Table 8 provides
the results in terms of the application-reported transac-
tion latency and throughput in both configurations. In
this instance, the naive space-balanced configuration had
placed similar load on the less capable data stores as on
the faster ones causing VMs on the former to suffer from
higher latencies. BASIL recommended moves from less
capable LUNs to more capable ones, thus balancing out
application-visible latencies. This is a key component of
our algorithm. For example, before the moves, the three
DVDStore VMs were seeing latencies of 72 ms, 82 ms
and 154 ms whereas a more balanced result was seen af-
terward: 78 ms, 89 ms and 68 ms. Filebench OLTP work-
loads had a distribution of 32 ms and 84 ms before versus
35 ms and 40 ms afterward. Swingbench didn’t report
latency data but judging from the throughput, both VMs
were well balanced before and BASIL didn’t change that.
The Filebench webserver and mail VMs also had much
reduced variance in latencies. Even compared to the two
expert placement results, BASIL fares better in terms of
variance. This demonstrates the ability of BASIL to bal-
ance real enterprise workloads across data stores of very
different capabilities using online models.

BASIL also performed well in the critical metrics of
maintaining overall storage array efficiency while balanc-



ing load. Table 9 shows the achieved device IO latency
and IO throughput for the LUNs. Notice that, in compar-
ison to the space-balanced placement, the weighted aver-
age latency across three LUNs went down from 23.6 ms
to 15.5 ms, a gain of 34%, while IOPS increased slightly
by 4% from 1799 to 1874. BASIL fared well even against
hand placement by domain experts. Against expert #2,
BASIL achieved an impressive 18% better latency and
10% better throughput. Compared to expert #1, BASIL
achieved a better weighted average latency by 27% al-
beit with 2% less throughput. Since latency is of primary
importance to enterprise workloads, we believe this is a
reasonable trade off.

7 Conclusions and Future Work
This paper presented BASIL, a storage management sys-
tem that does initial placement and IO load balancing of
workloads across a set of storage devices. BASIL is novel
in two key ways: (1) identifying IO latency as the primary
metric for modeling, and (2) using simple models both
for workloads and devices that can be efficiently obtained
online. The linear relationship of IO latency with various
parameters such as outstanding IOs, IO size, read % etc.
is used to create models. Based on these models, the load
balancing engine recommends migrations in order to bal-
ance load on devices in proportion to their capabilities.

Our extensive evaluation in a real system with mul-
tiple LUNs and workloads shows that BASIL achieved
improvements of at least 25% in throughput and 33% in
overall latency in over 80% of the hundreds of micro-
benchmark configurations that we tested. Furthermore,
for real enterprise applications, BASIL lowered the vari-
ance of latencies across the workloads and improved the
weighted average latency by 18-27% with similar or bet-
ter achieved throughput when evaluated against configu-
rations generated by human experts.

So far we’ve focused on the quality of the BASIL
recommended moves. As future work, we plan to add
migration cost considerations into the algorithm and
more closely study convergence properties. Also on our
roadmap is special handling of the less common sequen-
tial workloads, as well as applying standard techniques
for ping-pong avoidance. We are also looking at using
automatically-generated affinity and anti-affinity rules to
minimize the interference among various workloads ac-
cessing a device.

Acknowledgments
We would like to thank our shepherd Kaladhar Voruganti
for his support and valuable feedback. We are grate-
ful to Carl Waldspurger, Minwen Ji, Ganesha Shanmu-
ganathan, Anne Holler and Neeraj Goyal for valuable
discussions and feedback. Thanks also to Keerti Garg,

Roopali Sharma, Mateen Ahmad, Jinpyo Kim, Sunil Sat-
nur and members of the performance and resource man-
agement teams at VMware for their support.

References
[1] DVD Store. http://www.delltechcenter.com/page/DVD+store.

[2] Filebench. http://solarisinternals.com/si/tools/filebench/index.php.

[3] Iometer. http://www.iometer.org.

[4] Swingbench. http://www.dominicgiles.com/swingbench.html.

[5] Workload configurations for typical enterprise workloads.
http://blogs.msdn.com/tvoellm/archive/2009/05/07/useful-io-
profiles-for-simulating-various-workloads.aspx.

[6] Resource Management with VMware DRS, 2006.
http://vmware.com/pdf/vmware drs wp.pdf.

[7] AHMAD, I. Easy and Efficient Disk I/O Workload Characteriza-
tion in VMware ESX Server. IISWC (Sept. 2007).

[8] ALVAREZ, G. A., AND ET AL. Minerva: an automated resource
provisioning tool for large-scale storage systems. In ACM Trans-
actions on Computer Systems (Nov. 2001).

[9] ANDERSON, E. Simple table-based modeling of storage devices.
Tech. rep., SSP Technical Report, HP Labs, July 2001.

[10] ANDERSON, E., AND ET AL. Hippodrome: running circles
around storage administration. In Proc. of Conf. on File and
Storage Technology (FAST’02) (Jan. 2002).

[11] GULATI, A., AHMAD, I., AND WALDSPURGER, C. PARDA:
Proportionate Allocation of Resources for Distributed Storage
Access. In USENIX FAST (Feb. 2009).

[12] GULATI, A., KUMAR, C., AND AHMAD, I. Storage Workload
Characterization and Consolidation in Virtualized Environments.
In Workshop on Virtualization Performance: Analysis, Character-
ization, and Tools (VPACT) (2009).

[13] KAVALANEKAR, S., WORTHINGTON, B., ZHANG, Q., AND
SHARDA, V. Characterization of storage workload traces from
production windows servers. In IEEE IISWC (Sept. 2008).

[14] MERCHANT, A., AND YU, P. S. Analytic modeling of clustered
raid with mapping based on nearly random permutation. IEEE
Trans. Comput. 45, 3 (1996).

[15] MESNIER, M. P., WACHS, M., SAMBASIVAN, R. R., ZHENG,
A. X., AND GANGER, G. R. Modeling the relative fitness of
storage. SIGMETRICS Perform. Eval. Rev. 35, 1 (2007).

[16] PRZYDATEK, B. A Fast Approximation Algorithm for the Subset-
Sum Problem, 1999.

[17] RUEMMLER, C., AND WILKES, J. An introduction to disk drive
modeling. IEEE Computer 27, 3 (1994).

[18] SHEN, Y.-L., AND XU, L. An efficient disk I/O characteristics
collection method based on virtual machine technology. 10th
IEEE Intl. Conf. on High Perf. Computing and Comm. (2008).

[19] SHRIVER, E., MERCHANT, A., AND WILKES, J. An analytic
behavior model for disk drives with readahead caches and request
reordering. SIGMETRICS Perform. Eval. Rev. 26, 1 (1998).

[20] UYSAL, M., ALVAREZ, G. A., AND MERCHANT, A. A modular,
analytical throughput model for modern disk arrays. In MASCOTS
(2001).

[21] VARKI, E., MERCHANT, A., XU, J., AND QIU, X. Issues and
challenges in the performance analysis of real disk arrays. IEEE
Trans. Parallel Distrib. Syst. 15, 6 (2004).

[22] WANG, M., AU, K., AILAMAKI, A., BROCKWELL, A.,
FALOUTSOS, C., AND GANGER, G. R. Storage Device Per-
formance Prediction with CART Models. In MASCOTS (2004).


