
Crossbow: From Hardware Virtualized NICs to Virtualized
Networks

Sunay Tripathi
sunay.tripathi@sun.com

Nicolas Droux
nicolas.droux@sun.com

Thirumalai Srinivasan
thirumalai.srinivasan@sun.com

Kais Belgaied
kais.belgaied@sun.com

Solaris Kernel Networking
Sun Microsystems, Inc.

17 Network Circle, Menlo Park, CA 94025, USA

ABSTRACT
This paper describes a new architecture for achieving net-
work virtualization using virtual NICs (VNICs) as the build-
ing blocks. The VNICs can be associated with dedicated
and independent hardware lanes that consist of dedicated
NIC and kernel resources. Hardware lanes support dynamic
polling, which enables the fair sharing of bandwidth with no
performance penalty. VNICs ensure full separation of traffic
for virtual machines within the host. A collection of VNICs
on one or more physical machines can be connected to create
a Virtual Wire by assigning them a common attribute such
as a VLAN tag.

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Network communication; C.2.4
[Computer-Communication Networks]: Network oper-
ating systems

General Terms
Design, Performance, Security, Experimentation

Keywords
Virtualization, Networking, Performance, Hypervisor, VMs,
Zones, VLAN, Classification, Crossbow, vWire, VNICs

1. INTRODUCTION
Virtualization has seen tremendous growth in the last few

years. Hypervisor-based virtualization [2] and operating
system-based virtualization [18] [19] are two popular vir-
tualization technologies. More recently, I/O virtualization
(IOV), an exclusively hardware-based device and bus virtu-
alization technology [17], has also emerged.

Now that server virtualization has become mainstream,
the focus has shifted to network virtualization, where the
deployment model requires no interference between the net-
work traffic of different virtual machines. An ideal scenario
would be to assign a physical NIC to each virtual machine.
However, the number of I/O slots available on a machine is

Copyright 2009 Sun Microsystems, Inc.
VISA’09,, August 17, 2009, Barcelona, Spain.
ACM 978-1-60558-595-6/09/08.

fairly limited, and the cost per virtual machine would in-
crease due to the additional required power consumption,
physical connectivity, and administration overhead. Thus,
there is a need to securely share the NIC among the virtual
machines in a fair or policy-based manner.

Crossbow is the code name for the new OpenSolaris net-
working stack that supports virtualization of a physical NIC
into multiple VNICs. It aggressively uses the NIC hardware
features for performance, security isolation, and virtualiza-
tion. A VNIC is assigned a dedicated hardware lane, which
consists of NIC resources such as receive and transmit rings,
dedicated software resources, and CPUs. These dedicated
resources establish an independent data path, which is free
of contention. If the hardware resources are exhausted, or
if the NIC does not support virtualization, then the stack
falls back to software based NIC virtualization, albeit at an
extra performance cost.

In this paper, we first take a look at the problems with
existing virtualization solutions. We then survey the recent
NIC hardware advancements that enable us to build the
Crossbow architecture. In Section 4, we describe the Cross-
bow architecture itself, and in Section 5, we show how it is
used to build a Virtual Wire, a fully virtualized network con-
necting virtual machines spread across one or more physical
machines. Finally, we look at other work happening in this
area and describe our future direction.

2. ISSUES IN EXISTING ARCHITECTURES
First consider some of the key requirements for network

virtualization and how existing hypervisor based and fully
hardware based solutions (IOV) attempt to meet those re-
quirements.

2.1 Fair Sharing
The ability to support fair sharing of the underlying phys-

ical NIC among its constituent virtual NICs is a key net-
work virtualization requirement. This is an issue for both
hypervisor-based virtualization and IOV virtualization. In
both cases, a virtual machine can monopolize usage of the
underlying physical NIC resources and bandwidth, if it is
capable of driving the physical link at line rate.

Schedulers have focused mostly on sharing the CPU re-
sources, and network packet scheduling has been mostly left
to the NIC drivers, which are unaware of higher level services
or virtual machines. In [14] the authors discuss the prob-



lem of the scheduler not achieving the same level of fairness
with I/O-intensive workloads as they do with CPU-intensive
workloads.

2.2 Security
In the IOV model, a virtual machine is granted direct and

uncontrolled access to partitions of resources on the NIC,
thus maximizing the performance. However, this model has
security implications. In particular, firewall rules are not
handled by the IOV Virtual Functions (VFs), which opens
the door for a virtual machine to spoof its MAC or IP ad-
dresses, generate bridge protocol data units (PDUs), or fake
routing messages and bring down the entire layer 2 or layer
3 network.

This issue is especially critical in cohosted environments
where multiple tenants share the same hardware.

2.3 Performance
Performance is an issue for the hypervisor-based model

[12] [15]. On the receive side, considerable effort is spent on
bringing the packet into the system and performing software
classification before the destination virtual machine can be
identified. Then, the traffic needs to be passed to the virtual
machine through the hypervisor, which is also expensive.

In [15] the authors report substantial performance impact
and higher CPU utilization. In [24] [11] the authors present
specific performance optimizations such as using NIC Hard-
ware checksum and TCP Large Segment Offload, and report
significant gains. However, they point out that the perfor-
mance impact is still substantial, especially on the receive
side.

2.4 Virtual Machine Migration
The hypervisor based solutions support migration of vir-

tual machines from one host to another, but IOV-based solu-
tions don’t easily lend themselves to virtual machine migra-
tion, since the virtual machine has a state associated with
the bare metal.

3. HARDWARE ADVANCEMENTS
Most modern NICs [7] [20] [13] support a combination of

hardware features, which are described in this section.

3.1 Multiple Receive and Transmit Rings and
Groups

One of the main features of NICs is the support of multiple
receive and transmit rings. Each hardware ring or queue has
its own descriptors, and can be assigned its own resources on
the bus (DMA channels, MSI-X interrupts [17]) and on the
system (driver buffers, interrupted CPU). Multiple CPUs
can therefore cooperate in receiving and sending packets,
which is particularly needed when a single CPU is too slow.
Rings can be bundled in statically or dynamically formed
groups.

On the receive side, one or more MAC addresses, VLAN
tags, or both, can be associated with a ring group. A steering
logic on the NIC can deposit incoming packets to any ring
of the group that matches the packets’ address or VLAN.
A load balancer (also known as Receive-Side Scaling (RSS)
engine) or a higher level classification engine determines the
actual recipient ring based on a matching hash value or spe-
cific L3/L4 classification rules. Packets that do not match

any programmed MAC address (for example broadcasts) or
classification rule are delivered to a default ring on the NIC.

On the transmit side, multiple rings enable the sending of
multiple packet flows through the same device in parallel.
Similar to receive rings, transmit rings can be bundled to-
gether. A transmit rings group is a set of transmit rings with
the same capabilities (hardware checksum, LSO, and so on)
and a transmit load balancer. As of the time of writing this
paper, only few vendors have announced future hardware
support of transmit ring grouping.

An advanced virtualization feature is the capability to cre-
ate a partition on the NIC with its own receive and transmit
ring groups, as implemented by Intel’s Virtual Machine De-
vice Queues (VMDq) [8].

3.2 SR I/O Virtualization
The PCI-SIG consortium developed the Single Root I/O

Virtualization and Sharing (SR-IOV) [16] specification pri-
marily to address the issue of platform resource overhead
from the hypervisor trap imposed on all I/O operations be-
tween virtual machines and devices, while preserving the
capability to share I/O devices among multiple virtual ma-
chines. A device maps to a single physical function (PF)
on the bus, and can be partitioned into multiple virtual
functions (VFs). Independent interrupts, rings, and ad-
dress translation services allow virtual domains to control
their dedicated VF directly. Some NICs also offer on-board
switching of traffic between VFs.

4. CROSSBOW ARCHITECTURE
One of the key requirements of network virtualization is to

ensure that virtual machines are insulated from each other’s
traffic.

As mentioned in Section 1, true isolation of a virtual ma-
chine and its network traffic can be achieved by dedicating
a physical NIC and its associated network cable and port on
the switch to the virtual machine itself. If the MAC layer
can have dedicated resources for each physical NIC (without
any shared locks, queues, and CPUs) and the switch ensures
fairness on a per port basis, the traffic for one virtual ma-
chine will not interfere with the traffic of another virtual
machine.

In the case where the physical resources, and in particular
the physical NIC, needs to be shared among multiple virtual
machines, the next best option is to virtualize the NIC hard-
ware and the layer 2 stack such that the sharing is fair and
without any interference. The Crossbow architecture in the
OpenSolaris OS does exactly that by virtualizing the MAC
layer and taking advantage of NIC hardware capabilities to
ensure traffic separation between multiple virtual machines.

4.1 Virtualization lanes
A key tenet of the Crossbow design is the concept of vir-

tualization lanes. A lane consists of dedicated hardware and
software resources that can be assigned to a particular type
of traffic. Specifically, it consists of the following:

• NIC resources such as receive and transmit rings, in-
terrupts, and MAC address slots.

• Driver resources such as DMA bindings.

• MAC layer resources such as data structures, locks,
kernel queues and execution threads to process the



packets, and CPU bindings of kernel threads and inter-
rupts. Crossbow carefully instantiates locks and coun-
ters per lane rather than sharing them across lanes to
avoid any contention.

A virtualization lane can be one of two types, hardware-
based or software-based.

Hardware-based virtualization lanes – In this case, the
NIC must support partitioning of its hardware resources.
At a minimum, a hardware-based lane needs to have
a dedicated receive ring. Other hardware resources
such as a transmit ring can be exclusive or shared
among lanes. One or more lanes can in turn be as-
signed to a virtual machine. Incoming packets are dis-
patched based on fair scheduling across all hardware-
based lanes. Alternatively incoming packets can be
dispatched based on administrative policies, such as a
bandwidth limit.

As mentioned in Section 2, the bulk of the receive pro-
cessing consists of bringing the packets into the sys-
tem and inspecting the packet headers. By assigning
each hardware lane its own receive ring, the incoming
packet arrival rate for a given lane has no impact on
other lanes. On the transmit side, the hypervisor or
kernel knows where the packets originate from, and
hence can support fair sharing in software. Therefore,
a hardware lane does not require its own dedicated
transmit hardware rings.

Software-based virtualization lane – A set of default
receive and transmit rings can be shared by multiple
VNICs to handle the situation when a NIC runs out
of hardware resources. In such situations, software-
based receive and transmit rings, also called softrings,
are used and the virtualization lanes are referred to
as software-based virtualization lanes. The system can
always operate in mixed mode where all but one hard-
ware receive rings are assigned to hardware lanes, and
the last receive ring is software classified to build soft-
ware lanes. Although there is no limit to the num-
ber of software lanes that can be built, software-based
lanes sharing hardware do not have some of the fair-
ness and isolation attributes of hardware lanes. Legacy
NICs without hardware partitioning capability appear
as NICs with single receive and transmit rings and al-
low only software-based lanes.

4.2 Virtual NIC
To complete the network virtualization abstraction, Cross-

bow enables the creation of Virtual NICs (VNICs) that are
associated with their own hardware or software lanes.

The VNIC appears like any other NIC and is administered
exactly like a physical NIC. In fact, the physical NIC seen by
the higher layers of the network stack is nothing but a VNIC
built over the physical NIC, albeit with the well known name
(such as ’nxge0’) of the physical NIC itself. In Crossbow
architecture, the NICs, VNICs, and link aggregations are all
treated similarly and are termed as a data link.

A lane is assigned to a VNIC and the classifier is pro-
grammed based on the VNIC’s MAC address and optionally
the VLAN tag, such that packets destined for the virtual
machine end up in a receive ring dedicated to that virtual
machine and can be scheduled appropriately. Receive load

HW RX Layer-2 
Classier

MAC Address
VNIC2

MAC Address
VNIC1

RX TX

CPU
threads

VNIC1

Lane

RX TX

CPU
threads

VNIC2

Lane

rings rings

Figure 1: Virtualization lanes with dedicated hard-
ware and kernel resources

balancing can be used to distribute packets among multiple
receive rings for better performance, see Section 3.

When VNICs are created with a VLAN tag, Crossbow can
use the GVRP [6] or MVRP [5] protocols to automatically
register the VLAN tag with the physical switches as well.

4.3 Dynamic Polling and Packet Scheduling
The Crossbow architecture introduces the concept of dy-

namic polling, where instead of a fixed per packet interrupt,
the virtualization lane is switched between interrupt and
polling modes. Under low load, where the packet arrival
rate is less then the packet processing time, the lane stays
in interrupt mode and the receive ring is programmed to
issue an interrupt as soon as any packet is received with-
out applying any local optimizations. As soon as a backlog
builds up, the lane is dynamically switched to polling mode.
In this mode, a kernel thread goes down to the receive ring
in the NIC hardware to fetch all packets in the form of a
packet chain.

Each virtualization lane operates independently from other
lanes and does not require any locks for synchronization. In
addition, the NIC receive ring serves as the only queue with
no additional queuing within the stack. Typically, three ker-
nel threads are used to process packets within a lane:

• Poll thread that goes to the NIC hardware to retrieve
packets in the form of a packet chain. Under low to
moderate load, the poll thread can run to completion
without passing the packet chain to the worker thread,
thus reducing the overall system context switches. If
a backlog builds up at higher layers, the receive ring
stays in polling mode, and the worker thread is used to
send the packet chain up the stack. Because the worker
thread often runs on a different CPU than the poll
thread, the throughput can be increased significantly,



intr/sec csw/sec smtx/sec idle

pre-Crossbow based 10818 4588 1797 12
Crossbow based 2823 875 261 27
percent change -75 -85 -85 +125

Table 1: Measured reduction in interrupt/sec, con-
text switch/sec, lock contention/sec, and increase in
idle time due to dynamic polling

albeit with an context switch on a per packet chain
basis.

• Worker thread that does the receive protocol process-
ing (IP and above) or delivers the packets to the virtual
machine through a back-end driver. The worker thread
also does any transmit work that is a side effect of the
receive processing, such as forwarding an IP datagram
or doing ACK driven transmit in the case of TCP.

• Transmit thread that gets activated if packets are be-
ing sent out as a result of transmit side flow control
relief, or after transmit descriptor reclaim. As long
as there are transmit descriptors available and proto-
col permits, the application or virtual machine threads
are allowed to transmit packets without any context
switches or additional queuing due to flow control.

Because, under load, large number of packets are deliv-
ered in chains using the polling mode, the cost of going
through the stack is amortized across the entire chain. Also,
in polling mode, overheads due to context switching, mutex
contention, and thread pinning are eliminated because inter-
rupts are turned off. The higher the packet per second rate,
the better is the measured throughput and lower is the CPU
utilization. Moreover, because the hardware already handles
the classification and guarantees that the packets are indeed
unicast packets meant for the MAC address of the VNIC,
the entire data link processing can be bypassed, further re-
ducing the packet-parsing overheads. Table 1 compares the
rate of interrupts per second, context switches, and mutex
contention without and with dynamic polling. As shown by
the table, dynamic polling and hardware lanes offer very sig-
nificant reduction in context switches and lock contention,
and decrease CPU utilization. The workload was a stan-
dard web based workload on a low-end server over a 1 Giga-
bit Ethernet link with 12 clients connected via an Extreme
Networks Gigabit Ethernet switch. The average bandwidth
utilization was 500-550 Mb/s, with most of the transmitted
packets being larger size (800 to 1500 bytes), and most of
the received packets being smaller sized or just ACKs.

To obtain better throughput for high bandwidth data links
that have only one or small number of hardware based vir-
tualization lanes, a software-based fanout can be employed
on a per lane basis using softrings. A softring is a packet se-
rialization queue with an associated worker thread. The poll
thread just queues packets in one of the softrings based on a
pre-configured hash, and the softring worker thread does the
protocol processing and any transmission. All the threads
are assigned to independent hardware execution units (cores,
hardware threads, CPUs) for better pipeline performance
whereby the poll thread just brings packets into the system,
and the softring worker threads do the protocol processing.

For optimal performance without software-based fanout,
high bandwidth data links (10 Gb/s or higher) require the

Figure 2: Comparing VNIC and physical NIC per-
formance

use of multiple hardware-based virtualization lanes, each as-
signed two to three dedicated CPUs. The poll thread and
interrupt share a CPU since they are mutually exclusive
from each other. The worker and transmit threads need a
dedicated CPU, although NIC hardware that support large
segment offload (LSO) do not need a dedicated CPU for the
transmit thread.

In the case of software-based fanout, additional CPUs are
needed for each softring to allow for concurrent processing.
There are overheads due to software-based fanout, such as
walking the headers to compute the hash, context switches,
and so on, but more packets can be processed at the cost
of higher CPU utilization. Threads assigned to a lane can
share CPUs if there are administratively configured policies
in place for the data link, or if the system is short on CPUs.

4.4 Virtualization Performance
VNICs are closely integrated with the MAC layer architec-

ture to provide virtualization at no extra cost when they are
assigned one or more hardware-based virtualization lanes.
Figure 2 shows the bi-directional aggregate throughput of a
Crossbow physical NIC under stress as compared to Fedora
2.6. The figure also shows the throughput when a VNIC is
used exclusively in the place of a physical NIC. Note that
no performance difference exists between the physical NIC
and the VNIC.

The test setup consisted of six identical machines where
one machine acted as a system under test (SUT) and the
other five machines acted as clients. Each machine was a
dual socket, quad core Intel machine with each core oper-
ating at 2.8 GHz. All six machines had an Intel 10 Giga-
bit Ethernet NIC and were connected through a dedicated
Foundry 10 Gigabit Ethernet switch. Each client was send-
ing or receiving 10 TCP streams to the SUT, where the total
ratio of transmit to SUT and receive from SUT was 2:3. The
wire MTU was 1500 bytes, and the application write buffer
size was 8 Kbytes. We used an application called uperf [1],
which is similar to other micro benchmarks but enables us
to deal with a multi-client case more effectively, thus better
simulating a real-world performance. Each test was run for
10 minutes.



Figure 3: Packets received through interrupts vs
poll path

The Intel 10 Gigabit Ethernet NIC [7] has 8 receive, 8
transmit rings, and support large segment offload as well.
Fedora 2.6 used all 8 receive rings and 1 transmit ring.
Crossbow used only 4 receive rings with one hardware based
lane for each ring, for a total of 4 hardware-based virtual-
ization lanes. As mentioned before, by default, Crossbow
prefers to use at least two dedicated CPUs per lane (one
CPU for poll and interrupt thread, and the other for proto-
col processing) and since the system under test has only 8
CPUs, it enables only 4 lanes. All 4 lanes shared 1 trans-
mit ring. Because TCP large segment offload was enabled
on both Fedora and Crossbow, a single transmit ring was
sufficient and Crossbow didn’t need a dedicated CPU for
transmit processing. The Crossbow numbers over multiple
runs gave very consistent results, and the load across all 8
CPUs was very evenly distributed. In the case of Fedora
2.6, multiple runs gave very inconsistent results with some
as low as 5.6 Gb/s, and the system consistently pegged 3
to 4 CPUs to 100 percent load. Note that the unidirec-
tional TCP throughput of both Crossbow and Fedora 2.6
were fairly similar and very close to the line rate of a sin-
gle 10 Gigabit Ethernet NIC. The goal of the experiment
was not to compare performance between OpenSolaris and
Fedora, but rather to showcase the concept of lanes and
demonstrate that Crossbow VNICs don’t impose any per-
formance penalties.

Figure 3 shows the ratio of total packets that were received
through the interrupt path as compared to the polling path.
In general, the interrupt path is only used when a lane has
no packets to process. In this case, the per packet inter-
rupt is turned on for better latency. As soon as the backlog
builds up, the packets can’t be processed inline and need to
be queued. The lane then switches to polling mode. A kernel
thread then goes to the NIC hardware to pick up the pack-
ets in the form of a chain instead of relying on per packet
delivery through the interrupt path. Figure 4 shows the
distribution of packet chains length received during polling
mode on a per hardware lane basis.

4.5 Thread to CPU binding and NUMA inter-
actions

The number of lanes required depends on the packet per
second rate rather than the throughput. On low bandwidth

Figure 4: Chain lengths when packets are received
through polling mode

data links where link speed is a few Gigabit per second or
lower due to physical limitations (100 Mb/s or 1 Gb/s NICs)
or is administratively limited, one hardware-based virtual-
ization lane is adequate. For higher bandwidth data links
(10 Gb/s or more), 4 to 8 virtualization lanes are required
for processing small packets at line rate.

Although, the Crossbow architecture allows linear scaling
using multiple hardware based virtualization lanes, it intro-
duces new challenges with respect to thread binding. With
large packet sizes, a 10 Gb/s data link requires only 1 or 2
hardware lanes to sustain line rate. With small packets sizes,
the same data link can require 8 lanes or more to achieve
line rate. Since each lanes needs two to three CPUs for op-
timal processing, the total number of CPUs can be 16 to 24
CPUs, and with multiple 10 Gb/s NICs configured on the
system, a typical x64 system can quickly run out of CPUs.

On platforms based on Non Uniform Memory Access (NUMA)
architectures, CPUs for a given physical NIC hardware are
not equal. This makes the thread to CPU binding a ma-
jor challenge. In such cases, the architecture needs to take
the NUMA topology and location of the physical NIC into
account for thread placement.

The Crossbow administrative interfaces allow a system
administrator to specify CPUs for a data link to allow ad-
ministrative control over the thread binding. In the case
of virtualization, where CPUs are assigned to virtual ma-
chines or zones, the Crossbow architecture can bind the lane
threads to the same CPUs. A more dynamic thread place-
ment approach is needed to optimize the number of lanes
and threads per lane based on workload, packet per second
rate, NUMA topologies, and any administrative policies.

4.6 Bandwidth Partitioning
Apart from the fair sharing of bandwidth, Crossbow en-

ables the administrative configuration of link speed for each
VNIC. The link speed is implemented by regulating the peri-
odic intake of incoming packets per virtualization lane. Ev-
ery period, the network stack allows only as many packets



VNIC1 VNIC2

virtual switch

PNIC

host1
VM

host2 
VM

PNIC PNIC

switch

host1 host2

switch switch

Figure 5: Mapping between physical and virtual
switches

to come into the system as permitted by the configured link
speed. As soon as the lane consumes enough packets for a
given period according to the configured link speed, the lane
abstains from picking up more packets until the next period.

The transmit bandwidth is much easier to control because
packets originate from the system. In that case, the network
stack can either flow control the application generating the
packets or drop the excess of packets.

The same bandwidth control mechanisms are used to im-
plement QoS for traffic flows, as described in [21].

4.7 Virtual Switching
When multiple VNICs share the same underlying physical

NIC or link aggregation, the MAC layer provides a data path
between these VNICs. This data path enables the VNICs
to exchange packets as if they were connected to a virtual
switch, without leaving the machine for better performance,
and also because a physical Ethernet switch port would not
loop back a packet to its originating port. Figure 5 shows
the mapping between physical and virtualized network com-
ponents.

Note that a NIC can also be plumbed by IP while it is
virtualized with VNICs. In this case, virtual switching also
enables the IP stack to communicate with the VNICs defined
on top of the same NIC. As such, IP and VNICs are referred
to more generically as MAC clients of the underlying NIC.
The rest of this discussion refers to VNICs, but the same
concepts apply to other MAC clients in general.

Virtual switches are never directly accessed by, or visible
to, the user or system administrator. Instead, they are im-
plicitly created when the first VNIC is defined on top of a
NIC. Virtual switches provide the same semantics that are
expected from physical switches, as follows:

• VNICs created on top of the same underlying NIC can
send Ethernet packets to each other using their MAC
addresses.

• Virtual switches distribute multicast and broadcast
packets between VNICs. They maintain multicast mem-
berships to find the appropriate destinations.

• Virtual switches are VLAN aware. They maintain per
VLAN broadcast domains on top of the same physi-
cal NIC, which allows separation between VLANs in a
virtual environment.

In addition, virtual switches enable not only the switching
of traffic between VNICs, but also the demultiplexing of
inbound traffic coming from the wire that was not classified
in hardware, as well as the sending of traffic for non-local
destinations.

4.8 Etherstubs
As described in the previous section, the MAC layer pro-

vides the virtual switching capabilities that allow VNICs
created on top of an underlying data link such as a physi-
cal NIC or a link aggregation. The local data paths imple-
mented by the MAC layer provide the same semantics as a
layer 2 switch to which the VNICs are virtually connected.

In some cases, it is preferable to create virtual networks
on the same machine without the use of a physical NIC.
Some examples are described in Section 5. Because a vir-
tual switch is implicitly created when a VNIC is created on
top of a data link, one solution is to have the capability to
create pseudo ethernet NICs, and to define VNICs on top
of these pseudo NICs. Crossbow provides such pseudo NICs
in the form of etherstubs. An etherstub is a pseudo ethernet
data link that can be used instead of a physical NIC or link
aggregation during the creation of a VNIC.

4.9 Virtual NIC and Virtual Machine Migra-
tion

One goal of the Crossbow architecture is to maximize the
use of the hardware features while still allowing for fallback
to software, in the absence of hardware features. In [9] the
authors point out that Crossbow’s hardware-based virtual-
ization can inhibit portability and virtual machine migra-
tion. However, our architecture is, in fact, a hybrid model
of hardware and software virtualization where the virtual
machine itself has no knowledge of the NIC hardware. The
architecture allows a hardware VNIC to be moved to a NIC
that doesn’t support virtualization, thus allowing a virtual
machine to be easily migrated.

4.10 Monitoring VNICs and Virtual Switches
The OpenSolaris Operating System provides the capabil-

ity through snoop(1M), DLPI, and other APIs to monitor
the traffic sent and received by a data link such as a phys-
ical NIC. When a data link with VNICs is monitored, the
traffic observed includes packets sent and received through
the wire, as well as all traffic exchanged between the VNICs
created on top of that data link, for all VLAN IDs.

When a VNIC is monitored, the observed traffic includes
the traffic that would be normally seen by a host connected
to a physical switch, that is all multicast and broadcast traf-
fic, and the unicast traffic for the unicast address and VLAN
ID associated with the VNIC.

5. VIRTUAL NETWORKS AND VIRTUAL
WIRE

Section 4.7 explained how the MAC layer creates virtual
switches for each data link on top of which virtual NICs
have been created. VNICs can be created on top of physical
NICs and link aggregations, but also on top of etherstubs.



Etherstubs enable the VNICs to communicate through vir-
tual switches that are completely independent from hard-
ware. Because many etherstubs can be created on a single
host, VNICs and virtual switches can be easily combined to
build virtual networks in a box, also known as Virtual Wire.

This section presents some use cases for Virtual Wire,
describes how VLANs can be combined with Virtual Wire
to build isolated virtual networks sharing the same physical
infrastructure, and concludes with two examples to illustrate
these concepts.

5.1 Use Cases
The Virtual Wire functionality of Crossbow can be used

in many scenarios, some of which are described below.

P2V for Distributed Applications – As an extension of
the P2V (Physical to Virtual) capability, virtual wire
also enables the network connecting the hosts being
virtualized to be simulated in the virtual environment.
This enables distributed applications to be virtualized
without changes to the applications, or to the network
topology connecting the hosts being virtualized.

Simulation – The design of a distributed application envi-
ronment and network topology is typically time con-
suming, and requires cycles of design, implementa-
tion, and testing before going into production. Virtual
Wire enables these network topologies to be virtual-
ized, which allows for the development and verification
cycles to be performed in a virtual environment, on a
developers laptop at the local coffee shop, or on a sin-
gle machine in a data center. Once a network topology
is tested, it can be instantiated on a physical network.

Security – Virtual Wire can be used to build private net-
works running on a single machine that are isolated
from the rest of the network by a software firewall
running in a virtual machine or Solaris zone. Firewall
capabilities, network address translation (NAT), and
so on, can be provided by existing Solaris services or
by virtual machines connected to the multiple virtual
networks.

Education and Research – The network developers and
researchers working with protocols (such as high speed
TCP) can use OpenSolaris to write their implementa-
tions and then them with other production implemen-
tations. They can debug and fine-tune their protocol
quite a bit before sending even a single packet on the
real network.

5.2 Virtual Wires Separation
Virtual Wire also enables virtual networks to be extended

to span multiple physical machines connected by a physical
network. Several such networks can co-exist on a network,
and their traffic can be separated using techniques such as
VLAN tagging. A VLAN tag can be assigned to a Virtual
Wire, and each Virtual Wire instantiates a virtual network.

As seen in Section 4.2, a VNIC can be assigned VLAN tag.
When a Virtual Wire is constructed, every created VNIC is
assigned the VLAN tag of the Virtual Wire it is connected
to. Multiple VNICs with the same VLAN tag can be con-
nected to the same virtual switch, which allows VNICs on
the same VLAN to exchange traffic. The resulting Virtual

eri0 vnic0

NAT/Firewall VM

etherstub

vnic1

VM1

vnic2

VM2

Figure 6: Virtual wire example: building a network
in a box

Wire topologies can consist of multiple VMs or zones per
physical hosts, as well as VMs or zones residing on different
physical hosts.

The use of VLANs requires packets to be tagged with a
VLAN header as they flow through the virtual and physical
networks. With Virtual Wire, VLAN tagging and stripping
is done by the VNICs and MAC layer of the host operating
system transparently to the VMs and zones connected to
the Virtual Wire. From their point of view, the VMs and
zones send and received untagged Ethernet packets, and ap-
pear to be connected to their private virtual network. The
separation between Virtual Wires, tagging and stripping of
packets, as well as virtualization are implemented by the
host operating systems of the physical nodes.

This architecture also allows the VLAN separation, tag-
ging, and stripping to move from the physical switches into
the host. This allows the provisioning of isolated virtual net-
works, even when they span multiple physical machines, to
be done without reconfiguring the physical switches, and fa-
cilitates the migration of virtual machines between multiple
physical hosts.

5.3 Examples
Figure 6 shows a Virtual Wire example where an etherstub

is used to create a virtual switch connecting three VNICs,
vnic0, vnic1, and vnic2. One virtual machine (VM) of the
host is connected to the physical network through a physical
NIC, here eri0, and at the same time to the private virtual
network through vnic0. That VM implements NAT and a
firewall for the other virtual machines, and in the case of
Xen could be dom0 itself. The other VMs V M1 and V M2

are connected to that private network through their VNICs,
vnic0 and vnic1, respectively.

Figure 7 shows two networks, Virtual Network A and Vir-
tual Network B, sharing the same common physical switch
and spanning multiple physical hosts. On each host, multi-
ple virtual machines can be connected to each one of these
networks through VNICs. Crossbow enables the VNICs to
be assigned to a specific VLAN, which ensures that a virtual
machine will only see the traffic for its network.

6. RELATED WORK
Network Virtualization has been around in some form or

the other for quite some time. One of the early virtualiza-



PNIC

PNIC

A1

A5 B3

A2 B1

B4

V1 V3V2

V1 V2 V3

PNIC

A3 A4 B2

V1 V2 V3

Physical
switch

Virtual
Network A

Virtual
Network B

Figure 7: Virtual wire example: virtual networks
spanning multiple hosts separated by VLANs

tion technology was FreeBSD Jail [4] which is an Operating
System based virtualization technology that provides strong
partitioning and isolation for applications. Clonable network
stacks [23] provides the network interface virtualization on
FreeBSD. This is a simple software-based scheme that uses
bridging to connect multiple network stacks and the under-
lying physical link. Solaris zones [18], an application con-
tainer technology is similar, but provides deeper and more
complete system integration and uses Crossbow architecture
for network virtualization which focuses on performance and
use of hardware capabilities.

The last decade saw a significant advent of hypervisor
based system virtualization in mainstream deployments and
on commodity hardware. In recent years, the trend is shift-
ing from desktop virtualization to server virtualization with
more intensive networking workloads. Some of the most
popular virtualization technologies addressing server and net-
work intensive virtualization are Citrix System Xen, VMware
ESX, and Microsoft Hyper-V. More recently, Cisco Systems
announced a virtualization offering based on VN-Link tech-
nology. In this section, we will take a closer look at some of
these virtualization technologies.

Citrix System Xen [2] based Virtual Machine Monitor
(VMM) has been implemented natively in the Linux ker-
nel, and the code is available in open source. In the Xen
based VMM, the physical NIC is owned by the hypervisor
or a special privileged domain called driver domain. Virtual
machines access the network through a virtualized network
interface which has a front-end driver in the guest domain,
and a back-end driver in the privileged domain. Within
the privileged domain, an Ethernet bridge is used to de-
multiplex incoming packets to destination virtual machines.
The bridge forces the NIC to go in promiscuous mode and
has significant overhead for network intensive workloads, as
pointed out by Menon et. al. [12]. The same authors have
also suggested optimizations [11] which primarily focus on
optimizing the data transfer between the front-end and back-

end drivers. The cost of demultiplexing incoming packets
and allowing the available bandwidth to be shared in a fair
manner under diverse network workloads still needs to be
addressed.

VMware ESX and Microsoft Hyper-V based VMM are not
open source and are proprietary implementations. As such
their specific implementations are hard to quantify, but some
earlier work done by Sugerman et. al. [22] suggests that
ESX VMM also needs to address issues related to demul-
tiplexing inbound packet processing and sharing of band-
width. More recently, Cisco Systems announced a new vir-
tualization offering in conjunction with VMware ESX under
the Unified Computing System (UCS) [3] umbrella. UCS is
a proprietary solution with little details available, but the
key components seem to be a Virtualized Ethernet Module
(VEM) running under ESX on the hosts, and connected to
a Cisco Systems Nexus switch managed by a Virtual Su-
pervisor Module (VSM). The VEM does special proprietary
tagging for packets (VN-tag) from all virtual NICs allow-
ing the switching to happen on the external switch which
can see each Virtual NIC as a port, and can ensure fair-
ness by using bandwidth sharing amongst virtual machines.
It also allows a centralized representation of all virtual ma-
chines view across all nodes, which allows expressing con-
sistent link-wide policies for security, resource provisioning,
and VM migration.

Unfortunately, the only way UCS has been deployed was
through extremely tight integration with a particular OS
virtualization flavor, namely the VMware ESX server. The
VEM in fact replaces the whole Layer 2 of the networking
stack, and does not function outside the ESX hypervisor.
Cisco also offers a physical NIC which works with ESX and
does the VN-tag insertion/removal and switching in the NIC
hardware itself. Since VN-tag and the entire UCS archi-
tecture is proprietary and doesn’t work with any existing
switch, it will be a big hindrance to the adoption of the
technology. Another shortcoming is the absence of any in-
tegration with the virtualization innovations on the NICs.
This solution forces the traffic out of the machine on the
wire, which causes additional overhead for traffic between
local domains.

Other related work is currently taking place under the
OpenFlow programmable switch project by Mckeown et. al.
[10]. The core idea is to encourage switch vendors to develop
a programmable switch that has a standard way of adding
and deleting flows. The Crossbow approach of programming
the NIC classifier based on VNICs MAC address and VLAN
tags, combined with instantiating a complementary rule on
an Openflow based switch in a open standard based mech-
anism, could go a long way in creating a truly virtualized
layer 2 fabric.

7. CONCLUSIONS AND FUTURE WORK
The Crossbow architecture presented in this paper intro-

duces a novel approach to achieve network virtualization
by tackling the networking resources virtualization and fair
bandwidth sharing on the host. Physical NIC resources are
partitioned and assigned to VNICs, which are viewed by the
rest of the system as full fledged data links. The dedicated
virtualization lanes associated with the hardware resources
assure proper data path separation, security, and fair sharing
of bandwidth between virtual machines with no performance
overhead. Dynamic polling on a per lane basis reduces the



per packet processing cost and enables the kernel to sched-
ule the receive-side packet processing and easily implement
bandwidth control.

Crossbow implements virtual switching between VNICs
created on the same physical NIC, aggregation of physical
NICs, or etherstub. VNICs and etherstubs are the main
building blocks for the Virtual Wire concept. Virtual Wires
enable the consolidation of multi-tier networks with com-
plex topologies into a single or a small set of adequately
provisioned virtualized hosts.

The core of the Crossbow architecture offering these fea-
tures has been implemented and integrated in OpenSolaris
and is available to any user at http://opensolaris.org.

Near-term work is around supporting IOV virtual func-
tions as the IOV-capable NICs start emerging. A hybrid
approach is being designed such that network operators can
choose to assign a virtual function directly to a virtual ma-
chine or through the hypervisor, where security policies or
virtual machine migration doesn’t permit a direct mapping
into the virtual machine.

Other future work includes dynamically provisioning hard-
ware lanes based on real-time resource utilization and billing
policies, as well as extending that model for provisioning vir-
tual wire in the context of cloud computing.

8. REFERENCES
[1] A. Banerjee. Introducing uperf - an open source

network performance measurement tool, 2008.

[2] P. Barham, B. Dragovic, K. Fraser, T. H.
Steven Hand, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In 19th
ACM Symposium on Operating System Principles,
pages 164–177. ACM, 2003.

[3] Cisco. Unified comuting systems.

[4] P. henning Kamp and R. N. M. Watson. Jails:
Confining the omnipotent root. In In Proc. 2nd Intl.
SANE Conference, 2000.

[5] IEEE. 802.1ak multiple VLAN registration protocol.

[6] IEEE. 802.1Q GVRP VLAN registration protocol.

[7] Intel. Intel 82598 10GbE Ethernet Controller Open
Source Datasheet, 2008.

[8] Intel. Intel VMDq technology, notes on software
design support for Intel VMDq technology. White
paper, March 2008.

[9] G. Liao, D. Guo, L. Bhuyan, and S. R. King. Software
techniques to improve virtualized I/O performance on
multi-core systems. In 4th ACM/IEEE Symposium on
Architectures for Networking and Communication
Systems, Nov 2008. ACM, 2008.

[10] N. Mckeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: Enabling innovation in campus
networks. Whitepaper.

[11] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing
network virtualization in Xen. In USENIX, editor,
USENIX Annual Technical Conference, May 30–June
3, 2006, Boston, MA, pages 15–28, 2006.

[12] A. Menon, J. R. Santos, Y. Turner, G. Janakiraman,
and W. Zwaenepoel. Diagnosing performance
overheads in the Xen virtual machine environment. In
ACM/USENIX, editor, 1st ACM/USENIX
International Conference on Virtual Execution

Environments, VEE 05 Conference. ACM, 2005.

[13] Neterion. Neterion Xframe II 10 Gigabit Ethernet.

[14] D. Ongaro, A. Cox, and S. Rixner. Scheduling I/O in
virtual machine monitors. In Fourth ACM
SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, pages 1–10. ACM,
2008.

[15] D. N. Padma Apparao, Srihari Makeneni.
Characterization of network processing overheads in
Xen. In VTDC 06: 2nd International Workshop on
Virtualization Technology in Distributed computing.
IEEE Computer Society, 2006.

[16] PCI-SIG. Single root I/O virtualization and sharing
specification, 2007.

[17] PCI-SIG. MSI-X ECN for PCI express, 2008.

[18] D. Price and A. Tucker. Solaris zones: Operating
system support for consolidating commercial
workloads. In 18th Large Installation System
Administration Conference, pages 241–254. USENIX,
2004.

[19] S. Soltesz, H. Potzl, M. Fiuczynski, A. Bavier, and
L. Peterson. Container-based operating system
virtualization: a scalable high-performance alternative
to hypervisors. In 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007,
pages 275–287. ACM, 2007.

[20] Sun. Sun Multithreaded 10GbE (Gigabit Ethernet)
Networking Cards, 2007.

[21] S. Tripathi, N. Droux, T. Srinivasan, K. Belgaied, and
V. Iyer. Crossbow: A vertically integrated QoS stack.
In In Proceedings of the ACM SIGCOMM workshop
WREN’09 (To appear), 2009.

[22] J. S. G. Venkitachalam and B. Lim. Virtualizing I/O
devices on VMware workstation’s hosted virtual
machine monitor. In Proceedings of the 2001 USENIX
Annual Technical Conference, 2001.

[23] M. Zec. Implementing a clonable network stack in the
FreeBSD kernel. In In Proceedings of the USENIX
2003 Annual Technical Conference, pages 137–150,
2003.

[24] J. Zhang, X. Li, and H. Guan. The optimization of
Xen network virtualization. In Computer Science and
Software Engineering, 2008 International Conference
on Persistent Link (OPAC), pages 431–436, 2008.


