
Cutting Corners: Workbench Automation
for Server Benchmarking

Piyush Shivam, Varun Marupadi, Jeff Chase,Thileepan Subramaniam, Shivnath Babu
{shivam,varun,chase,thilee,shivnath}@cs.duke.edu

Duke University
Durham NC

Abstract

A common approach to benchmarking a server is to mea-
sure its behavior under load from a workload generator.
Often a set of such experiments is required—perhaps with
different server configurations or workload parameters—
to obtain a statistically sound result for a given benchmark-
ing objective.

This paper explores a framework and policies to con-
duct such benchmarking activities automatically and ef-
ficiently. The workbench automation framework is de-
signed to be independent of the underlying benchmark
harness, including the server implementation, configura-
tion tools, and workload generator. Rather, we take those
mechanisms as given and focus on automation policies
within the framework.

As a motivating example we focus on rating the peak
load of an NFS file server for a given set of workload
parameters, a common and costly activity in the storage
server industry. Experimental results show how an auto-
mated workbench controller can plan and coordinate the
benchmark runs to obtain a result with a target threshold
of confidence and accuracy at lower cost than scripted ap-
proaches that are commonly practiced. In more complex
benchmarking scenarios, the controller can consider var-
ious factors including accuracy vs. cost tradeoffs, avail-
ability of hardware resources, deadlines, and the results of
previous experiments.

1 Introduction

David Patterson famously said: “For better or worse,
benchmarks shape a field”. Systems researchers and de-
velopers devote a lot of time and resources to running
benchmarks to gain insight into the performance impacts
and interactions of system design choices and workload
characteristics. In the marketplace, benchmarks are used
to evaluate competing products and candidate configura-
tions for a target workload.

The accepted approach to benchmarking network server
software and hardware is to configure a system and subject
it to a stream of request messages under controlled condi-

tions. The workload generator for the server benchmark
offers a selected mix of requests at some arrival rate (or
test load) over a test interval to obtain an aggregate mea-
sure of the server’s response time for the selected work-
load at that load level. A wide range of load generators
exist for various server protocols and applications: when
used correctly they are a foundational tool for progress in
systems research and development [20].

Users of these benchmarks typically conduct a set of
experiments to answer their specific questions. Server
benchmarking can be costly: a large number of runs may
be needed, perhaps with different server configurations or
workload parameters. Care must be taken to ensure that
the final result is statistically sound.

For example, one common goal is to find the peak
throughput attainable by a given server configuration un-
der a given set of workload conditions. That typically in-
volves a set of runs with escalating load levels until the
measured response time exceeds some defined threshold,
indicating that the offered load has reached thesatura-
tion throughputor peak ratethat the server can process.
Organizations such as SPEC and TPC have defined stan-
dardserver benchmarksand load generators as a basis for
competitive comparisons of peak throughput ratings in the
marketplace. One example of a standard server benchmark
is the SPEC SFS benchmark and its predecessors [15],
which have been in use for decades to to establish NF-
SOPS ratings for network file servers and filer appliances
using the NFS protocol.

Systems research often involves more comprehensive
benchmarking activities. For example,response surface
mappingplots system performance over a large space of
workloads and/or system configurations. For this purpose
it is desirable to use a workload generator that is param-
eterized to emulate a wide range of request mixes and
workload properties that might be encountered in practice,
rather than a fixed workload standardized for commercial
comparisons. Response surface methodology is a power-
ful tool to evaluate design and cost tradeoffs, explore the
interactions of workloads and system choices, and to lo-

1

cate interesting points such as optima, crossover points,
break-even points, or the bounds of the effective operating
range for particular design choices or configurations [17].

This paper investigatesworkbench automationtech-
niques for server benchmarking. The objective is to de-
vise a framework for an automatedworkbench controller
that can implement various policies to coordinate exper-
iments on a shared hardware pool or “workbench”, e.g.,
a virtualized server cluster with programmatic interfaces
to allocate and configure server resources [27]. The con-
troller plans a set of experiments according to some pol-
icy, obtains suitable resources at a suitable time for each
experiment, configures the test harness (system under test
and workload generators) on those resources, launches the
experiment, and uses the results and workbench status as
input to plan or adjust the next experiments, as depicted
in Figure 1. We take the workbench test harness itself as
given. In principle, our approach is compatible with ad-
vanced test harnesses such as Auto-pilot [26], which sup-
ports various benchmark-related tasks and can modulate
individual experiments to obtain a target confidence and
accuracy. Our goal is to take the next step, and focus on
an automation framework and policies for a controller to
choreograph a set of experiments to obtain a statistically
sound result for a high-level objective at low cost, which
may involve using different statistical thresholds to bal-
ance cost and accuracy for different runs in the set.

As a motivating example, this paper focuses on the
problem of obtaining the peak rate for a server with a given
server configuration and workload parameters. Even this
relatively simple objective requires a costly set of experi-
ments that have not been studied in a systematic way. It
is important to optimize this benchmarking objective be-
cause it is common in industry, e.g., to obtain a qualifying
rating for a server product configuration using a standard
server benchmark from SPEC, TPC, or some other body.
In addition, this objective constitutes the “inner loop” for
more complex response surface mapping tasks that are im-
portant in systems research. Figure 2 gives an example of
response surface mapping using the peak rate. The exam-
ple is discussed in Section 2.

This paper illustrates the power of a workbench automa-
tion framework by exploring simple policies to optimize
the “inner loop” to obtain the peak rate in an efficient
way that balances cost, accuracy, and confidence for the
result of each test load, while meeting target levels of con-
fidence and accuracy to ensure statistically rigorous final
results. Although the concepts and approach generalize
to other examples, the experiments in this paper use stan-
dard Linux-based NFS servers and a parameterizable NFS
workload generator calledfstress[2], which was devel-
oped in previous research and is used by various indus-
try partners. Fstress can emulate standard NFS file server
workloads (SPECsfs97), as well as many other workloads

Figure 1: Automated Workbench and Controller.

that might be encountered in practice, according to param-
eters set by the workbench controller. We also show how
advanced controllers can implement heuristics for efficient
response surface mapping in a multi-dimensional space of
workloads and configuration settings.

2 Overview
Figure 1 depicts a framework for automated server bench-
marking. An automatedworkbench controllerdirects
benchmarking experiments on a common hardware pool
(workbench). The controller incorporates policies that
decide which experiments to conduct and in what order,
based on the following considerations:

• Objective. The controller pursues benchmarking ob-
jectives specified by a user. A simple goal might be
to obtain a standard NFSOPS rating for a filer with a
given configuration. More complex goals might in-
volve varying the workload or mapping a response
surface for different workloads or server configura-
tions. The goals may also specify the response time
metric used to obtain the peak rate, and/or thresholds
for confidence and accuracy. An objective that we
consider is to obtain peak rates with 90% accuracy.
An alternative might be to obtain the most complete
and/or accurate results achievable within some dead-
line.

• Resources. The controller runs experiments as re-
sources become available. It may tailor the runs to
the available resources or conduct multiple runs con-
currently.

• Previous results. The controller is feedback-driven
in that it may consider results of previous runs in de-
signing new experiments. For example, policies in
this paper consider the variance of response times at

2

~W read/write ratio, random/sequential ratio,
metadata/data ratio, dataset size, file size dis-
tribution, directory structure, request mix

~R CPU speed, memory size, number of disks
~C Number of I/O daemons, type of file system,

block size

Table 1: Some workload and configuration parameters that
affect storage server performance.

a given test load to determine how many trials are
needed to obtain a suitably accurate result. The con-
troller can also use results of previous runs to prune
the sample space in mapping a response surface.

Performance ~P . We characterize the benchmark perfor-
mance of a server by itspeak rateor saturation through-
put, denotedλ∗. λ∗ is the highest request arrival rateλ
that does not drive the server into asaturation state. The
server is said to be in a saturation state if a response time
metric exceeds a specified threshold. In this paper, satu-
ration occurs when either of two conditions holds: (i) the
mean response time of the server, which is the aggregate
server response time of client requests over some time in-
terval, exceeds> Rsat = 40 ms, or (ii) the95-percentile
server response time exceeds a specified threshold latency
Lsat = 2000 ms.

The performance of a server is a function of its work-
load, its configuration, and the hardware resources allo-
cated to it. Each of these may be characterized by a vector
of metrics orfactors, as summarized in Table 1.
Workload ~W . In the experiments in this paper, the con-
troller uses a configurable synthetic workload generator
calledFstress[2] to explore a space of NFS workloads de-
fined by various workload factors. Fstress offers knobs for
the controller to configure the properties of the workload’s
dataset and its request mix, and preconfigured parameter
sets that represent workloads encountered in practice (see
Table 3).
Resources~R. The controller can vary the amount of hard-
ware resources assigned to the system under test, depend-
ing on the capabilities of the workbench testbed. The pro-
totype can instantiate Xen virtual machines sized along the
memory, CPU, and I/O dimensions. The experiments in
this paper vary the workload and NFS server parameters
on a fixed set of Linux server configurations in the work-
bench.
Configurations (~C). The controller may vary server con-
figuration parameters before it instantiates the server for
each run.

Figure 2 shows an example of response surfaces pro-
duced by the automated workbench for two canned NFS
server workloads representing typical request mixes for a
file server that backs a database server (calledDB TP)
and a static Web server (Web server). A response sur-

face gives the response of a metric (peak rate) to changes
in the operating range of combinations of factors in a sys-
tem [17]. In this illustrative example the factors are the
number of NFS server daemons (nfsds) and disk spindle
counts.

Response surface mapping can yield insights into the
performance effects of configuration choices in various
settings. For example, the figure confirms the intuition that
adding more disks to an NFS server can improve the peak
rate only if there is a sufficient number of nfsds to issue
requests to those disks. More importantly, it reveals that
the ideal number of nfsds is workload-dependent: stan-
dard rules of thumb used in the field are not suitable for all
workloads.

However, response surface mapping is expensive. Algo-
rithm 1 presents the overall benchmarking approach that is
used by the workbench controller to map a response sur-
face, and Table 2 summarizes some relevant notation. The
overall approach consists of an outer loop that iterates over
the samples in〈F1, . . . , Fn〉, whereF1, . . . , Fn is a subset
of factors in the larger〈 ~W , ~R, ~C〉 space (Step 2). The in-
ner loop (Step 3) finds the peak rateλ∗ for each sample
by generating a series of test loads for the sample. To find
the peak rate, the controller must choose: (a) the test load
λ at which to conduct the experiment; (b) therunlengthr,
which is the test interval over which to observe the server
latency of all the client requests while the workload is run-
ning against the server at loadλ; and (c) thenumber of
independent trialst with loadλ.

The challenge for the controller is to design a set of ex-
periments to obtain accurate peak rates for a set of test
points selected to approximate the surface efficiently. Be-
fore refining the key problem for this paper (finding the
peak rate), we first summarize what we mean by confi-
dence and accuracy for each test point.

2.1 Confidence and Accuracy

Benchmarking can never produce an exact result because
complex systems exhibit inherent variability in their be-
havior. The best we can do is to make aprobabilistic
claim about theinterval in which the “true” value for a
metric based on measurements from multiple independent
trials [13]. For example, by observing the mean response
time at a test loadλ for 10 independent trials, we may
be able to claim that we are95% confident that the mean
server response time at that load level lies within the range
[25ms, 30ms]. Such a claim can be characterized by a
confidence level, and theconfidence intervalat this con-
fidence level. In the example above,[25, 30] represents
the confidence interval at a95% confidence level. Basic
statistics tells us how to compute confidence intervals and
levels from a set of trials. For example, if the mean server
response time fromt trials isµ, and standard deviation is
σ, then the confidence interval forµ at confidence levelc

3

1

2

3

4

0

20

40

60

80

100
1

1.5

2

2.5

3

3.5

4

4.5

Number of disks

database

Number of nfsds

N
or

m
al

iz
ed

 P
ea

k
R

at
e

1

2

3

4

0

20

40

60

80

100
1

1.5

2

2.5

3

3.5

4

4.5

Number of disks

webserver

Number of nfsds

N
or

m
al

iz
ed

 P
ea

k
R

at
e

Figure 2: These surfaces illustrate how the peak rate,λ∗, changes with number of disks and number of NFS dae-
mon (nfsd) threads for two cannedfstressworkloads (DB TP andWeb server). The workloads for this example are
described in more detail later, in Table 3.

is given by:

[µ − zpσ√
t
, µ +

zpσ√
t
] (1)

zp is a reading from a table of quantiles for the unit normal
distribution, andp is a function ofc, such thatzp increases
with c. Appendix A explains how to compute confidence
intervals at a desired confidence level.

The tightness of the confidence interval captures theac-
curacyof the true value of the metric. A tighter bound
implies that the mean response time from a set of tri-
als is closer to its true value. For a confidence interval
[low, high], we compute the percentage accuracy as:

accuracy = 1−error = (1− high− low

high + low
)×100% (2)

2.2 Problem Statement

The goal of the automated feedback-driven controller is to
address the following problems.

1. Find Peak Rate. For a given sample from the outer
loop of Algorithm 1, minimize the benchmarking
cost for finding the peak rateλ∗ subject to a target
confidence levelc and target accuracya. Determin-
ing the NFSOPS rating of an NFS filer is one instance
of this problem.

2. Map Response Surface. Minimize the total bench-
marking cost for mapping a response surface for
all 〈F1, . . . , Fn〉 samples in the outer loop of Algo-
rithm 1.

Minimizing benchmarking cost involves choosing val-
ues carefully for the runlengthr, the number of trialst,
and test loadsλ so that the controller converges quickly to
the peak rate. Sections 3 and 5 present algorithms that the
controller uses to address these problems.

λ∗ Peak rate of the server.
Rsat Mean server response time threshold at peak

rate.
s Factor that determines the width of the peak-

rate region[Rsat ± sRsat] (see Section 4).
Psat The threshold for the percentage of requests

that must complete under a specified threshold
latency,LsatLsat

a Targetaccuracy(based on confidence interval
width) for the estimated value ofRsat.

c Targetconfidence levelfor the estimatedRsat.
r Runlength of each trial of the workload at a test

load.
t Number of independent trials at a test load.
ρ Load factor= λ/λ∗ whereλ is a test load.
l Number of test loads run before converging to

λ∗ with desired accuracy and confidence level.

Table 2: Benchmarking parameters used in this paper.

3 Finding the Peak Rate
In the inner loop of Algorithm 1, the automated controller
searches for the peak rateλ∗ for a sample in〈F1, . . . , Fn〉
by subjecting the server to a sequence of test loads. The
inner loop must converge efficiently to an estimate of the
peak rateλ∗ that meets the target accuracy and confidence.
We emphasize that this step is itself a common bench-
marking task to determine a standard rating for a server
configuration in industry. Common practice is to script
a sequence of runs for a standard workload at escalating
load levels. Thisstrawmanapproach proceeds as follows
(the notation is from Table 2):

• Runlength r. Use afixedr for each test load.

4

Algorithm 1: Mapping Response Surfaces

1) Inputs: (a) 〈F1, . . . , Fn〉, which is the subset of
factors of interest from the full set of factors in
〈 ~W, ~R, ~C〉; (b) Different possible settings of each
factor;

2) // Outer Loop: Map Response Surface.
foreachdistinct sample〈F1 =f1, . . . , Fn =fn〉
do

3) // Inner Loop: Find Peak Rate for the Sample.
Design a sequence of test loads[λ1, . . . , λl] to
search for the peak rateλ∗;

foreach test loadλ ∈ [λ1, . . . , λl] do
Choose number of independent trialst for λ;

Choose runlengthr for each trial;

Do t independent runs of lengthr each, with
workload generated at loadλ;

end

Setλ∗ = λ, whereλ ∈ [λ1, . . . , λl] is the largest
load that does not take the server to the
saturation state;

end

• Number of trials t. Use afixedt for each test load.
• Sequence of test loads[λ1, . . . , λl]. Start at a default

value, and use alinear increasing sequence of test
loadsλ where each load differs from the previous one
by a small fixed increment. Stop when the current test
load saturates the file server.

A simple workbench controller with feedback can improve
significantly upon the strawman approach policies. We
discuss the limitations ofstrawmanas a prelude to the im-
proved controller algorithm in Section 4.
Sequence of test loads. The number of loads,l, in the
strawman depend on the increment size to generate suc-
cessive test loads. If the increment is too low, then it will
may take many iterations to reach the peak rate. If it is too
high, the test may overshoot the peak rate and compromise
accuracy.

Figure 3 illustrates the search forλ∗ using the strawman
approach for runlengthr = 5 minutes,t = 10 trials, and a
small increment to produce an accurate result. We repre-
sent the sequence of test loads by load factor,ρ = λ

λ∗
. At

load factor of1, λ = λ∗, and the search for the peak rate
terminates. The figure comparesstrawmanto an efficient
technique for finding the peak rate, using a straightforward
search algorithm, as discussed later.

The figure shows thatstrawmancan incur a much higher
benchmarking cost to converge to the peak rate. The
strawman considers a large number of load factors that are

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Lo
ad

 F
ac

to
r

Benchmarking Cost (hours)

efficient policy
strawman policy

Figure 3: An efficient policy for finding peak rate con-
verges quickly to a load factor near1, and reduces bench-
marking cost by obtaining a high-confidence result only
for the load factor of1. It is significantly less costly than
a simple linear search with a fixed runlength, and fixed
number of trials per test load (e.g., SPECsfs [7]).

not close to1, and unnecessarily incurs cost to reach the
same accuracy at each load. Sections 4 and 5 present ap-
proaches that improve on these limitations.
Number of trials . The runlengthr and the number of in-
dependent trialst for each test load determine the bench-
marking cost incurred at that load. Figure 4 shows a scatter
plot of mean server response time at different test loads for
5 trials at each load. Note that the variability across multi-
ple trials increases with load. The figure shows thatt must
adapt to the choice of the test load in the search process.
Ideally,t is high near load factor1, and low otherwise. For
the strawman approach,10 trials may be too many at low
load factors and too little nearρ = 1, depending on the
variability of response time.
Runlength. Figure 5 shows the scatter plot of mean server
response times at two load factors,ρ = 0.3 andρ = 0.9.
The figure plots the mean response times for different run-
lengths. It illustrates that the variability decreases with
increased runlength. Thus, with short-duration runs more
trials are needed to obtain an accurate measure of mean
response time. We also observe that for a given runlength,
the variability is higher at higher load factors, especially
when the runlength is small. Thus, for the strawman ap-
proach, with10 trials per test load,r = 5 minutes may be
too high at low load factors.

3.1 Choosing the Runlengths and Number of Trials
to Meet Target Confidence and Accuracy

An automated approach for finding the peak rate must se-
lect a suitablet andr for each test loadλ, while adapt-
ing to: (a) the value of the load factor, and (b) the target

5

0 50 100 150 200 250 300
3

4

5

6

7

8

9

10

11

12

Runlength (secs)

R
es

po
ns

e
T

im
e

(m
s)

load factor (ρ) = 0.3

0 50 100 150 200 250 300
0

10

20

30

40

50

60

Runlength (secs)

R
es

po
ns

e
T

im
e

(m
s)

load factor (ρ) = 0.9

Figure 5: Mean server response time at different workload runlengths for theDB TP fstressworkload using1 disk and
4 NFS daemon (nfsd) threads for the server. The variability inmean server response time for multiple trials decreases
with increase in runlength. The results are representativeof other server configurations and workloads.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

70

80

90

Load Factor

R
es

po
ns

e
T

im
e

(m
s)

Figure 4: Mean server response time at different test loads
for the DB TP fstressworkload using1 disk and4 NFS
daemon (nfsd) threads for the server. The variability in
mean server response time for multiple trials increases
with load. The results are representative of other server
configurations and workloads.

confidence and accuracy forλ∗. The goal is to converge
quickly to an accurate reading atρ = 1. More trials and
longer runlengths are useful near a load factor of1, but
accuracy is less crucial during the search.

From Equations 1 and 2 for confidence intervals and
accuracy, it follows that, for a given confidence levelc,
more trials tend to give tighter confidence intervals, and
hence higher accuracy. Similarly, as the confidence level
increases, the width of the confidence interval also in-

creases, requiring more trials to maintain a target accu-
racy. For the scatter plot in Figure 5, at load factor0.3
and runlength of90 seconds, the data gives us70% con-
fidence that5.6 < R̄ < 6 , or 95% confidence that
5 < R̄ < 6.5. (R̄ is the mean server response time.) From
the data we can determine the runlength needed to achieve
target confidence and accuracy: a runlength of90 seconds
achieves an accuracy of87% with 95% confidence, but it
takes a runlength of300 seconds to achieve95% accuracy
with 95% confidence. Accuracy and confidence decrease
with higher load factors. For example, at load factor0.9
and runlength90, the data gives us70% confidence that
21 < R̄ < 24 (93.3% accuracy), or95% confidence that
20 < R̄ < 27 (85.1% accuracy).

We can longer runlengths to achieve a given target con-
fidence level and/or accuracy. For example, in order to
achieve accuracy≥ 87% at 95% confidence, we need a
runlength of120 seconds or more. Another way to im-
prove confidence and accuracy is to run more trials. Fig-
ure 6 quantifies the tradeoff between the runlength and the
number of trials required to attain a target accuracy and
confidence for different workloads. It shows the number
of trails required to meet an accuracy of90% at95% confi-
dence level for different runlengths. The figure shows that
to attain a target accuracy and confidence, one needs to
conduct more independent trials at smaller runlengths, and
vice-versa. It also shows a sweet spot for the runlengths
that reduces the number of trials needed. A controller can
use such curves as a guide to pick a suitable runlength.

4 Search Algorithm for Peak Rate

Algorithm 2 illustrates our end-to-end search-based ap-
proach for estimating the peak rate for a given setting of

6

0 50 100 150 200 250 300 350
0

50

100

150

Runlength (secs)

N
um

be
r

of
 tr

ia
ls

load factor (ρ) = 0.3

DB_TP
Webserver
Mail
Specsfs97

0 50 100 150 200 250 300 350
0

50

100

150

Runlength (secs)

N
um

be
r

of
 tr

ia
ls

load factor (ρ) = 0.9

DB_TP
Webserver
Mail
Specsfs97

Figure 6: Number of trials to attain90% accuracy for mean server response time at95% confidence level at low and high
load factors for different runlengths. The results are for server configuration with1 disk and4 nfsds, and representative
of other server configurations.

factors. The measures used by this algorithm are summa-
rized in Table 2.

The inputs to Algorithm 2 specify various constraints:

• Rsat, the threshold on the mean server response time.
The server saturates when it exceeds this threshold,
i.e.,R̄ > Rsat.

• Psat, the threshold on the percentage of requests that
must complete under a threshold latencyLsat. The
server saturates when this threshold is not met, i.e.,
P < Psat.

• Width parameters that defines thepeak-rate region
[Rsat ± sRsat]. The peak rateλ∗ is any test load that
causes the mean server response time to be in this re-
gion. (The region[Psat±sPsat] is defined similarly.)

• Target confidencec in the peak rate that the algorithm
estimates.

• Target accuracya of the peak rate that the algorithm
estimates.

Algorithm 2 consists of three key steps that involve
choosing: (a) a sequence of test loads to try; (b) the num-
ber of independent trials at any test load; and (c) the run-
length of the workload at that load.

4.1 Sequence of Test Loads

Algorithm 2 uses one of severalload-pickingalgorithms.
Section 5 describes the algorithms and their cost and ac-
curacy tradeoffs. All load-picking algorithms take as input
the set of past test loads and their results. The output be-
comes the next test load in Algorithm 2.

4.2 Number of Trials

For a test loadλcur, Algorithm 2 first conducts two tri-
als to generate an initial confidence interval forR̄λcur

, the
mean server response time at loadλcur , at95% confidence
level. (Steps6 and7 in Algorithm 2). Next, it tests to see if
the confidence interval overlaps with the peak-rate region
input (Step9). These steps establish with95% confidence
level whether the current test load is a potential peak rate.
If there is no overlap, then Algorithm 2 moves on to the
next test load as guided by Algorithm 3 (Step 2).

If the regions overlap, then Algorithm 2 identifies the
current test loadλcur as an estimate of a potential peak
rate. It then computes the accuracy of the mean server
response timēRλcur

at the current test load, at the target
confidence level ofc% (Section 2). If it reaches the target
accuracya, then the algorithm terminates (Step4), other-
wise it conducts more trials at the current test load (Step
6) to narrow the confidence interval (Section 3.1). As a
result, one of two things happens: (i) the overlap test of
the confidence interval and the peak-rate region fails (Step
10), in which case the algorithm moves on to the next test
load; or (ii) the overlap test does not fail and after some
number of trials, the algorithm attains the target accuracy.

4.3 Runlength for Test Load

To simplify the choice of runlength for each experiment
at a test load (Step 5), Algorithm 2 uses the sweet spot
derived from Figure 6 (Section 3.1). The figure shows
that for all workloads that this paper considers, a runlength
around3 minutes attains the sweet spot for the number of
trials.

7

4.4 Discussion

Algorithm 2 automatically adapts the number of trials at
any test load according to the load factor and the desired
confidence and accuracy. Section 6 presents empirical re-
sults that demonstrate the same.

For very low or very high load factors, the algorithm
conducts a small (often the minimum of two in our exper-
iments) number of trials to establish with95% confidence
that the current test load is not the peak rate (Step10).
However, as soon as the algorithm identifies a test loadλ
to be a potential peak rate, which happens near a load fac-
tor of 1, it spends more time atλ to check whether it is in
fact the peak rate. Since the algorithm computes the con-
fidence interval after each trial, it conducts the minimum
number of trials to establish whetherλ is the peak rate.

The while condition in Step4 of Algorithm 2 matches
the current accuracy of the potential peak rate with the tar-
get accuracy at a target confidence. Since the accuracy
and confidence improve with more trials, if the target con-
fidence and accuracy are low, the algorithm will automat-
ically conduct less trials before it terminates. Thus, the
benchmarking cost will be low if the desired target confi-
dence and accuracy are low, and vice-versa.

5 Mapping Response Surfaces
We now relate the peak rate algorithm to the larger chal-
lenge of mapping a peak rate response surface efficiently
and effectively, based on Algorithm 1.

A large number of factors can affect performance, so it
is important to sample the multi-dimensional space with
care as well as to optimize the inner loop. For example,
suppose we are mapping the impact of five factors on a file
server’s peak rate, and that we sample five values for each
factor. If the benchmarking process takes an hour to find
the peak rate for each factor combination, then the total
time for benchmarking is130 days. An automated work-
bench controller can shorten this time by pruning the sam-
ple space, planning experiments to run on multiple hard-
ware setups in parallel, and optimizing the inner loop.

We consider two specific challenges for mapping a re-
sponse surface:

• Algorithm 2 from Section 4 is used for the inner loop.
However, the algorithm needs a good load-picking
policy to generate a sequence of test loads. An ef-
ficient controller policy will generate a new test load
based on the feedback of the previous results, e.g.,
the server response time and throughput observed on
the earlier test loads. Sections 5.1-5.4 describe the
load-picking algorithms that this paper considers.

• Algorithm 1 also needs a policy for choosing the sam-
ples in the outer loop. Section 1 explains that exhaus-
tive enumeration of the full factor space in the outer
loop can incur an exorbitant benchmarking cost. De-
pending on the goal of the benchmarking exercise,

Algorithm 2: Searching for the Peak Rate

1) Initialization. Peak Rate,λ∗ = 0; Current accuracy
of the peak rate,aλ∗ = 0; Current test load,
λcur = 0; Previous test load,λprev = 0;

2) Use Algorithm 3 to choose a test loadλ by giving
current test loadλcur, previous test loadλprev, and
mean server response timēRλcur

atλcur as inputs;

3) Setλprev = λcur andλcur = λ;

// Conduct trials until the target accuracy for the
peak rate is reached at the desired confidence.

4) while (aλ∗ < a at confidencec)

5) Choose the runlengthr for the trial;

6) Conduct the trial atλcur, and measure server
response time from this trial,Rλcur

;

7) Compute mean server response time at
λcur, R̄λcur

, from all trials atλcur. Repeat Step6 if
the number of trials,t, atλcur is 1;

8) Compute confidence interval for the mean server
responsēRλcur

at target confidence levelc.

9) Check for overlap between the confidence
interval forR̄λcur

and the peak rate region.

10) if (no overlap with95% confidence)
Go to Step 2 to choose the next test load;

else

// A potential peak rate has been reached;

λ∗ = λcur;

Compute accuracyaλ∗ at confidencec;

// Check if it meets target accuracy (Step 4);

end

end

the controller can choose more efficient techniques.
Section 5.5 discusses some of these techniques.

5.1 The Binsearch Load-Picking Algorithm

Algorithm 3 outlines theBinsearchalgorithm. Intuitively,
Binsearch keeps doubling the current test load until it finds
a load that saturates the server. After that, Binsearch ap-
plies regular binary search, i.e., it recursively halves the
most recent interval of test loads where the algorithm esti-
mates the peak rate to lie.

This algorithm allows the controller to find the lower
and upper bounds for the peak rate within a logarithmic
number of test loads. The controller can then estimate the
peak rate using another logarithmic number of test loads.
Hence the total number of test loads is always logarithmic

8

Algorithm 3: BinsearchInput : Previous loadλprev;
Current loadλcur; Mean response timēRλcur

at λcur;
Output : Next loadλnext

1) Initialization.
if (λcur == 0);

λnext = 50 requests/sec;
Start Geometric Phase, and returnλnext;

2) Geometric Phase.
if (R̄λcur

< Rsat)
Returnλnext = λcur × 2;

else
// End Geometric Phase; Start Binary Search;
binsearchlow = λprev, and Go to Step 3;

end

3) Binary Search Phase.
if (R̄λcur

< Rsat) ;
binsearchlow = λcur;

else
binsearchhigh = λcur;

end
Returnλnext = (binsearchhigh + binsearchlow)/2;

irrespective of the start test load or the peak rate.

5.2 The Linear Load-Picking Algorithm

TheLinearalgorithm is similar to Binsearch except in the
initial phase of finding the lower and upper bounds for the
peak rate. In the initial phase it picks an increasing se-
quence of test loads such that each load differs from the
previous one by a small fixed increment.

5.3 Model-guided Load-Picking Algorithm

The generalshapeof the response-time Vs. load curve is
well known, and it does not change drastically for differ-
ent workloads or server configurations. Using the insight
offered by the open-loop queuing theory results [13], we
capture the curve by a model:R = a + b

λ
, whereR is the

response time,λ is the load, anda andb are constants that
depend on the settings of factors in〈 ~W, ~R, ~C〉. To learn
the model, the controller needs tuples of the form〈λ, Rλ〉.
Since the controller can record the server response times at
different test loads, it can learn the model online as it col-
lects〈λ, Rλ〉 tuples for a given sample in the outer loop of
Algorithm 1.

Algorithm 4 outlines themodel-guidedalgorithm. If
there are insufficient tuples for learning the model, it uses
a simple heuristic to pick the test loads for generating the
tuples. After that, the algorithm uses the model to predict
the peak rateλ = λ∗ for R = Rsat, returns the predic-
tion as the next test load, and relearns the model using the
new 〈λ, Rλ〉 tuple at the prediction. The whole process
repeats until the search converges to the peak rate. As the

Algorithm 4: Model-GuidedInput : Previous loads
λ1, λ2, ..., λcur−1; Current loadλcur; Mean response
times R̄λ1

, R̄λ2
, ..., R̄λcur

at λ1, λ2, ..., λcur; Output :
Next loadλnext

1) Initialization.
if (λcur == 0)

Returnλnext = 50 requests/sec;
end

if (number of test loads == 1)

if (R̄λcur
< Rsat)

Returnλnext = λcur × 2;
else

Returnλnext = λcur/2;
end

end

2) Model Learning and Prediction.
Choose a value of̄Ri from R̄λ1

, ..., R̄λcur−1
that is

nearest toR̄sat. Let the corresponding load beλi;

Learn the modelR = a + b
λ

with two tuples
〈λcur, R̄λcur

〉 and〈λi, R̄i〉;
Returnλnext = b

R̄sat−a
;

controller observes more〈λ, Rλ〉 tuples, the model-fit will
improve progressively, and hence the model will guide the
search to an accurate peak rate. In many cases, this hap-
pens in a single iteration of model learning (Section 6).

However, unlike the previous approaches, a model-
guided search is not guaranteed to converge. Model-
guided search is dependent on the accuracy of the model,
which in turn depends on the choice of〈λ, Rλ〉 tuples that
are used for learning. The choice of tuples is generated by
previous model predictions. This creates the possibility of
the learning anincorrectmodel which in turn yields incor-
rect choices for test loads. For example, if most of the test
loads chosen for learning the model happen to lie signifi-
cantly outside the peak rate region, then the model-guided
choice of test loads may be incorrect or inefficient. Hence,
in the worst case, the search may never converge or con-
verge slowly to the peak rate. We have experimented with
other models including polynomial models of the form
R = a + bλ + cλ2; they are all prone to similar pitfalls.

To avoid the worst case, the algorithm uses a simple
heuristic to choose the tuples from the list of available tu-
ples. Each time the controller learns the model, it chooses
two tuples such that one of them is the last prediction, and
the other is the tuple that yields the response time closest
to threshold mean server response timeRsat. More robust
techniques for choosing the tuples is a topic of ongoing
study. Section 6 reports our experience with the model-
guided choice of test loads.

9

5.4 Better Seeding

The load-picking algorithms in Sections 5.2-5.3 generate
a new load given one or more previous test loads. How
can the controller generate the first load, orseed, to try?
One way is to use a conservative low load as the seed,
but this approach increases the time spent ramping up to a
high peak rate. When the benchmarking goal is to plot a
response surface, the controller uses another approach that
uses the peak rate of the “nearest” previous sample as the
seed.

To illustrate, assume that the factors of interest,
〈F1, . . . , Fn〉, in Algorithm 1 are〈 number of disks, num-
ber of nfsds〉 (as shown in Figure 2). Suppose the con-
troller uses Binsearch with a low seed of50 to find the
peak rateλ∗

1,1 for sample〈1, 1〉. Now, for finding the peak
rateλ∗

1,2 for sample〈1, 2〉, it can use the peak rateλ∗
1,1 as

seed. Thus, the controller can jump quickly to a load value
close toλ∗

1,2.
In the common case, the peak rates for “nearby” sam-

ples will be close. Even if they are not, the load-picking
algorithms will still guide the search in the right direction.
However, they may incur additional cost to recover from
a bad seed. The notion of “nearness” is not always well
defined. While the distance between samples can be mea-
sured if the factors are all quantitative, if there are cate-
gorical factors—e.g., file system type—the nearest sample
may not be well defined. In such cases the controller uses
a default seed to start the search.

5.5 Approximating the Response Surface

If the overall goal of server benchmarking is to understand
the overall trend of how the peak rate is affected by set-
tings of certain factors of interest〈F1, . . . , Fn〉—rather
than finding accurate peak rate values for each sample in
〈F1, . . . , Fn〉—then much more efficient techniques exist
than iterating over all samples as in Algorithm 1. We can
leverage Response Surface Methodology (RSM) [17], a
branch of statistics that gives techniques to choose a small
set of samples carefully so that the controller can approxi-
mate the overall response surface efficiently.

By assuming that a low-degree multivariate poly-
nomial model—e.g., a quadratic equation of the form
λ∗ = β0 +

∑n

i=1
βiFi +

∑n

i=1

∑n

j=1,j 6=i βijFiFj +
∑n

i=1
βiiFi

2—approximates the surface in then-
dimensional〈F1, . . . , Fn〉 space, RSM provides princi-
pled techniques for selecting a minimal set of samples
for which the controller must obtain theλ∗ to learn
a fairly-accurate model (i.e., estimate values of theβ
parameters in the model). We evaluate one such RSM
technique in Section 6.

6 Experimental Evaluation
We evaluate the benchmarking methodology and policies
with multiple workloads on the following metrics.

Cost for Finding Peak Rate. Sections 4 and 5 present
several policies for finding the peak rate. We evaluate
those policies as follows:

• The sequence of load factors that the policies con-
sider before converging to the peak rate for a sample.
An efficient policy must quickly direct the bench-
marking effort to load factors that are near or at1.

• The number of independent trials for each load factor.
The number of trials should be less at low load factors
and high around load factor of1.

Cost for Mapping Response Surfaces. We compare the
total benchmarking cost for mapping the response surface
across all the samples.
Cost Versus Target Confidence and Accuracy. We
demonstrate that the policies adapt the total benchmark-
ing cost to target confidence and accuracy. Higher confi-
dence and accuracy incurs higher benchmarking cost and
vice-versa.

Section 6.1 presents the experiment setup. Section 6.2
presents the workloads that we use for evaluation. Sec-
tion 6.3 evaluates our benchmarking methodology as de-
scribed above.

6.1 Experimental Setup

Table 1 shows the factors in the〈 ~W, ~R, ~C〉 vectors for a
storage server. We benchmark an NFS server to evaluate
our methodology. In our evaluation, the factors in~W con-
sist of samples that yield four types of workloads: SPEC-
sfs97, Web server, Mail server, and DBTP (Section 6.2).
The controller uses Fstress to generate samples of~W that
correspond to these workloads. We report results for a
single factor in ~R: the number of disks attached to the
NFS server ranging from〈1, 2, 3, 4〉, and a single factor in
~C: the number of nfsd daemons for the NFS server rang-
ing from 〈1, 2, 4, 8, 16, 32, 64, 100〉 to give us a total of32
samples.

The workbench tools can generate both virtual and
physical machine configurations automatically. In our
evaluation we use physical machines that have800 MB
memory,2.4 GHz x86 CPU, and run the2.4.18 Linux ker-
nel. To conduct an experiment, the workbench controller
first prepares an experiment by generating a sample in
〈 ~W, ~R, ~C〉. It then consults the benchmarking policy(ies)
in Sections 5.1-5.5 to plot a response surface and/or search
for the peak rate for a given sample with target confidence
and accuracy.

6.2 Workloads

We use Fstress to generate~W corresponding to four work-
loads as summarized in Table 3. A brief summary follows.
Further details are in [2].

• SPECsfs97: The Standard Performance Evalua-
tion Corporation introduced their System File Server

10

workload file popularities file sizes dir sizes I/O accesses

SPECsfs97 random 10% 1 KB – 1 MB large (thousands) random r/w
Web server Zipf (0.6 < α < 0.9) long-tail (avg 10.5 KB) small (dozens) sequential reads

DB TP few files large (GB - TB) small random r/w
Mail Zipf (α = 1.3) long-tail (avg 4.7 KB) large (500+) seq r, append w

Table 3: Summary offstressworkloads used in the experiments.

benchmark (SPECsfs) [7] in 1992, derived from the
earlier self-scaling LADDIS benchmark [15]. A re-
cent (2001) revision corrected several defects identi-
fied in the earlier version [12].

• Web server: Several efforts (e.g., [3]) attempt to
identify durable characterizations of the Web. We de-
rive the distributions for various parameters and the
operation mix from the previous published studies
(e.g., [18, 9, 1, 10, 3]).

• DB TP: We model our database workload after
TPCC [8], reading and writing within a handful of
large files in a 2:1 ratio. I/O access patterns are
random, with some short (256 KB) sequential asyn-
chronous writes withcommit(fsync) to mimic batch
log writes.

• Mail : Electronic mail servers frequently handle
many small files, one file per users’ mailbox. Servers
append incoming messages, and sequentially read the
mailbox file for retrieval. Some users or servers trun-
cate mailboxes after reading. The workload model
follows that proposed by Saito et. al. [19].

6.3 Results

For evaluating the overall methodology and the policies
outlined in Sections 4 and 5, we define the peak rateλ∗

to be the test load that causes: (a) the mean server re-
sponse time to be in[36, 44] ms region; or (b) more than
10% of the requests to complete over2000 ms. We derive
the[36, 44] region by choosing mean server response time
threshold at the peak rate to be,Rsat = 40 and the width
factors = 10% in Table 2. For all results except where we
note explicitly, we aim for aλ∗ to be accurate within90%
of its true value with95% confidence.

6.3.1 Cost for Finding Peak Rate

Figure 7 shows the choice of load factors for finding the
peak rate for a sample with4 disks and32 nfsds using the
policies outlined in Section 5. Each point on the curve
represents a single trial for some load factor. More points
indicate higher number of trials at that load factor. For
brevity, we show the results only forDB TP. Other work-
loads show similar behavior.

For all policies, the controller conducts more trials at
load factors at or near1 than at other load factors to find
the peak rate with the target accuracy and confidence. All
policies without seeding start at a low load factor and take

longer to reach close to load factor of1 as compared to
policies with seeding. All policies with seeding start at
load factor close to1, since they use the peak rate of a
previous sample with4 disks and16 nfsds as the seed load.

Linear takes a significantly longer time because it uses
a fixed increment by which to increase the test load. How-
ever,Binsearchjumps to the peak rate region in logarith-
mic number of load factors. TheModelpolicy is the quick-
est to jump near the load factor of1 because the controller
learns an accurate model quickly.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

Lo
ad

 F
ac

to
r

Time (hours)

linear
linear.seeding

0 1 2 3 4 5 6
0

0.5

1

1.5

2

Lo
ad

 F
ac

to
r

Time (hours)

binsearch
binsearch.seeding

0 1 2 3 4 5 6
0

0.5

1

1.5

2

Lo
ad

 F
ac

to
r

Time (hours)

model
model.seeding

Figure 7: Time spent at each load factor for searching the
peak rate for different policies forDB TP with 4 disks,
and32 nfsds. The result is representative of other samples
and workloads. All policies except linear quickly converge
to the load factor of1 and conduct more trials there to
achieve the target accuracy and confidence.

6.3.2 Cost for Mapping Response Surfaces

Figure 8 compares the total normalized benchmarking cost
for mapping the response surfaces for the three workloads
using the policies outlined in Section 5. The costs are
normalized with respect to the lowest total cost, which
is theBinsearch with Seedingpolicy to find the peak rate
for DB TP . The benchmarking results forSPECsfs97are
still in progress.Binsearch, Binsearch With Seeding, and
Linear with Seedingcut the total cost drastically as com-
pared to the linear policy.

We also observe thatBinsearch, Binsearch with Seed-
ing, andLinear With Seedingare robust across the work-
loads, but the model-guided policy is sensitive to some

11

workloads. This is not surprising given that the accuracy
of the model guides the search. While an accurate model
can guide the search quickly to the peak rate, an inaccurate
model can direct the search in the wrong direction. Thus
the model-guided policy may take longer to find the peak
rate.

The linear policy is not only inefficient, but also
highly sensitive to the magnitude of peak rate. The
benchmarking cost ofLinear for Web server peaks at a
higher absolute value for all samples than forDB TP and
Mail , causing more than a factor of5 increase in the total
cost for mapping the surface.

DB_TP Web server Mail
0

1

2

3

4

5

6

Workloads

N
or

m
al

iz
ed

 B
en

ch
m

ar
ki

ng
 C

os
t

linear
linear.seeding
binsearch
binsearch.seeding
model
model.seeding

Figure 8: The total cost for mapping response surfaces for
three workloads using different policies.

Reducing the Number of Samples. To evaluate the RSM
approach presented in Section 5.5, we approximate the re-
sponse surface by a quadratic curve in two dimensions:
peak rate = func(number of disks, number of nfsds). We
use a D-optimal design [17] from RSM to obtain the best
of 6, 8, and10 samples out of a total of32 samples for
learning the response surface equation. We useBinsearch
to obtain the peak rate for the chosen samples.

After learning the equation, we use it to predict the peak
rate at all the other samples in the surface. Table 4 presents
the mean absolute percentage error in predicting the peak
rate across all the samples. The results show that if the
goal is simply to approximate the surface, we can drasti-
cally reduce the size of the sample space.

Workload Num. of Samples MAPE
DB TP 6, 8, 10 14, 14, 15

Web server 6, 8, 10 9, 9, 9
Mail 6, 8, 10 3.3, 2.8, 2.7

Table 4: Mean Absolute Prediction Error (MAPE) in Pre-
dicting the Peak Rate

6.3.3 Cost Versus Target Confidence and Accuracy

Figure 9 shows how the benchmarking methodology
adapts the total benchmarking cost to the target confidence
and accuracy of the peak rate. The figure shows the total
benchmarking cost for mapping the response surface for
theDB TP using theBinsearchpolicy for different target
confidence and accuracy values.

Higher target confidence and accuracy incurs higher
benchmarking cost. At90% accuracy, note the cost differ-
ence between the different confidence levels. Other work-
loads and policies exhibit similar behavior, withMail in-
curring a normalized benchmarking cost of2 at target ac-
curacy of90% and target confidence of95%.

40 50 60 70 80 90 100
0.8

0.9

1

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

 B
en

ch
m

ar
ki

ng
 C

os
t

Accuracy of Peak Rate (%)

Confidence = 95%
Confidence=90%
Confidence=75%
Confidence=60%

Figure 9: The total benchmarking cost adapts to the de-
sired confidence and accuracy. The cost is shown for map-
ping the response surface forDB TP using theBinsearch
policy. Other workloads and policies show similar results.

So far, we configure the target accuracy of the peak rate
by configuring the accuracy,a, of the response time at the
peak rate. The width parameters also controls the accu-
racy of the peak rate (Table 2) by defining the peak rate
region. For example,s = 10% implies that if the mean
server response time at a test load is within10% of the
threshold mean server response time,Rsat, then the con-
troller has found the peak rate. As the region narrows, the
target accuracy of the peak rate region increases. In our
experiments so far, we fixs = 10%.

Figure 10 shows that the benchmarking cost adapting
to target accuracy of the peak rate region for different
policies at a fixed target confidence interval forDB TP
(c = 95) and fixed target accuracy of the mean server re-
sponse time at the peak rate (a = 90%). The results for
other workloads are similar. All policies except the model-
guided policy incur the same benchmarking cost near or at
the peak rate since all of them do binary search around that
region. Since a narrower peak rate region causes more tri-
als at or near load factor of1, the cost for these policies

12

converge.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 90 92 94 96 98 100

N
or

m
al

iz
ed

 B
en

ch
m

ar
ki

ng
 C

os
t

Accuracy of Peak Rate (%)

linear
linear.seeding

binsearch
binsearch.seeding

model
model.seeding

Figure 10: Benchmarking cost adapts to the target accu-
racy of the peak rate region for all policies. As the region
narrows, the majority of the cost is incurred at or near the
peak rate. Linear and Binsearch incur the same cost close
to the peak rate, and hence their cost converges as they
conduct more trials near the peak rate. The cost is shown
for DB TP. Other workloads show similar results.

7 Related Work
Several researchers have made a case for statistically
significant results from system benchmarking, e.g., [5].
Auto-pilot [26] is a system for automating the benchmark-
ing process such that a benchmarking experiment can ob-
tain results with the target confidence and accuracy for a
single test load on the system. We use this idea as a ba-
sis for an efficient and accurate search for the peak rate
through a larger space of a test loads, e.g., to obtain the
saturation throughput for a server under a given workload,
resource allocation, and configuration.

While there are large numbers and types of benchmarks,
(e.g., [6, 14, 4, 15]) that test the performance limits of a
system in a variety of ways, there is a lack of a general
benchmarking methodology that provides benchmarking
results from these benchmarks efficiently with confidence
and accuracy. Our methodology and techniques for bal-
ancing the benchmarking cost and accuracy are applicable
to all these benchmarks.

Zadok et al. [25] present an exhaustive nine year
study of file system and storage benchmarking that in-
cludes benchmark comparisons, their pros and cons [21],
and makes recommendations for systematic benchmark-
ing methodology that considers a range of workloads for
benchmarking the server. Smith et al. [23] make a case
for benchmarks the capture realistic application behav-
ior. Ellard et al. [11] show that benchmarking an NFS
server is challenging because of the interactions between
the server software configurations, workloads, and the re-
sources allocated to the server. One of the challenges in
understanding the interactions is the large space of factors

that govern such interactions. Our benchmarking method-
ology benchmarks a server across the multi-dimensional
space of workload, resource, and configuration factors ef-
ficiently and accurately, and avoids brittle claims [16] and
lies [24] about a server performance.

Synthetic workloads emulate characteristics observed in
real environments. They are often self-scaling [6], aug-
menting their capacity requirements with increasing load
levels. The synthetic nature of these workloads enables
them to preserve workload features as the file set size
grows. In particular, the SPECsfs97 benchmark [7] (and
its predecessor LADDIS [15]) creates a set of files and
applies a pre-defined mix of NFS operations. The ex-
periments in this paper use Fstress [2], a synthetic, flexi-
ble, self-scaling NFS workload generator that can emulate
a range of NFS workloads, including SPECsfs97. Like
SPECsfs97, Fstress uses probabilistic distributions to gov-
ern workload mix and access characteristics. Fstress adds
file popularities, directory tree size and shape, and other
controls. Fstress includes several important workload con-
figurations, such as Web server file accesses, to simplify
file system performance evaluation under different work-
loads [22] while at the same time allowing standardized
comparisons across studies.

Server benchmarking isolates the performance effects
of choices in server design and configuration, since it sub-
jects the server to a steady offered load independent of its
response time. Relative to other methodologies such as
application benchmarking, it reliably stresses the system
under test to its saturation point where interesting perfor-
mance behaviors may appear. In the storage arena, NFS
server benchmarking is a powerful tool for investigation
at all layers of the storage stack. A workload mix can be
selected to stress any part of the system, e.g., the buffer-
ing/caching system, file system, or disk system. By vary-
ing the components alone or in combination, it is possible
to focus on a particular component in the storage stack,
or to explore the interaction of choices across the compo-
nents.

8 Conclusion

This paper focuses on the problem of workbench automa-
tion for storage server benchmarking. We propose an au-
tomated benchmarking system that plans, configures, and
executes benchmarking experiments on a common hard-
ware pool. The activity is coordinated by an automated
controller that can consider various factors in planning, se-
quencing, and conducting experiments. These factors in-
clude accuracy vs. cost tradeoffs, availability of hardware
resources, deadlines, and the results reaped from previous
experiments.

We present efficient and effective controller policies that
plot the saturation throughput or peak rate over a space
of workloads and system configurations. The overall ap-

13

proach consists of iterating over the space of workloads
and configurations to find the peak rate for samples in the
space. The policies find the peak rate efficiently while
meeting target levels of confidence and accuracy to ensure
statistically rigorous benchmarking results. The controller
may use a variety of heuristics and methodologies to prune
the sample space to map a complete response service, and
this is a topic of ongoing study.

APPENDIX: Confidence Intervals

Given N observations of response time fromN runs at
given arrival rateλ, the confidence interval for the re-
sponse time at thatλ with a desired confidence level,c%,
is computed as follows:

• Compute the mean server response time:µ =
∑N

i=1
Ri/N , whereRi is the server response time

for theith run.
• Compute the standard deviation for the server re-

sponse time:σ =

√

∑N

i=1
(Ri − µ)2/(N − 1).

• Confidence interval for the response time at con-
fidence 100c% is given as: [µ − zpσ/

√
N, µ +

zpσ/
√

N], wherep = (1 + c)/2, andzp is the quan-
tile of the unit normal distribution atp.

If N <= 30, we replacezp by tp;n−1, which is thep-
quantile of at-variate withn− 1 degrees of freedom,
assuming that the response time values fromN runs
come from a normal distribution. We verified that
response times do come from a normal distribution
using a normal proability plot.

References
[1] National laboratory for applied network research (NLANR).

http://moat.nlanr.net.

[2] D. C. Anderson and J. S. Chase. Fstress: A flexible networkfile ser-
vice benchmark. Technical Report CS-2002-01, Duke University,
Department of Computer Science, January 2002.

[3] M. Arlitt and C. Williamson. Web server workload characteriza-
tion: The search for invariants. InProceedings of the ACM SIG-
METRICS Conference on Measurement and Modeling of Computer
Systems, pages 126–137, April 1996.

[4] T. Bray. Bonnie file system benchmark, 1996.http://www.
textuality.com/bonnie.

[5] A. B. Brown, A. Chanda, R. Farrow, A. Fedorova, P. Maniatis, and
M. L. Scott. The many faces of systems research: And how to eval-
uate them. InHOTOS ’05: Proceedings of the 10th conference on
Hot Topics in Operating Systems, pages 26–26. ”USENIX Associ-
ation”, 2005.

[6] P. Chen and D. Patterson. A new approach to I/O performance
evaluation—self-scaling I/O benchmarks, predicted I/O perfor-
mence. InProceedings of the ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, pages 1–12,
May 1993.

[7] S. P. E. Corporation. SPEC SFS release 3.0 run and report rules,
2001.

[8] T. P. P. Council. TPC benchmark C standard specification,August
1992. Edited by François Raab.

[9] M. Crovella, M. Taqqu, and A. Bestavros.In A Practical Guide To
Heavy Tails, chapter 1 (Heavy-Tailed Probability Distributions in
the World Wide Web). Chapman & Hall, 1998.

[10] R. Doyle, J. Chase, S. Gadde, and A. Vahdat. The trickle-down
effect: Web caching and server request distribution. InProceedings
of the Sixth International Workshop on Web Caching and Content
Delivery, June 2001.

[11] D. Ellard and M. Seltzer. NFS Tricks and Benchmarking Traps.
In Proceedings of the FREENIX 2003 Technical Conference, pages
101–114, June 2003.

[12] S. Gold. Defects in SFS 2.0 which affect the working-set,
July 2001. http://www.spec.org/osg/sfs97/sfs97
defects.html.

[13] R. Jain.The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation,and
Modeling. John Wiley & Sons, May 1991.

[14] J. Katcher. Postmark: A new file system benchmark. Technical
Report 3022, Network Appliance, October 1997.

[15] B. Keith and M. Wittle. LADDIS: The next generation in NFS
file server benchmarking. InProceedings of the USENIX Annual
Technical Conference, pages 111–128, June 1993.

[16] J. C. Mogul. Brittle Metrics in Operating Systems Research. In
HOTOS ’99: Proceedings of the The Seventh Workshop on Hot Top-
ics in Operating Systems, page 90, Washington, DC, USA, 1999.
IEEE Computer Society.

[17] R. H. Myers and D. C. Montgomery.Response Surface Methodol-
ogy: Process and Product in Optimization Using Designed Experi-
ments. John Wiley & Sons, Inc., New York, NY, USA, 1995.

[18] C. Roadknight, I. Marshall, and D. Vearer. File popularity charac-
terisation. InProceedings of the 2nd Workshop on Internet Server
Performance, May 1999.

[19] Y. Saito, B. Bershad, and H. Levy. Manageability, availability and
performance in Porcupine: A highly scalable, cluster-based mail
service. InProceedings of the 17th ACM Symposium on Operating
System Principles, pages 1–15, December 1999.

[20] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open versus
closed: A cautionary tale. InNetworked Systems Design and Im-
plementation (NSDI), Apr. 2006.

[21] C. Small, N. Ghosh, H. Saleed, M. Seltzer, and K. Smith. Does
systems research measure up, November 1997.

[22] K. Smith. Workload-Specific File System Benchmarks. PhD thesis,
Harvard University, June 2001.

[23] K. A. Smith. Workload-Specific File System Benchmarks. PhD
thesis, Harvard University, Cambridge, MA, Jan 2001.

[24] D. Tang and M. Seltzer. Lies, Damned Lies, and File System
Benchmarks. InVINO: The 1994 Fall Harvest. Harvard Division
of Applied Sciences Technical Report TR-34-94, December 1994.

[25] A. Traeger, N. Joukov, C. P. Wright, and E. Zadok. A nine
year study of file system and storage benchmarking. Technical
Report FSL-07-01, Computer Science Department, Stony Brook
University, May 2007. www.fsl.cs.sunysb.edu/docs/
fsbench/fsbench.pdf.

[26] C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and E. Zadok.
Auto-pilot: a platform for system software benchmarking. In
ATEC’05: Proceedings of the USENIX Annual Technical Confer-
ence 2005 on USENIX Annual Technical Conference, pages 53–53.
USENIX Association, 2005.

[27] A. Yumerefendi, P. Shivam, D. Irwin, P. Gunda, L. Grit, A. Dem-
berel, J. Chase, and S. Babu. Towards an Autonomic Computing
Testbed. InProc. of Work. on Hot Topics in Autonomic Computing,
Jun 2007.

14

