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Abstract
Virtual File System (VFS) conventionally provides an
abstraction for multiple instances of underlying physi-
cal file systems as well as metadata caching, concurrency
control and permission check, which benefits disk based
file systems. However, in this paper we find VFS brings
extra overhead when interacting with persistent mem-
ory (PM) file systems. We explore the opportunity of
shortening VFS stack for PM file systems. We present
ByVFS, an optimization of VFS to directly access meta-
data in PM file systems bypassing VFS caching layer.
The results show ByVFS outperforms conventional VFS
with cold cache and provides comparable performance
against conventional VFS with warm cache. We also
present potential issues when reducing VFS overhead.

1 Introduction

Emerging Non-Volatile Memory (NVM) technologies,
such as PCM [2, 19], ReRAM[3], STT-RAM [11], and
recent 3D XPoint [9] , allow to store persistent data in
main memory. This motivates a number of efforts to
build file systems on persistent memory (PM), which fo-
cus on minimizing software overhead [24, 7, 22], pro-
viding strong consistency with low overhead [4, 6, 25],
supporting snapshot and fault tolerance [26] , and opti-
mizing slow writes [17].

Compared to block-based devices, byte-addressable
non-volatile memory is naturally suitable for small
reads/writes. Accessing metadata is an important source
of small reads/writes. For example, a major part of file
references are dominated by metadata operations [29].
Metadata operations include accessing properties of in-
dividual files as well as whole file system (e.g. statfs,
stat, rename).

Virtual File System (VFS) is a software abstraction
layer that was first introduced to address the problem
of accessing local file system and remote Network File
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Figure 1: The percentage of time spent on path lookup
with a cold cache. VFS: time of lookup spend in VFS.
FS: time of lookup spend in physical file system. The
numbers above the histograms are application total exe-
cution times in seconds.

System files transparently[12]. During the past decades,
VFS is evolved not only to support multiple file systems,
but also provide metadata caching, concurrency control,
and permission check. Existing kernel based PM file
systems [4, 7, 17, 25, 26] are also attached under VFS
for handling metadata. However, since NVMs provide
sub-microsecond access latency, we find VFS brings ex-
tra overhead when operating metadata for PM file sys-
tems. Figure 1 shows the percentages of execution times
of path lookup spent in VFS and physical file system re-
spectively. We run several command-line applications
on two file systems: NOVA file system (a state-of-the-art
PM file system [25]) and traditional disk-based file sys-
tem ext41. As shown in Figure 1, since NVM is faster
than hard disk, the total application execution times on
NOVA are reduced by from 28.4% to 73.4% compared
to ext4. However, the percentages of execution times of

1The experiment setup for application running and NVM emulation
is presented in Section 4.



(a) The process of path lookup in conven-
tional VFS.
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(b) The process of path lookup in ByVFS.

Figure 2: dcache: cached dentry metadata in VFS. icache: cached inode metadata in VFS.

path lookup spent in VFS on NOVA increase by from
16.5% to 459.6%. This indicates that when serving PM
file systems, VFS brings extra performance overhead.

In this paper, we argue that instead of using VFS
caching for metadata, one can directly access meta-
data in physical file systems. We take path lookup as
a case study, which is a critical step for many sys-
tem calls (e.g. 10%-20% of system calls involve path
lookup [8].). We remove VFS metadata caching for PM
file systems and discuss the arising issues, such as sup-
porting specific system calls, concurrency control, and
compatibility with conventional VFS abstraction. We
implement ByVFS, an optimization of VFS by remov-
ing dentry metadata caching in VFS. We use NOVA as
the underlying PM file system. We evaluate ByVFS
against conventional VFS using both micro-benchmarks
and command-line applications. The results show that
ByVFS improves path lookup performance by 7.1%-
47.9% for system calls compared to conventional VFS
with cold cache. Meanwhile ByVFS performs compara-
bly to conventional VFS with warm cache. For certain
command-line applications, ByVFS reduces application
execution time by up to 26.9%. We also present potential
issues when shortening VFS stack.

2 Background and Motivation

Virtual File System (VFS) was originally designed to
support accessing local file system and remote net-
work file system transparently. Currently, VFS not
only provides an abstraction for interacting with multi-
ple instances of physical file systems, but also provides
caching, concurrency control, and permission check
when accessing files.

VFS mainly caches three types of metadata, includ-

ing superblock, dentry, and inode. A dentry metadata
(named as dcache in this paper) mainly contains file
name and corresponding inode number, while an inode
metadata (named as icache in this paper) mainly contains
file properties (e.g. inode number and file size).

Path lookup is a critical process involved in many
file system operations. We take the system call
stat as an example to illustrate the path lookup
process as shown in Figure 2(a). When serving
stat(”/home/wy/example.txt”), VFS first directly obtains
the icache of the root directory (”/”) as it is loaded into
VFS when system starts. Then VFS looks up the dcache
of the next path component (“home” here) in VFS (step
1). If the dcahe is found, VFS executes operations such
as permission check and symlink processing on the direc-
tory (step 6). Otherwise, one needs to look up the dentry
in physical file systems (step 2). After step 2, VFS fur-
ther looks up its corresponding icache in VFS (step 3).
Note that, step 3 is executed intending to check whether
there already exists icache for the path component. If
there is no icache in VFS, one needs to look up the inode
in physical file systems (step 4). Once the inode is found
in either VFS or physical file systems, one can continue
step 6. VFS caches the dentry or the inode found in step 2
or step 4 by creating and initializing its structure in VFS
(step 5). After step 6, VFS checks whether it reaches the
end of the whole path (step 7). Here, the final file “ex-
ample.txt” has not been looked up yet. Thus VFS iterates
such process until it reaches the end of path. Then stat
returns the information about the file “example.txt”.

From the above example, caching both dentry and in-
ode metadata in VFS helps improving path lookup per-
formance for disk-based file systems by avoiding fre-
quently accessing slow disk. However, since NVMs
have read latency similar to DRAM [13, 16], accessing



DRAM cache bring performance overhead compared to
directly reading NVMs. We are thus motivated to explore
the potential opportunity of directly accessing metadata
in PM file systems while bypassing VFS caching.

3 ByVFS

In this section, we present the design issues of ByVFS,
an optimization of Virtual File System for non-volatile
memory. The key idea of ByVFS is to bypass the meta-
data caching layer in VFS and directly access metadata
in physical file systems. Figure 2(b) shows the reduced
stack of path lookup in ByVFS. ByVFS looks up den-
try metadata for a path component directly in PM file
systems. Once found, one can obtain the related inode
metadata. ByVFS remains to cache inode to hide the
long NVM write latency for frequent metadata updates.

3.1 Handling dentry cache
In ByVFS, the dentry metadata is no longer cached. One
directly looks up the dentry metadata of a path compo-
nent in physical file systems (e.g. NOVA file system in
this paper). One issue after removing dcache is the capa-
bility to support the system call getcwd (returns the full
path of current working directory), since it is frequently
used to obtain the name of parent directories. Conven-
tionally, any dcache has a pointer referring to its par-
ent directory. VFS can iterate dcache of all path com-
ponents to obtain the full path. However, in ByVFS,
dcache is removed, while the dentry metadata in phys-
ical file systems does not include pointers referring to
the parent directory. Thus, we instead provide another
iterating lookup approach by traversing the whole di-
rectory hierarchy to serve getcwd. For illustration pur-
pose, we assume a process calls getcwd under the direc-
tory “/home/wy”. The kernel holds a pointer referring to
the inode of the current working directory for each pro-
cess. Thus, one can first obtain the inode (inodecurrent )
of the current working directory (“wy” directory here).
Then, one can obtain the inode (inodeparent ) of the par-
ent directory (“home” directory here) through the dot-
dot hard link in current directory. By searching the in-
ode number of inodecurrent across sub-directory entries in
the parent directory file, one can obtain the correspond-
ing directory name (name is “wy” here). Meanwhile,
as inodeparent (for “home” directory here) is already ob-
tained, the above process can be repeated until the root
directory is reached. Finally, the system call getcwd re-
turns the full path of working directory. We leave opti-
mizing the efficiency of such iterating lookup as the fu-
ture work.

On the other hand, dcache is conventionally used to
ensure the correctness of concurrent access, and existing

PM file systems, such as PMFS[7] and NOVA[25], rely
on VFS for concurrency control. Since ByVFS removes
dcache, the physical file systems are required to provide
such guarantee, which is to be done in our future work.

3.2 Handling inode cache

Unlike removing dcache in VFS, ByVFS retains to cache
inode metadata (icache) in VFS. This is because icache
contains commonly-used file properties, such as file size
and access time. These file properties are updated fre-
quently. Considering NVM usually has long write la-
tency [13, 16], persisting inode metadata through low-
level file systems directly on NVM once inode metadata
is modified degrades the whole system performance.

Conventionally, the dcache in VFS maintains a pointer
to the icache of itself. VFS can access the icache once
the dcache is found. However, in ByVFS, we need to
record the memory location of icache as dcache is re-
moved. Thus, we modify the low-level file system to add
a non-volatile pointer in the inode structure, which points
to icache. The pointer is created when ByVFS caches
inode metadata. The pointer is set to NULL when the
corresponding icache is released (e.g. evicted from VFS
cache or system shutdowns normally). Note that, the
pointer is non-volatile, and it becomes meaningless as
long as system crashes as the pointed icache does not ex-
ist any more. We use version number to figure out mean-
ingless pointers. We add a version number in both su-
perblock and inode metadata of files. The version num-
ber in the superblock increases by one upon each mount.
When ByVFS creates a icache for an inode, the version
number in the inode is updated to the one in superblock.
For each file lookup, the physical file system compares
version numbers in both inode and superblock. The non-
volatile pointer is considered to be meaningful if the two
versions are the same. Otherwise, the physical file sys-
tem re-creates a icache, and lets the pointer in the inode
metadata point to the newly created icache. The physical
file system updates the version number in the inode to
the one currently in superblock.

3.3 Supporting multiple file systems

VFS is conventionally designed to provide abstraction
for supporting physical file systems. To maintain the
compatibility, we let the low-level PM file systems hold a
flag S NVMFS ROOT. This flag is added into the inode
of mounted directory once a PM file system is mounted.
In such doing, once the flag is encountered when do-
ing path lookup, the remaining lookup is performed in
ByVFS. Otherwise, the conventional VFS lookup pro-
cess is performed.



4 Evaluation

4.1 Experimental setup

We conduct all experiments on a server equipped with
two Intel Xeon E5-2620 v3 processors. The memory size
is 96 GB. We put 16 GB memory for DRAM and 80GB
for emulating NVM. The OS is CentOS 7.0, Linux kernel
4.3.0. All experimental results are the average of at least
10 runs.

NVM emulation As real NVM are not available for
us yet, we implement a hardware emulator based on
the NUMA architecture with processors 0 and 1. Ap-
plications run on processor 0 but access remote mem-
ory attached to processor 1. The NUMA architecture
introduces extra memory read latency (30-40 ns in our
hardware) compared to accessing local memory. This
is used to emulate NVM read latency which is similar
to DRAM [13, 16]. For NVM write, we use hardware
performance monitoring module (PMU) [1] to count the
number of LLC write miss for processor 0. Periodically
(e.g. every 100ms), we add stalls according to counted
write misses to processor 0 to emulate long nvm write
(each write incurs 600ns in this paper).

ByVFS implementation and comparison We imple-
ment ByVFS by modifying the VFS in Linux kernel
4.3.0. Currently ByVFS only implements optimization
for path lookup by removing dcache in VFS. We choose
the state-of-the-art NOVA[25] as the low-level PM file
system. To support maintaining cached inode metadata
in ByVFS, we modify inode and superblock structures
in NOVA. We compare ByVFS against the conventional
VFS, while we use the originally open-sourced NOVA
under the conventional VFS.

Benchmarks We use 6 system calls:
open/stat/access/unlink/mkdir/rmdir as micro-
benchmarks. which all involve path lookup. Although
ByVFS support multi-level directory hierarchy, we only
show the results when running the micro-benchmarks
in a single-level directory with 100,000 files due to the
space limitation. Applications benefit from conventional
VFS caching in case of metadata cache hit. VFS cache
evicts metadata in case of deleting files or reduced
available memory, which results in metadata cache miss.
Thus, we evaluate system calls against both cold VFS
cache (run the experiment once) and warm VFS cache
(run the experiment twice and drop the first one) for the
conventional VFS. In addition, we use 5 widely-used
command-line applications in the Linux source directory
to evaluate the end-to-end performance: find (searching
for ”test.c” file), du -s (showing whole directory size), ls
-lR (recursively listing all file attributes), rm -rf (deleting
all files), cp -r (copying whole directory from tmpfs to
the test file system).

4.2 Micro-benchmarks

Figure 3 shows the execution times of tested sys-
tem calls. Due to space limitation, we show the
comparison between cold VFS cache and warm VFS
cache only for access and unlink. When running
with cold VFS cache, ByVFS outperforms conven-
tional VFS for all system calls. ByVFS reduces ex-
ecute times by 12.7%/48.1%/28.4%/50.8%/7.4%/18.4%
for open/stat/access/unlink/mkdir/rmdir. Since ByVFS
directly looks up metadata in underlying NOVA, the time
VFS lookup is reduced a lot (black parts in histograms).
The remaining VFS lookup is spent in conventional VFS
for searching the upper-level directories on top of the
mount point of NOVA. Besides, ByVFS reduced the
dcache overhead in VFS others.

When running with warm VFS cache, the execution
time of unlink decreases by 38.1% in ByVFS. This is
because unlink involves deleting files, which includes
metadata operations in both VFS (e.g. deleting dcache
and icache) and physical file systems (e.g. deleting den-
try and reclaiming inode). In ByVFS, the metadata op-
erations in VFS are greatly reduced (e.g. no dcache re-
lated operations), which helps to decrease the execution
time. Moreover, ByVFS allows the underlying NOVA
to refer to the cached inode directly using a non-volatile
pointer (steps 2 in Figure 2(b)) . This makes lookup per-
formance in ByVFS comparable to the conventional VFS
with warm cache. This can also be seen from the result of
the lookup-intensive operation access, in which ByVFS
performs slightly worse.

4.3 Command-line applications

Figure 4 shows the execution time of tested ap-
plications. ByVFS reduces the execution time by
26.9%/11.6%/21.4% for du/find/rm respectively. As
shown in Figure 4, the lookup overhead for searching
dentry metadata cache (time VFS lookup) is reduced a
lot in ByVFS. However, for ls and cp, ByVFS performs
slightly worse than conventional VFS, in which the exe-
cution times of ls and cp increase by 6.4% and 3.8% re-
spectively. The two applications benefit from high VFS
cache hit ratios under conventional VFS. For example,
ls repeatedly calls stat, lstat and lgetxattr against files
within a directory, which results in warm VFS cache.
Table 1 shows the hit ratios of VFS metadata cache
for all applications. The hit ratios of ls and cp reach
95%. Thanks to the design of the non-volatile pointer in
ByVFS, ByVFS still provides comparable performance
with warm VFS cache.
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Figure 3: Execution times of system calls. VFS lookup:
the time of looking up dcache and icache in VFS.
VFS others: the time of others operations during path
lookup in VFS, such as parsing path name and check-
ing access permission. FS: the time spend in physical
file system. The numbers above the histograms are to-
tal execution time of each system call in microseconds.
accesscache and unlinkcache: refer to the execution with
warm VFS cache. Others are performed with cold VFS
cache. open refers to creating a new file.

Table 1: VFS cache hit ratios in conventional VFS
du find ls rm cp

14.1% 69.1% 95.8% 55.5% 95.3%

5 Related Works

Persistent memory based file system. Recently, there is
a number of research efforts to build file systems based
on persistent memory. BPFS[4], Aerie[22], PMFS[7],
SCMFS[24], and SIMFS[20] focus on minimizing soft-
ware overhead by bypassing block layer and buffer
cache, optimizing index structure. Bypassing buffer
cache is different from bypassing metadata cache in VFS
in this paper, which only helps to reduce the software
stack of data I/O instead of metadata. PMFS[7] and
NOVA[25] provide strong consistency with low over-
head for PM file systems. NOVA-Fortis[26] further pro-
vides snapshot and fault tolerance for PM file systems.
HinFS[17] focuses on hiding long NVM write latency
by adding write buffer. ByVFS differs from these work
by focusing on optimizing metadata operation for PM
file systems. Aerie[22] also bypasses VFS by building
user-level PM file system but focuses on providing flex-
ible architecture, allowing applications to optimize file
system interfaces. ByVFS instead mainly reduces extra
overheads of VFS caching for metadata operations.

Optimizing metadata operations. Metadata oper-
ations in file systems usually result in small and ran-
dom writes, causing write amplification to block de-
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Figure 4: Execution times of command-line applications
with cold cache. The time division is the same as Figure
3. The numbers above the histograms are the application
execution times in seconds.

vices. A number of research work focus on address-
ing the issue through buffering directory tree [15], us-
ing object stores [18], and providing write-optimized
index [10, 27, 28]. Path lookup is another source
of performance degradation involving metadata opera-
tions. [5, 21] add a cache on top of VFS to reduce
the overhead of component-by-component translation.
[5, 23, 14, 10, 27, 28] implement full path lookup in
physical file systems to improve access latency in case
of VFS cache miss. This paper also targets to optimize
metadata operation, but specifically focuses on the over-
head for PM file systems.

6 Conclusion and Future Work

This paper presents ByVFS, an optimization of VFS by
removing dentry caching to reduce extra overhead for
PM file systems. Moreover, we figure out two poten-
tial optimization opportunities: the concurrency control
originally guaranteed in VFS is now shifted to low-level
file systems, which is not well supported in existing PM
file systems. The other is efficiently and completely sup-
porting various system calls, which may require design-
ing highly efficient index structures in persistent mem-
ory. We leave both issues as our future work.
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