
COMMA: Coordinating the Migration of Multi-tier Applicati ons

Jie Zheng† T. S. Eugene Ng† Kunwadee Sripanidkulchai∗ Zhaolei Liu†

Rice University† NECTEC, Thailand∗

Abstract
Multi-tier applications are widely deployed in today’s vir-
tualized cloud computing environments. At the same time,
management operations in these virtualized environments,
such as load balancing, hardware maintenance, workload
consolidation, etc., often make use of live virtual machine
(VM) migration to control the placement of VMs. Although
existing solutions are able to migrate a single VM efficiently,
little attention has been devoted to migrating related VMs in
multi-tier applications. Ignoring the relatedness of VMs dur-
ing migration can lead to serious application performance
degradation.

This paper formulates the multi-tier application migra-
tion problem, and presents a new communication-impact-
driven coordinated approach, as well as a system called
COMMA that realizes this approach. Through extensive
testbed experiments, numerical analyses, and a demonstra-
tion of COMMA on Amazon EC2, we show that this ap-
proach is highly effective in minimizing migration’s impact
on multi-tier applications’ performance.

Categories and Subject Descriptors D.4.0 [Operating Sys-
tems]: General

Keywords Virtual Machine; Live Migration; Coordination;
Multi-tier Applications;

1. Introduction
Server virtualization is a key technology that enables
infrastructure-as-a-service cloud computing, which is the
fastest growing segment of the cloud computing market and
is estimated to reach $9 billion worldwide in 2013 [11]. Op-
timally managing pools of virtualized resources requires the
ability to flexibly map and move running virtual machines
(VM) and their data across and within pools [23]. Live mi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

VEE ’14, March 1–2, 2014, Salt Lake City, Utah, USA.
Copyright c© 2014 ACM 978-1-4503-2764-0 /14/03. . . $15.00.
http://dx.doi.org/10.1145/2576195.2576200

Figure 1. Examples of multi-tier web application architec-
tures. Components that interact are connected by links.

gration of VM’s disk, memory, and CPU states enables such
management capabilities. This paper is a novel study on how
to effectively perform live VM migration on multi-tier appli-
cations.

Applications that handle the core business and opera-
tional data of enterprises are typically multi-tiered. Figure 1
shows Amazon Web Services’ [7] referential multi-tier ar-
chitectures for highly-scalable and reliable web applications.
A multi-tier application deployed in the cloud typically in-
cludes many interacting VMs, such as web server VMs, ap-
plication server VMs, and database VMs. Such VMs are sub-
jected to migration within a data center or across data cen-
ters. For instance, due to hardware maintenance, VMs run-
ning on physical machines sometimes need to be evacuated.
For large corporations, multi-tier applications could be de-
ployed in multiple data centers in different regions. Among
the top 1 million domains that use EC2 or Azure to host their
services, 44.5% are hosted in two geographical zones, and
22.3% are hosted in three or more geographical zones [14].
Live migration could potentially be used in cases where the
enterprise needs to re-allocate computing resources over dis-
tant data centers or dynamically bring their services’ pres-
ence into different regions.

1.1 The split components problem

Because the VMs in a multi-tier application are highly in-
teractive, during migration the application’s performance
can severely degrade if the dependent components become
split across a high latency and/or congested network path.
Such a slow network path may be encountered within a data

1

Figure 2. The split components problem in multi-tier appli-
cation migration.

center network’s aggregation layers, and in networks inter-
connecting data centers.

Figure 2 shows an example of migrating a 3-tier e-
commerce application across a slow network path. The ap-
plication has 4 VMs (shown as ovals) implementing a web
server, two application servers, and a database server. An
edge between two components in the figure indicates that
those two components communicate with each other. Let
us assume that the four VMs are migrated one by one in
the sequence of web server, application server 1, application
server 2, and database server. When the web server finishes
migration and starts running at the destination site, the com-
munication between the web server and application servers
goes across the slow path, resulting in degraded end-to-end
request handling latency. When the application servers fin-
ish migration, the communications between the web server
and the application servers no longer need to traverse the
slow path. However, it becomes necessary for the applica-
tion servers to communicate with the database server over
the slow path. Only when the database server finally finishes
migration will the entire set of VMs be run in the destination
site, and the request latency returns to the normal level.

Although existing solutions for migrating anindividual
VM are highly developed [10, 16, 18], when it comes to or-
ganizing the migration of a group of related VMs, existing
solutions lack sophistication. They either employsequential
migration, where VMs are migrated one after another, or
parallel migration, where VMs are migrated simultaneously.
Figure 3 shows that these two migration strategies may re-
sult in poor performance when applied to multi-tier applica-
tions. Sequential migration results in a long period of perfor-
mance degradation from when the first VM finishes migra-
tion until the last VM finishes migration. Parallel migration
is not able to avoid such potential degradation either because
the amount of data to migrate for each VM is different and
therefore the VMs in general will not finish migration si-

Figure 3. Sequential and parallel migration of a multi-tier
application.

multaneously. The application will experience performance
degradation as long as components are split across a slow
path.

1.2 Contributions

This paper makes the following contributions.

1. Problem formulation (Section 2): We formulate the
multi-tier application migration problem as a perfor-
mance impact minimization problem, where impact is de-
fined as the volume of communications impacted by split
components. An alternative definition of impact might be
based on the amount of time during which application
components are split. However, this alternative is not as
suitable because it ignores the communication frequency
between components of the application. A very different
problem formulation would be aiming to finish migrating
all VMs simultaneously. However, this formulation is in-
appropriate because it is impossible to achieve if the sum
of the disk dirty rates of the VMs exceeds the available
migration bandwidth.

2. Communication-impact-driven coordinated system
(Section 3): We propose a centralized architecture to
coordinate the migration of multiple VMs in order to
minimize the impact on application communications.
We fully implemented our approach in a system called
COMMA1. COMMA is general for all multi-tier applica-
tions, because it does not assume any application-specific
information, and all measurements needed by COMMA
are performed at the hypervisor level. The architecture
consists of a centralized controller and a local process
running inside each VM’s hypervisor. COMMA is able
to adapt to run-time variations in network bandwidth, I/O
bandwidth, and application workload.

1 COMMA stands for COordinating the Migration of Multi-tier Applica-
tions

2

3. Algorithm for computing VM migration settings (Sec-
tion 3): We propose a novel algorithm that works in two
stages. In the first stage, it periodically computes and co-
ordinates the speed settings for migrating the static data
of VMs. In the second stage, it coordinates the migra-
tion of dynamically generated data. VMs are grouped ac-
cording to their migration resource requirements to en-
sure the feasibility of migration. The algorithm then per-
forms inter-group schedulingto minimize the impact on
application communications, and performsintra-group
schedulingto efficiently use network bandwidth for mi-
gration.

4. Extensive evaluation (Sections 4 & 5):COMMA is
evaluated through extensive testbed experiments on real-
istic applications and workloads: RUBiS (a realistic auc-
tion application modeled after eBay.com) and SpecWeb
(an industry standard e-commerce website benchmark).
We also perform numerical analyses and demonstrate
COMMA on Amazon EC2. The experiments show that
our approach is highly effective in minimizing migra-
tion’s impact on multi-tier applications’ performance.

2. Problem formulation and challenges
2.1 Background of live migration

Live migration refers to the process of migrating a running
VM (the entire disk, memory, CPU states) between differ-
ent physical machines without incurring significant applica-
tion downtime. Live migration is widely used for planned
maintenance, failure avoidance, server consolidation, and
load balancing purposes. Live migration also enables a range
of new cloud management operations across the wide area
such as follow-the-sun provisioning [23]. Thus, live migra-
tion happens over a wide range of physical distances, from
within a machine rack to across data centers located in dif-
ferent continents.

Full migration of a VM includes migrating (1) the run-
ning state of the VM (i.e., CPU state, memory state), (2) the
storage or virtual disks used by the VM, and (3) the client-
server connections.

Live migration is controlled by the source and destination
hypervisors. Live migration has four phases: storage pre-
copy, dirty iteration, memory migration and a barely notice-
able downtime. During the pre-copy phase, the virtual disk
is copied once and all new disk write operations are logged
as dirty blocks. During the dirty iteration, the dirty blocks
are retransmitted, and new dirty blocks generated during this
time are again logged and retransmitted. This dirty block re-
transmission process repeats until the number of dirty blocks
falls below a threshold, and then memory migration begins.
The behavior of memory migration is similar to that of stor-
age migration, but the size is much smaller. At the end of
memory migration, the VM is suspended. The remaining
dirty blocks and pages are copied, and then the VM resumes
at the destination.

2.2 Problem formulation

Let n be the number of VMs in a multi-tier application and
the set of VMs be{vm1, vm2, ..., vmn}. The goal is to
minimize the performance degradation caused by splitting
the communicating components between source and desti-
nation sites during the migration. Specifically, we propose
a communication-impact-driven approach. To quantify the
performance degradation, we define the unit of impact as
the volume of traffic between VMs that need to crisscross
between the source and destination sites during migration.
More concretely, by using the traffic volume to measure
the impact, components that communicate more heavily are
treated as more important. While many other metrics could
be selected to evaluate the impact, e.g. the end-to-end latency
of requests, the number of affected requests, performance
degradation time, we do not adopt them for the following
reasons. We do not adopt the end-to-end latency of requests
and the number of affected requests because it is application
dependent and requires extra application-specific supportfor
measurement at the application level. We do not adopt per-
formance degradation time because it ignores the commu-
nication rate between components. We define the commu-
nication impact as the volume of traffic which does not re-
quire any extra support from the application and is therefore
application-independent.

Let traffic matrixTM represent the communication traf-
fic rates between VMs prior to the start of migration. Our
impact model is based on the traffic prior to migration rather
than the traffic during migration. During migration, the traf-
fic rate of the application may be distorted by a variety of
factors such as network congestion between the source and
destination sites and I/O congestion caused by the data copy-
ing activities. Therefore, we cannot optimize against the traf-
fic rate during migration because the actual importance of
the interaction between components could be lost through
such distortions. Let the migration finish time forvmi beti.
Our goal is to minimize the total communication impact of
migration, where:

impact =

n∑

i=1

n∑

j>i

|ti − tj | ∗ TM [i, j] (1)

2.3 Challenges

To tackle the above problem, we first introduce the chal-
lenges for managing the migration progress of a single VM
addressed in our previous work Pacer [28]. In this paper,
we address the new and unique challenges for managing the
migration progress of multi-tier applications.

2.3.1 Managing the migration progress of a single VM

Managing the migration progress for a single VM comprises
of the functions to monitor, predict and control VM migra-
tion time. The migration time of a VM is difficult to predict
and control for the following two reasons:

3

• Dynamicity and interference: VM migration time de-
pends on many static and dynamic factors. For example,
the VM image size and memory size are static factors, but
the actual workload and available resources (e.g. disk I/O
bandwidth and network bandwidth) are dynamic. During
migration, the network traffic and disk I/O from migra-
tion can interfere with the network traffic and disk I/O
from the application, resulting in migration speed and
disk dirty rate changes.

• Convergence:We define the term “available migration
bandwidth” as the maximal migration speed that migra-
tion could achieve considering all bottlenecks such as
network and disk I/O bottlenecks. If the available band-
width is not allocated properly, the migration could fail
because the application may generate new data that needs
to be migrated at a faster pace exceeding the available mi-
gration bandwidth. For example, if the available migra-
tion bandwidth is 10MBps while the VM generates new
data at the speed of 30MBps, migration will not converge
in the dirty iteration phase and migration will fail. For
a single VM migration, the mechanism to handle non-
convergence is either to set a timeout to stop migration
and report a failure, or to throttle write operations to re-
duce the new data generation rate. The latter mechanism
will degrade application performance.

For the above challenges of single VM migration, our pre-
vious work Pacer [28] is able to achieve accurate prediction
and control of migration progress. Pacer provides algorithms
for predicting dirty set and dirty rate in the pre-copy phase
and the dirty iteration phase. These algorithms are leveraged
by COMMA to gather information needed for coordination
(details in Section 3).

2.3.2 Managing the migration of a multi-tier
application

The management of the migration of a multi-tier application
is more complicated because of the dependencies between
VMs.

1. Multiple VM migration coordination: At the level of
a single VM, the migration process can be predicted
and controlled using Pacer [28]. However, if we rely
on an architecture where all VM migration processes
act independently, it would be difficult to achieve the
joint migration goal for all VMs of the application. It is
necessary to design a new architecture where a higher
level control mechanism governs and coordinates all VM
migration activities for the application.

2. Convergence in multi-tier application migration: For
multiple VM migrations, the convergence issue men-
tioned above becomes more complicated. If the network
bandwidth is smaller than any single VM’s new data gen-
eration rate, the only reasonable option is sequential mi-
gration. If the network bandwidth is large enough to mi-

Challenge Solution

Multiple VM migration Centralized
coordination architecture

Convergence in multi-tier Valid group and
application migration inter-group scheduling

Dynamicity in multi-tier Periodic measurement
application migration and adaptation

System Inter-group scheduling heuristic
efficiency and intra-group scheduling

Table 1. Challenges and solutions in COMMA.

grate all VMs together, the problem is easily handled by
parallel migration. When the network bandwidth is in be-
tween the previous two cases, we need a mechanism to
check whether it is possible to migrate multiple VMs at
the same time, decide how to combine multiple VMs into
groups that can be migrated together, and decide how to
schedule the start and finish time of each group to achieve
the goal of minimizing the communication impact.

3. Dynamicity in multi-tier application migration: For
single VM migration, Pacer [28] can predict the migra-
tion time and control the migration progress. For multi-
tier application migration, it is more complicated because
the VMs are highly interactive and the dynamicity is
more unpredictable; the traffic from multiple VM migra-
tions and the application traffic from all VMs can inter-
fere with each other. In this case, we need a measurement
and adaptation mechanism that handles the dynamicity
across all VMs.

4. System efficiency:The computation complexity for ob-
taining an optimal solution to coordinate the migration
of a multi-tier application could be very high. It is impor-
tant that the coordination system is efficient and has low
overhead. Furthermore, the system should ensure that the
available migration bandwidth is utilized efficiently.

3. System design
3.1 Overview

COMMA is the first migration coordination system for mul-
tiple VMs. It relies on a centralized architecture and a two-
stage scheduling routine to conduct the coordination. The
challenges mentioned in Section 2.3.2 and the correspond-
ing key features that tackle those challenges are summarized
in Table 1.

The centralized architecture of COMMA is the key to or-
chestrating the migration of multiple VMs. The architecture
consists of two parts: 1) a centralized controller program,
and 2) a local process running inside each VM’s hypervi-
sor. The local process provides three functions: 1) monitor
the migration status (such as actual migration speed, migra-
tion progress, current dirty blocks and dirty rate) and peri-
odically report to the controller; 2) predict the future dirty
set and dirty rate to help estimate the remaining migration
time. The dirty set and dirty rate prediction algorithms come
from Pacer [28]; 3) a control interface that receives messages

4

from the controller to start, stop or pace the migration speed.
Based on the reported migration status from all VMs, the
controller executes a scheduling algorithm to compute the
proper settings, and sends control messages to each local
process to achieve the performance objective. This periodic
control and adaptation mechanism with controller coordina-
tion overcomes the migration dynamicity and interference
problems, and helps to achieve the overall objective of fin-
ishing the migration with the minimal impact.

More specifically, COMMA works in two stages. In the
first stage, it coordinates the migration speed of the static
data of different VMs such that all VMs complete the static
data migration at nearly the same time. Before migration,
the user provides the list of VMs to be migrated as well as
their source hypervisors and destination hypervisors to the
controller, and then the controller queries the source hypervi-
sors for each VM’s image size and memory size. At the same
time, COMMA usesiperf [1] to measure the available net-
work bandwidth between the source and destination, and
usesiptraf [4] to measure the communication traffic ma-
trix of VMs. At the beginning, the measured network band-
width is considered as the available migration bandwidth.
Periodically (every 5 seconds in our implementation), the
controller gathers the actual available bandwidth and the mi-
gration progress of each VM, and then it paces the migration
speed of each VM so that their precopy phases complete at
nearly the same time. Subsequently COMMA enters the sec-
ond stage. COMMA provides mechanisms to check whether
it is possible to migrate multiple VMs at the same time, to
decide how to combine multiple VM migrations into a group
to achieve convergence for all VMs in the group calledvalid
group, and to decide how to schedule the starting and finish-
ing time of each group to minimize the communication im-
pact calledinter-group scheduling. Furthermore, COMMA
performsintra-group schedulingto schedule each VM in-
side the same group in order to best maximize the bandwidth
utilization.

3.2 Scheduling algorithm

The algorithm works in two stages. In the first stage, it
coordinates the migration speed of the static data of VMs
(phase 1) so that all VMs complete the precopy phase at
nearly the same time. In the second stage, it coordinates the
migration of dynamically generated data (phase 2, 3, 4) by
inter-group and intra-group scheduling. The definitions of
the four phases of migration are in Section 2.1.

Phase 1 migrates static content, and there is no inherent
minimum speed requirement. Phase 2 and 3 migrate dynam-
ically generated content. The content generation rate implies
a minimum migration speed that must be achieved or other-
wise throttling might become necessary (which causes appli-
cation performance degradation). Therefore, we should ded-
icate as much of the available bandwidth to phase 2 and 3 in
order to prevent application performance degradation. This

Figure 4. An example of coordinating a multi-tier applica-
tion migration with COMMA.

clearly implies that the phase 1 migration activities should
not overlap with phase 2 and 3.

3.2.1 First stage

The goal of the first stage is to migrate VMs in parallel and
finish all VMs’ phase 1 at the same time. Assuming the data
copying for each VM is performed over a TCP connection,
it is desirable to migrate VMs in parallel because the aggre-
gate transmission throughput achieved by the parallel TCP
connections tend to be higher than a single TCP connection.

In this stage, the amount of migrated data is fixed. The
controller adjusts each VM’s migration speed according to
its virtual disk size (see Equation 2).

speedvmi
=

DISK SIZEi∗BANDWIDTH

TOTAL DISK SIZE

(2)

During migration, the controller periodically gathers and
analyzes the actual available network bandwidth, migration
speeds and the progress of VMs. Then it adjusts the migra-
tion speed settings of VMs to drive phase 1 migrations to
finish at the same time.

Figure 4 shows an example of migrating 4 VMs with
COMMA. In the first stage, the controller coordinates the
migration of 4 VMs such that their precopy phases complete
at the same time. At the end of the first stage, each VM has
recorded a set of dirty blocks which require retransmission
in the next stage.

3.2.2 Second stage

In the second stage, we introduce the concept of “valid
group” to overcome the second challenge mentioned in
Section 2.3.2. COMMA performs inter-group scheduling
to minimize the communication impact and intra-group
scheduling to efficiently use network bandwidth.

To satisfy the convergence constraint, the VMs in the
multi-tier application are divided into valid groups accord-
ing to the following rule: the sum of the VMs’ maximal
dirty rates in a group is no larger than the available net-
work bandwidth (See Equation 3). The maximal dirty rate
is usually achieved at the end of dirty iteration, since at this
time most blocks are clean and they have a high probability
of getting dirty again. The maximal dirty rate is needed be-
fore the second stage but it is unknown until the migration

5

finishes, and thus we leverage the dirty rate estimation algo-
rithm in Pacer [28] to estimate the maximal dirty rate before
the second stage starts. In the second stage, we migrate the
VMs in groups based on the inter-group scheduling algo-
rithm. Once a group’s migration starts in the second stage,
we wait for this group to finish. At the same time, we con-
tinue to monitor the actual bandwidth, dirty rate and dirty
set for other not-yet-migrated groups. We update the sched-
ule for not-yet-migrated groups by adapting to the actual ob-
served metrics.

∑

vmi∈group

{Maxdirty ratei} ≤ BANDWIDTH (3)

3.3 Inter-group scheduling

In order to minimize the communication impact, COMMA
needs to compute the optimal group combination and migra-
tion sequence, which is a hard problem. We propose two al-
gorithms: a brute-force algorithm and a heuristic algorithm.
The brute-force algorithm can find the optimal solution but
its computation complexity is high. In Section 4, we show
that the heuristic algorithm reduces the computation over-
head by 99% without losing much in optimality in practice.

3.3.1 Brute-force algorithm

The brute-force algorithm lists all the possible combinations
of valid groups, performs the permutation for different mi-
gration sequences and computes the communication impact.
It records the group combination and migration sequence
which generates the minimal impact.

Given a set of VMs, the algorithm generates all subsets
first, and each subset will be considered as a group. The al-
gorithm eliminates the invalid groups that do not meet the
requirement in Equation 3. It then computes all combina-
tions of valid groups that exactly add up to a complete set
of all VMs. Figure 4 shows one such combination of two
valid groups that add up to a complete set:{vm1, vm2}
and{vm3, vm4}. Next the algorithm permutes each of such
combination to get sequences of groups, and those sequences
stand for different migration orders. The algorithm then
computes the communication impact of each sequence based
on the traffic matrix and the migration time reported from
the intra-group scheduling algorithm. Finally the algorithm
will select the group combination and the sequence with the
minimal communication impact.

Let n be the number of VMs in the application. The
time complexity for the brute-force algorithm isO(2n ∗ n!),
because it takesO(2n) to compute all the subsets and takes
O(n!) to perform permutation for each combination.

3.3.2 Heuristic algorithm

Our heuristic algorithm tries to estimate the minimal impact
by prioritizing VMs that need to communicate with each
other the most. Given the traffic matrix, we can get a list

L of the communication rates between any two VMs. Each
element inL includes(rate, V Mi, V Mj). It represents the
communication between nodeVMi and nodeVMj with
rate. The heuristic algorithm takes the traffic matrix as input
and generates the VM group setS as follows.

• Step 1: Sort the communication rates inL by descending
order.S is empty at the beginning.

• Step 2: Repeatedly take the largest rate element
(rate, V Mi, V Mj) from L. Check whetherVMi and
VMj are already inS

Case 1: NeitherVMi norVMj is inS. If the two VMs
can be combined into a valid group, insert a new group
{VMi, V Mj} into S. Otherwise, insert two groups
{VMi} and{VMj} into S.

Case 2: Only one VM is inS. For example,VMi

is in S andVMj is not inS. Find the group which
includesVMi. Check whetherVMj can be merged
into the group based on the convergence constraint in
Equation 3. If it is still a valid group after merging,
thenVMj is merged into the group. Otherwise, a new
group {VMj} is inserted intoS. For the case that
VMj is in S andVMi is not, it is similar.

Case 3: BothVMi and VMj are in S. If the two
groups can be merged into one group with conver-
gence constraint, then merge the two groups.

• Step 3: At the end of step 2, we haveS which includes
the valid group of VMs. The algorithm then compares
permutations on the groups to find the one with minimal
impact.

The time complexity for the heuristic algorithm isO(n!)
because the algorithm is dominated by the last step. Sorting
in step 1 takesO(n2logn) since there are at mostn(n − 1)
elements in the listL which means every VM communicate
with every other VM. Step 2 takesO(n2). The permutation
in step 3 takesO(n!) in the worst case when each VM forms
a group.

3.4 Intra-group scheduling

To migrate the VMs in a valid group, one possible solution is
to allocate bandwidth equal to the VM’s maximal dirty rate
to the corresponding VM. Then, we start the migration of all
VMs in the group at the same time. The definition of valid
group guarantees that we have enough bandwidth to support
all VMs in the group migrating concurrently.

However, starting the VMs’ migration at the same time
is not an efficient use of available migration bandwidth. Fig-
ure 5 shows the migration of three VMs during their dirty
iteration with different mechanisms to illustrate this ineffi-
ciency. Figure 5(a) shows that 3 VMs start dirty iteration
of migration at the same time. Different VMs have differ-
ent migration speeds and dirty rates. Therefore, they finish

6

Figure 5. Intra-group scheduling. (a) Start VM migrations
at the same time, but finish at different times. Result in long
performance degradation time. (b) Start VM migrations at
the same time and finish at the same time. Result in long
migration time due to the inefficient use of migration band-
width. (c) Start VM migrations at different times and finish
at the same time. No performance degradation and short mi-
gration time due to efficient use of migration bandwidth.

migration at different times without coordination. For ex-
ample,VM1 takes 5 minutes to migrate most of the dirty
blocks or pages. Then it could enter phase 4 to pause the VM
and switch over to run in the destination.VM3 may take 10
minutes to finish. That results in 5 minutes of performance
degradation. Recall that the goal of COMMA is to reduce
the communication impact during migration. Therefore, the
ideal case is that the VMs in the group finish migration at the
same time. In order to make them finish at the same time, we
could forceVM1 andVM2 to stay in the dirty iteration and
continue migrating new generated dirty blocks untilVM3 is
done as Figure 5(b) shows. This mechanism is not efficient
because it wastes a lot of migration bandwidth in holding
VM1 andVM2 in the dirty iteration.

To efficiently use the migration bandwidth, the intra-
group scheduling algorithm schedules the migration of VMs
inside a group to finish at the same time but it allows them
to start the dirty iteration at different times as Figure 5(c)
shows.

The design is based on the following observations in
practice. (1) Delaying the dirty iteration start time of VMs
with light workload can allow for more bandwidth to be
allocated to VMs with heavy workload. (2) At the end of the
first stage, most of the VM’s frequently written blocks are
already marked as dirty blocks, and the dirty rate is low at
this time. Therefore, delaying the start time of dirty iteration
will not significantly increase the number of dirty blocks. (3)
Once the dirty iteration starts, it is better to finish migration
as soon as possible to save the bandwidth.

While observations (1) and (3) are quite intuitive, obser-
vation (2) is less so. To illustrate observation (2), we per-
form migrations of a file server with 30 clients and analyze
its dirty rate. Figure 6(a) shows the migration without any
delay for the dirty iteration. From 0 to 280s, migration is in
the pre-copy phase and its dirty rate is very stable around
32KBps. Dirty iteration start from 280s to 350s. The dirty

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 50 100 150 200 250 300 350 400

D
irt

y
R

at
e

(B
/s

)

Migration Time (s)

No delaying on the start of dirty iteration

(a) No delay

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 50 100 150 200 250 300 350 400 450 500

D
irt

y
R

at
e

(B
/s

)

Migration Time (s)

Delay 35s on the start of dirty iteration

(b) Delay 35s

Figure 6. An example of delaying the start of dirty iteration
for the migration.

rate is very low at the beginning and increases as dirty itera-
tion proceeds. Figure 6(b) show the migration with 35s delay
on the start of dirty iteration. During this period, we can see
the dirty rate is almost zero. It means there is no more clean
blocks getting dirty.

Initially we assume that the minimal required speed for
each VM is equal to the VM’s maximal dirty rate. We then
use the method in Pacer [28] to compute a predicted migra-
tion time for each VM. The algorithm would schedule differ-
ent dirty iteration start times for different VMs accordingto
their predicted migration time so that every VM is expected
to finish the migration at the same time.

Available network bandwidth may be larger than the sum
of the VMs’ minimal required migration speed. If there is
extra available bandwidth, the bandwidth will be further
allocated to the VMs to minimize the total migration time
of the group. This allocation is done iteratively. Suppose
the group hasN VMs, the extra available bandwidth is first
allocated tovmN , where the subscript indicates the VM’s
start time order in the schedule. That is,vmN is the VM

7

that starts the latest in the schedule. The allocation of this
extra bandwidth reducesvmN ’s migration time, and thus its
start time can be moved closer to the finish time target in
the schedule. Next, the extra available bandwidth prior to the
start ofvmN is given tovmN−1. vmN−1’s migration time is
thus reduced also. Then the extra available bandwidth prior
to the start ofvmN−1 is given tovmN−2 and so on, until the
migration time for the first VM to start is also minimized.

3.5 Adapting to changing dirty rate and bandwidth

When the disk write workload and/or the available migration
bandwidth are highly unstable, prediction accuracy will re-
duce. Fortunately, in the first stage, COMMA periodically
updates its predictions based on the latest measurements,
such that the pre-copy tasks can still finish at the same time.
Furthermore, in the second stage, COMMA will adapt by pe-
riodically estimating the maximal dirty rate, measuring the
available bandwidth and recomputing the schedule for not-
yet-migrated groups. When COMMA detects that available
bandwidth is smaller than the sum of any two VM’s maximal
dirty rate, the migration will be degraded to sequential mi-
gration to ensure convergence. In the extremely rare case, if
the available bandwidth is smaller than a single VM’s max-
imal dirty rate, throttling is performed to that VM such that
the dirty rate is reduced and migration could converge.

4. Evaluation
4.1 Implementation

COMMA is implemented on the kernel-based virtual ma-
chine (KVM). KVM consists of a loadable kernel module,
a processor specific module, and a user-space program –
a modified QEMU emulator. COMMA’s local process for
each VM is implemented on QEMU version 0.12.50, and
COMMA’s centralized controller is implemented as a light-
weight server with C++.

4.2 Experiment setup

The experiments are set up on six physical machines. Each
machine has a 3GHz Quad-core AMD Phenom II X4 945
processor, 8GB RAM, 640GB SATA hard drive, and Ubuntu
9.10 with Linux kernel (with the KVM module) version
2.6.31.

4.3 Application level benefits of COMMA

To directly show the benefits of COMMA during the mi-
gration of a multi-tier application, we conduct experiments
to migrate RUBiS [20], a well-known benchmark for server
performance, using sequential migration, parallel migration,
and COMMA. RUBiS is a 3-tier application including web
server, application server and database server. We measure
the application performance by computing the average re-
sponse time of the request from clients every second. In the
experiment setting, each RUBiS server runs on one VM, and
each VM is provisioned on one physical machine. We mi-

grate 3 VMs from 3 source hypervisors to 3 destination hy-
pervisors, with an emulator [3] to emulate a slow link with
a round trip latency of 100ms. The architecture of RUBiS
is the same as the 3VM setting in Figure 1, which shows
real examples of multi-tier application architectures from
Amazon EC2’s service guide. The deployment and setup
of the multi-tier applications in our experiments is based
on it. Those 3 VMs have the same image size of 8GB.
The memory size of the web server, application server, and
database server is 2GB, 2GB, and 512MB. The workload is
100 clients. Figure 7 shows the application performance be-
fore, during, and after migration, with the different migration
approaches.

In sequential migration, the average response time is 20-
25ms before migration. Right after migration starts, response
time increases to 30-40ms because of the interference from
the migration traffic. At the end of web server’s migration,
there is a response time spike, because the VM is being sus-
pended for a short downtime to finish the final phase of mi-
gration. Immediately after that, the web server starts running
on the destination hypervisor, and the communication traf-
fic between the web server and the application server goes
through the slow link. As a result, the application perfor-
mance is degraded to 150-190ms. At the end of application
server’s migration, there is also a spike, and then the applica-
tion server starts running on the destination, while the com-
munication between the application server and the database
server goes through the slow link. This performance degra-
dation lasts for more than 1000 seconds until the database
server finishes migration. In parallel migration, the degrada-
tion time is still high at 82 seconds, and there are still three
response time spikes because the three VMs finish migration
at different times. Finally, we conduct the migration with
COMMA. There is only one response time spike, because
all the three VM finishes at nearly the same time, and the
performance degradation time is only 1s.

4.4 COMMA’s ability to minimize the migration
impact

In this experiment, we will show that COMMA is able to
minimize the communication impact, which is defined in
equation 1 of section 2.2. For the experiment setting, we add
one more application server to the above RUBiS [20] setup.
The purpose is to deploy the 4 VMs on at most 3 physical
machines with different placements to mimic the unknown
VM placement policy in public clouds. The architecture is
the same as the 4VM setting in Figure 1. The number of
clients is 300. Each experiment is run 3 times and we show
the average results in Table 2.

Table 2 shows that sequential migration has the longest
migration time and the highest impact in all cases. More than
2GB of data are affected by sequential migration. Parallel
migration reduces the impact to less than 1GB, but this is
still much higher than the impact of COMMA. COMMA has

8

(a) Sequential migration

(b) Parallel migration

(c) COMMA

Figure 7. Application performance during migration of a 3-
tier application. The y axis is in log scale.

up to 475 times of reduction on the amount of data affected
by migration.

As the result shows, COMMA has a slightly larger mi-
gration time than parallel migration. The reason is that
COMMA tries to make all VMs finish migration at the same
time, but parallel migration does not. In parallel migration
when some VMs finish earlier, the other VMs undergoing
migration that share the same resources can take advantages
of the released resource and finish migration earlier.

4.5 Importance of the dynamic adaptation mechanism

While the above experiment shows the high communication
impact for sequential and parallel migration, one could come

VM Sequential Parallel COMMA
Placement Migration Migration Migration

Migr. Impact Migr. Impact Migr. Impact
Time Time Time
(s) (MB) (s) (MB) (s) (MB)

{web,app1,app2,db} 2289 2267 2155 13 2188 7
{web,db},{app1,app2} 2479 2620 918 72 1043 2
{web,app1},{db,app2} 2425 2617 1131 304 1336 2
{web}{app1,app2}{db} 2330 2273 914 950 926 2
{web,app1}{app2}{db} 2213 1920 797 717 988 4
{web}{app1}{app2,db} 2310 2151 1012 259 1244 5

Table 2. Comparisons of three approaches for migrating a
3-tier application.{...} represents set of VMs placed on one
physical machine.

up with alternative approaches to reduce the communication
impact. Some approaches include reordering the migration
sequence in sequential migration, or configuring the migra-
tion speed based on static migration info such as the VM
disk size. However, without the periodic measurement and
adaptation mechanism in COMMA, those approaches can-
not achieve the goal of minimizing the communication im-
pact, because they cannot handle the dynamicity during mi-
gration.

The experiment is based on SPECweb2005 [2].
SPECweb 2005 contains a frontend Apache server with an
image size of 8GB and a backend database server with an
image size of 16GB. The workload is 50 clients and the ex-
periment is run 3 times. Table 3 shows the results of six mi-
gration approaches. The first two approaches are sequential
migration with different orders. The sequential migrationap-
proach causes a large impact of 265MB and 139MB for the
two different migration orders.

The next three approaches are parallel migration with
different upper speed limits. In the first experiment, both
VMs are configured with the same migration speed limit of
32MBps. They do not finish at the same time, with an impact
of 116MB. In the second experiment, the migration speed
limit for the frontend VM (8GB) is set to be 16MBps, and
for the backend VM (16GB) the speed limit is 32MBps. By
setting the migration speed limit proportional to the image
size, the user may expect the two VMs to finish migration
at the same time. However, this does not happen because the
migration cannot achieve the configured speed limits most
of the time due to an I/O bottleneck of 15MBps. To avoid
this bottleneck, a compromise is to decrease the configured
speed limits. In the third parallel migration experiment, the
configured speed limits are 5MBps and 10MBps. The degra-
dation time is decreased but is still 36s, and the impact is
9MB. However, the low migration speed brings the side ef-
fect of longer migration time. These three experiments show
that it is impossible for users to statically pre-determineand
configure the migration speed to achieve low communica-
tion impact and timely migration at the same time. In a real
cloud environment, guessing the proper speed configuration
will be even harder with the additional competing traffic or

9

Sequential Migr. Parallel Migr. COMMA
frontend backend 32/32 16/32 5/10

first first MBps MBps MBps
Impact(MB) 265 139 116 122 9 0.2

Migr.
Time(s) 1584 1583 1045 1043 1697 1043

Table 3. Manually tuned sequential and parallel migration
vs. COMMA’s fully automated approach.

Component Type Image Mem Dirty Max Dirty
Size Size Set Rate

Web/App Server 8GB 1GB 100MB 2MBps
Load Balancer

Database 8GB 1GB 1GB 15MBps

Table 4. Example VM and workload parameters for numer-
ical analyses.

more complicated dynamics. With COMMA, the controller
can coordinate the migration progress of the two VMs auto-
matically. The two VMs finish migration as quickly as pos-
sible and have only a communication impact of 0.2MB.

4.6 Benefits of the heuristic algorithm

In this experiment, we evaluate the communication impact
and the computation time for both of the brute-force and
the heuristic inter-group scheduling algorithms. We perform
numerical analyses to evaluate the different migration ap-
proaches on the different multi-tier web service architectures
shown in Figure 1.

Assume that the VMs have the characteristics in Table 4,
and the shared total available bandwidth is 256Mbps. The
parameters that we select are image size, memory size, dirty
set size and max dirty rate. These are the four key parameters
for determining the migration time using the method in [28].
We select a set of representative configurations to enable our
numerical analyses. The image size and memory size follow
the recommendation from the VMware VMmark benchmark
configuration [21]. Dirty set is defined as the written and not-
yet-migrated data bytes on the VM’s virtual disk at the end
of disk image pre-copy. Dirty rate is defined as the speed at
which the VM’s virtual disk and memory is written. Dirty
set and dirty rate settings are from our measurement of the
VMware benchmark.

We measure the RUBiS traffic matrix and found that the
inter-component communication rates range from 0 to sev-
eral hundred KBps, depending on the number of clients.
Therefore, we generate a random number between 0 and
100KBps to mimic the communication rate in RUBiS. Each
experiment is run 3 times with different random number
seeds. Table 5 shows the average results. In the first four
cases (VM ≤ 5), all VMs can be coordinated to finish at
the same time and the impact is 0. For larger-scale applica-
tions (VM ≥ 6), the coordination algorithm will perform
the best effort to schedule VM’s migration and achieve the

Sequential Parallel COMMA-Bruteforce COMMA-Heuristic
Migration Migration Migration Migration

2VM 28 3 0 0
3VM 84 3 0 0
4VM 114 3 0 0
5VM 109 3 0 0
6VM 222 INF 1 2
7VM 287 INF 2 2
8VM 288 INF 1 2
9VM 424 INF 9 13

Table 5. Communication impact (MB) with different migra-
tion approaches. INF indicates that migration cannot con-
verge.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 2 3 4 5 6 7 8 9

C
om

pu
ta

tio
n

T
im

e
(u

s)

The number of VMs

Brute-force
Heuristic

Figure 8. Computation time for brute-force algorithm and
heuristic algorithm.

minimal impact. The coordination with the brute force al-
gorithm achieves a slightly lower impact than the coordina-
tion with the heuristic algorithm. Take the migration of 9
VMs for example, comparing to the sequential migration,
COMMA with the brute-force algorithm could reduce the
impact by 97.9% and COMMA with the heuristic algorithm
could reduce the impact by 96.9%.

Figure 8 shows the computation time for the brute-force
algorithm and the heuristic algorithm. When the number
of VM increases to 9, the computation time for the brute-
force algorithm rapidly increases to 32 seconds, while the
computation time for the heuristic algorithm is a much more
reasonable 274us. In other words, the heuristic algorithm
reduces the computation overhead up to 99%.

In practice, a multi-tier application could contain tens of
components [13]. Fortunately, our heuristic algorithm can
handle applications at such size efficiently since the com-
putation time required is still smaller than 10 milliseconds,
and the heuristic algorithm only needs to be invoked once
every several seconds.

5. EC2 demonstration
To demonstrate COMMA in a real commercial hybrid cloud
environment, we conduct an experiment using Amazon EC2
public cloud. The experiment migrates two SPECweb2005
VMs from a university campus network to EC2 instances

10

Figure 9. Live migration of multi-tier applications to EC2.

Sequential Migr. Parallel Migr. Coord.
Migration Migration

frontend backend 32/32 16/32 5/10
first first MBps MBps MBps

Impact(MB) 28 17 19 6 6 0.1
Migr.

Time(s) 871s 919s 821s 885s 1924s 741s

Table 6. Manually tuned sequential and parallel migration
vs. COMMA in EC2 demonstration.

with the same settings as the experiment in Section 4.5 ex-
cept that the workload is reduced to 10 clients. Since KVM
cannot run on top of EC2 instances, we run QEMU with
the “no-kvm” mode, which reduces the application’s per-
formance. Reducing to 10 clients ensures the convergence
of the dirty iteration and memory migration phases. We use
EC2’s High-CPU Medium instances running Ubuntu 12.04.

The result is in Table 6. In the sequential approach, the
performance degradation time is equal to the time of migrat-
ing the second VM, and thus the migration impact could be
as high as 28MB and 17MB for the two different migration
orders. For the parallel approach with the same migration up-
per speed limit for both VMs, the degradation impact is still
19 MB, which is not much better than the impact of sequen-
tial approach. We next set the migration speed limit propor-
tional to the size of the VM image. In this case, the impact
decreases to 6MB, but this approach does not fully utilize the
available bandwidth. Consequently, the migration time in-
creases, especially in the last case with the migration speed
limits of 5/10 MBps. For COMMA, migration’s impact is
orders of magnitude smaller, and the migration time is the
shortest because it utilizes bandwidth efficiently. COMMA
reduces the communication impact by 190 times compared
to that of parallel migration. The above results show that
COMMA is able to successfully coordinate the migration of
multi-tier applications across the wide area with extremely
low impact on application performance.

6. Related work
To the best of our knowledge, no previous work is directly
comparable to COMMA, which is the first paper to address
the problem of live migration of multi-tier applications. The

goal of COMMA is to reduce the application performance
degradation during migration.

There is some related work on performance modeling
and measurement of single VM live migration [6, 8, 9, 22,
24, 26]. Wuet al. [24] created the performance model with
regression methods for migrating a VM running different
resource-intensive applications. Breitgandet al. [8] quanti-
fied the trade-off between minimizing the copy phase dura-
tion and maintaining an acceptable quality of service dur-
ing the pre-copy phase for CPU/memory-only migration.
Akoush et al. [6] provided two simulation models to pre-
dict memory migration time. Voorsluyset al. [22] presented
a performance evaluation on the effects of live migration.
Zhaoet al. [26] provided a model that can characterize the
VM migration process and predict its performance, based on
a comprehensive experimental analysis. Checconiet al. [9]
introduced a stochastic model for the migration process and
reserves resource shares to individual VMs to meet the strict
timing constraints of real-time virtualized applications. Rel-
ative to these previous works, not only does COMMA ad-
dress a different set of problems which targets multiple VM
migrations, COMMA also takes an approach based on real
measurements and run-time adaptation, which are found to
be crucial to cope with workload and performance interfer-
ence dynamics, to realize a complete system.

There exists related work on multiple simultaneous mi-
grations [5, 19]. Nicolaeet al. [19] proposed a hypervisor-
transparent approach for efficient live migration of I/O inten-
sive workloads. It relies on a hybrid active push-prioritized
prefetch strategy to speed up migration and reduce migration
time, which makes it highly resilient to rapid changes of disk
state exhibited by I/O intensive workloads. AI-Kiswany [5]
employed data deduplication in live migration to reduce the
migration traffic. Their solution VMFlockMS is a migration
service optimized for cross-data center transfer and instanti-
ation of groups of virtual machine images. VMFlockMS is
designed to be deployed as a set of virtual appliances which
make efficient use of the available cloud resources. The pur-
pose of the system is to locally access and deduplicate the
images and data in a distributed fashion with minimal re-
quirements imposed on the cloud API to access the VM im-
age repository. Some other work for live migration focuses
on reducing migration traffic by compression [12, 15], dedu-
plication [25] and reordering migrated blocks [17, 27]. The
purposes of above related work are either to reduce migra-
tion traffic or to reduce migration time which are very differ-
ent from what this paper focuses on.

7. Conclusions
We have introduced COMMA – the first coordinated live
VM migration system for multi-tier applications. We have
formulated the multi-tier application migration problem,and
presented a new communication-impact-driven coordinated
approach, as well as a fully implemented system on KVM

11

that realizes the approach. COMMA is based on a two-
stage scheduling algorithm to coordinate the migration of
VMs with the goal of minimizing the migration’s impact on
inter-component communications. From a series of experi-
ments, we have shown the significant benefits of COMMA
in reducing the communication impact, while the schedul-
ing algorithm of COMMA incurs little overhead. We believe
COMMA will have far reaching impact because it is applica-
ble to numerous intra-data center and inter-data center VM
migration scenarios. Furthermore, the techniques underlying
COMMA can be easily applied to other virtualization plat-
forms such as VMware, Xen and Hyper-V.

Acknowledgments
This research was sponsored by the NSF under CNS-
1305379, CNS-1018807 and CNS-1162270, by an Alfred P.
Sloan Research Fellowship, an IBM Scholarship, an IBM
Faculty Award, and by Microsoft Corp.

References
[1] iperf. http://sourceforge.net/projects/iperf/.

[2] Specweb2005.http://www.spec.org/web2005/.

[3] WANem. http://wanem.sourceforge.net.

[4] iptraf. http://iptraf.seul.org/, 2005.

[5] S. AI-Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu.
Vmflock: Virtual machine co-migration for the cloud. In
HPDC, 2011.

[6] S. Akoush, R. Sohan, A. Rice, A. W.Moore, and A. Hop-
per. Predicting the performance of virtual machine migration.
In IEEE 18th annual international symposium on modeling,
analysis and simulation of computer and telecommunication
systems. IEEE, 2010.

[7] Amazon. Aws reference architecture.http://aws.amazon.

com/architecture/.

[8] D. Breitgand, G. Kutiel, and D. Raz. Cost-aware live migra-
tion of services in the cloud. InUSENIX Workshop on Hot
Topics in Management of Internet, Cloud, and Enterprise Net-
works and Services. USENIX, 2011.

[9] F. Checconi, T. Cucinotta, and M. Stein. Real-time issues in
live migration of virtual machines. InEuro-Par 2009–Parallel
Processing Workshops, pages 454–466. Springer, 2010.

[10] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines.
In NSDI’05, 2005.

[11] Gartner. http://www.gartner.com/newsroom/id/

2352816, 2013.

[12] S. Hacking and B. Hudzia. Improving the live migration pro-
cess of large enterprise applications. InVTDC’09: Proceed-

ings of the 3rd International Workshop on Virtualization Tech-
nologies in Distributed Computing, 2009.

[13] M. Hajjat, X. Sun, Y. Sung, D. Maltz, S. Rao, K. Sripanid-
kulchai, and M. Tawarmalani. Cloudward bound: planning for
beneficial migration of enterprise applications to the cloud. In
ACM SIGCOMM Computer Communication Review, 2010.

[14] K. He, A. Fisher, L. Wang, A. Gember, A. Akella, and T. Ris-
tenpart. Next stop, the cloud: Understanding modern web ser-
vice deployment in ec2 and azure. InIMC, 2013.

[15] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan. Live virtual
machine migration with adaptive memory compression. In
IEEE International Conference on Cluster Computing, 2009.

[16] KVM. Kernel based virtual machine. http://www.

linux-kvm.org/page/Main_Page.

[17] A. Mashtizadeh, E. Celebi, T. Garfinkel, and M. Cai. The
design and evolution of live storage migration in vmware esx.
In Proceedings of the annual conference on USENIX Annual
Technical Conference. USENIX Association, 2011.

[18] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent
migration for virtual machines. InUSENIX’05, USA, 2005.

[19] B. Nicolae and F. Cappello. Towards efficient live migration
of I/O intensive workloads: A transparent storage transfer
proposal. InHPDC, 2012.

[20] RUBiS. http://rubis.ow2.org.

[21] VMWare. VMmark Virtualization Benchmarks.
http://www.vmware.com/products/vmmark/, Jan. 2010.

[22] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya. Cost
of virtual machine live migration in clouds: A performance
evaluation, 2009.

[23] T. Wood, P. Shenoy, K.K.Ramakrishnan, and J. V. der Merwe.
Cloudnet: Dynamic pooling of cloud resources by live wan
migration of virtual machines. InACM VEE, 2011.

[24] Y. Wu and M. Zhao. Performance modeling of virtual ma-
chine live migration. InProceedings of the 2011 IEEE 4th
International Conference on Cloud Computing. IEEE, 2011.

[25] X. Zhang, Z. Huo, J. Ma, and D. Meng. Exploiting data
deduplication to accelerate live virtual machine migration. In
IEEE International Conference on Cluster Computing, 2010.

[26] M. Zhao and R. J. Figueiredo. Experimental study of vir-
tual machine migration in support of reservation of clusterre-
sources. InProceedings of the 2nd international workshop
on Virtualization technology in distributed computing, page 5.
ACM, 2007.

[27] J. Zheng, T. S. E. Ng, and K. Sripanidkulchai. Workload-
aware live storage migration for clouds. InACM VEE, Apr.
2011.

[28] J. Zheng, T. S. E. Ng, K. Sripanidkulchai, and Z. Liu. Pacer:
A progress management system for live virtual machine mi-
gration in cloud computing.IEEE Transactions on Network
and Service Management, 10(4):369–382, Dec 2013.

12

