Cutting Corners: Workbench Automation
for Server Benchmarking

Piyush Shivam, Varun Marupadi, Jeff Chase, Thileepan Soéngam, Shivnath Babu
{shivam,varun,chase,thilee,shivnp@cs.duke.edu
Duke University
Durham NC

Abstract tions. The workload generator for the server benchmark
offers a selected mix of requests at some arrival rate (or

A common approach to benchmarking a server is to meg:

sure its behavior under load from a workload generator.St load) over a test interval to obtain an aggregate mea-

Often a set of such experiments is required—perhaps with © of the server's response time for the selected work-

. i : load at that load level. A wide range of load generators
different server configurations or workload parameters—

. L . ?(xist for various server protocols and applications: when
to obtain a statistically sound result for a given benchmar . i
ing objective. used correctly they are a foundational tool for progress in

. " systems research and development [20].
This paper explores a framework and policies to cony P [20]

duct such benchmarking activities automatically and ef-Users of these benchmarks typically conduct a set of
ficiently. The workbench automation framework is de2xPeriments to answer their specific questions. Server
signed to be independent of the underlying benchmdRnchmarking can be costly: a large number of runs may
harness, including the server implementation, configufé needed, perhaps with different server configurations or
tion tools, and workload generator. Rather, we take thod@rkload parameters. Care must be taken to ensure that
mechanisms as given and focus on automation polictB§ final result s statistically sound.

within the framework. For example, one common goal is to find the peak
As a motivating example we focus on rating the pedkroughput attainable by a given server configuration un-
load of an NFS file server for a given set of workloader a given set of workload conditions. That typically in-
parameters, a common and costly activity in the storagelves a set of runs with escalating load levels until the
server industry. Experimental results show how an autmeasured response time exceeds some defined threshold,
mated workbench controller can plan and coordinate tmelicating that the offered load has reached satura-
benchmark runs to obtain a result with a target threshdidn throughputor peak ratethat the server can process.
of confidence and accuracy at lower cost than scripted &rganizations such as SPEC and TPC have defined stan-
proaches that are commonly practiced. In more compleardserver benchmarkand load generators as a basis for
benchmarking scenarios, the controller can consider vaempetitive comparisons of peak throughput ratings in the
ious factors including accuracy vs. cost tradeoffs, avaihrarketplace. One example of a standard server benchmark
ability of hardware resources, deadlines, and the restilts©the SPEC SFS benchmark and its predecessors [15],
previous experiments. which have been in use for decades to to establish NF-
SOPS ratings for network file servers and filer appliances
using the NFS protocol.

David Patterson famously said: “For better or worse, Systems research often involves more comprehensive
benchmarks shape a field”. Systems researchers andigigchmarking activities. For examplesponse surface
velopers devote a lot of time and resources to runningappingplots system performance over a large space of
benchmarks to gain insight into the performance impagi®rkloads and/or system configurations. For this purpose
and interactions of system design choices and worklo@és desirable to use a workload generator that is param-
characteristics. In the marketplace, benchmarks are usestized to emulate a wide range of request mixes and
to evaluate competing products and candidate configuigrkload properties that might be encountered in practice,
tions for a target workload. rather than a fixed workload standardized for commercial
The accepted approach to benchmarking network sergemparisons. Response surface methodology is a power-
software and hardware is to configure a system and subjeitttool to evaluate design and cost tradeoffs, explore the
it to a stream of request messages under controlled conuieractions of workloads and system choices, and to lo-

1 Introduction

cate interesting points such as optima, crossover poir /ﬁ Available

break-even points, or the bounds of the effective operati Resources

range for particular design choices or configurations [17 Coninglles Workbench
This paper investigatesorkbench automatioriech- o

nigues for server benchmarking. The objective is to d l

vise a framework for an automateerkbench controller Choose Next —

that can implement various policies to coordinate expt experiment(s)

iments on a shared hardware pool or “workbench”, e.(

a virtualized server cluster with programmatic interface ' Experiment

to allocate and configure server resources [27]. The cc Analysis l IFR)esuIts

troller plans a set of experiments according to some p:

icy, obtains suitable resources at a suitable time for ee p_/

experiment, configures the test harness (system under

and workload generators) on those resources, launches Workbench Previous

experiment, and uses the results and workbench statu Controller Results Experiment

input to plan or adjust the next experiments, as depict Result Database

in Figure 1. We take the workbench test harness itself as _

given. In principle, our approach is compatible with ad- Figure 1: Automated Workbench and Controller.
vanced test harnesses such as Auto-pilot [26], which sup-
ports various bgnchmark-relat_ed tasks and can madu t might be encountered in practice, according to param-
individual experiments to obtain a target confidence al

o i ke th qf rs set by the workbench controller. We also show how
accuracy. Our goalis to take the next step, and focus QR anced controllers can implement heuristics for efficien

aﬁ automatlr?n framefwork a_nd policies tf)or.a contrqllgr [l%sponse surface mapping in a multi-dimensional space of
choreograph a set of experiments to obtain a Stat'St'(?ewﬁrkloads and configuration settings.
sound result for a high-level objective at low cost, whic

may involve using different statistical thresholds to baR Overview

ance cost and accuracy for differentrunsin the set. Figyre 1 depicts a framework for automated server bench-
As a motivating example, this paper focuses on thearking. An automatedvorkbench controllerdirects
problem of obtaining the peak rate for a server with a givéyenchmarking experiments on a common hardware pool
server configuration and workload parameters. Even tifigorkbench). The controller incorporates policies that
relatively simple objective requires a costly set of expeidecide which experiments to conduct and in what order,
ments that have not been studied in a systematic waybdised on the following considerations:
is important to optimize this benchmarking objective be-
cause itis common in industry, e.g., to obtain a qualifying ® Objective. The controller pursues benchmarking ob-
rating for a server product configuration using a standard jectives specified by a user. A simple goal might be
server benchmark from SPEC, TPC, or some other body. to obtain a standard NFSOPS rating for a filer with a
In addition, this objective constitutes the “inner looptfo given configuration. More complex goals might in-
more complex response surface mapping tasks that are im- volve varying the workload or mapping a response
portant in systems research. Figure 2 gives an example of surface for different workloads or server configura-
response surface mapping using the peak rate. The exam- tions. The goals may also specify the response time
ple is discussed in Section 2. metric used to obtain the peak rate, and/or thresholds
for confidence and accuracy. An objective that we
consider is to obtain peak rates with 90% accuracy.
An alternative might be to obtain the most complete

This paper illustrates the power of a workbench automa-
tion framework by exploring simple policies to optimize
the “inner loop” to obtain the peak rate in an efficient ’ o
way that balances cost, accuracy, and confidence for the gnd/or accurate results achievable within some dead-
result of each test load, while meeting target levels of con- line.
fidence and accuracy to ensure statistically rigorous finale Resources The controller runs experiments as re-
results. Although the concepts and approach generalize sources become available. It may tailor the runs to
to other examp|es, the experiments in this paper use stan- the available resources or conduct multiple runs con-
dard Linux-based NFS servers and a parameterizable NFS currently.
workload generator calletstress[2], which was devel- e Previous results The controller is feedback-driven
oped in previous research and is used by various indus- in that it may consider results of previous runs in de-
try partners. Fstress can emulate standard NFS file server signing new experiments. For example, policies in
workloads (SPECsfs97), as well as many other workloads this paper consider the variance of response times at

=

read/write ratio, random/sequential ratio, face gives the response of a metric (peak rate) to changes
metadata/data ratio, dataset size, file size dis- in the operating range of combinations of factors in a sys-
tribution, directory structure, request mix tem [17]. In this illustrative example the factors are the
CPU speed, memory size, number of disks number of NFS server daemons (nfsds) and disk spindle

Number of I/0 daemons, type of file syster’n, counts.

QY =y

block size Response surface mapping can yield insights into the
performance effects of configuration choices in various
Table 1: Some workload and configuration parameters tisattings. For example, the figure confirms the intuition that

affect storage server performance. adding more disks to an NFS server can improve the peak
rate only if there is a sufficient number of nfsds to issue

a given test load to determine how many trials af@quests to those disks. More importantly, it reveals that
needed to obtain a suitably accurate result. The cQRe ideal number of nfsds is workload-dependent: stan-

troller can also use results of previous runs to pruggrd rules of thumb used in the field are not suitable for all
the sample space in mapping a response surface. workloads.

Performance P. We characterize the benchmark perfor- However, response surface mapping.is expensive. AIg(_)—
mance of a server by ifseak rateor saturation through- rithm 1 presents the overall benchmarking approach that is

put denoted*. * is the highest request arrival rate used by the workbench controller to map a response sur-
that does not drive the server intasaturation state The face, and Table 2 summarizes some relevant notation. The

server is said to be in a saturation state if a response ti 3 rall appro.ach consists of an outer Ioopthgt iterates ove
metric exceeds a specified threshold. In this paper, sa £ samplgs RE, - li">’l’vrlereF1’ o Fnisa subsgt
ration occurs when either of two conditions holds: (i) thgf factors in the largetV’, i, C') space (Step 2). The in-
mean response time of the server, which is the aggregags |00P (Step 3) finds the peak rae for each sample:
server response time of client requests over some time fy-9enerating a series of test loads for the sample. To find
terval, exceeds R,.; = 40 ms, o (ii) the95-percentile the peak rate, the controller must choose: (a) the test load

server response time exceeds a specified threshold lateh@) Which to conduct the experiment; (b) thelengthr,
Lo = 2000 Ms. which is the test interval over which to observe the server

The performance of a server is a function of its worpatency of all the client requests while the workload is run-
load, its configuration, and the hardware resources all§'9 @gainst the server at load and (c) thenumber of

cated to it. Each of these may be characterized by a vedftfependent trialg with load .
of metrics orfactors as summarized in Table 1. The challenge for the controller is to design a set of ex-
Workload W. In the experiments in this paper, the corReriments to obtain accurate peak rates for a set of test
troller uses a configurable synthetic workload generaf@@ints selected to approximate the surface efficiently. Be-
calledFstresg2] to explore a space of NFS workloads defore refining the key problem for this paper (finding the
fined by various workload factors. Fstress offers knobs fBgak rate), we first summarize what we mean by confi-
the controller to configure the properties of the workload@ence and accuracy for each test point.
dataset and its request mix, and preconfigured param g
sets that represent workloads encountered in practice (S€e
Table 3). Benchmarking can never produce an exact result because
Resourcesk. The controller can vary the amount of hardeomplex systems exhibit inherent variability in their be-
ware resources assigned to the system under test, depbadior. The best we can do is to makepebabilistic
ing on the capabilities of the workbench testbed. The prddaim about theinterval in which the “true” value for a
totype can instantiate Xen virtual machines sized along timetric based on measurements from multiple independent
memory, CPU, and I/O dimensions. The experimentstials [13]. For example, by observing the mean response
this paper vary the workload and NFS server parametéirae at a test load\ for 10 independent trials, we may
on a fixed set of Linux server configurations in the workee able to claim that we af% confident that the mean
bench. server response time at that load level lies within the range
Configurations (@). The controller may vary server con{25ms, 30ms]. Such a claim can be characterized by a
figuration parameters before it instantiates the server fmnfidence leveland theconfidence intervaat this con-
each run. fidence level. In the example abovep, 30] represents
Figure 2 shows an example of response surfaces pitee confidence interval at €% confidence level. Basic
duced by the automated workbench for two canned NEBEfatistics tells us how to compute confidence intervals and
server workloads representing typical request mixes fotewels from a set of trials. For example, if the mean server
file server that backs a database server (calddTP) response time fromtrials is ., and standard deviation is
and a static Web serveWeb serven. A response sur- o, then the confidence interval farat confidence levet

Confidence and Accuracy

database webserver

»
@

IS
IS

w
@
w
@

w
w

N
o
I
o

N
N

[
o

Normalized Peak Rate

Normalized Peak Rate

-
[N

=
o
1S}
=
o
S

Number of nfsds ot Number of disks Number of nfsds ot Number of disks

Figure 2: These surfaces illustrate how the peak rate,changes with number of disks and number of NFS dae-
mon (nfsd) threads for two cannéstressworkloads DB_TP andWeb servel). The workloads for this example are
described in more detail later, in Table 3.

is given by: A* | Peak rate of the server.

Zpo 2p0 R.q:| Mean server response time threshold at peak

=== p+—7] @)

Vi Vi rate.
=, is a reading from a table of quantiles for the unitnormal s | Factor that determines the width of the peak-
distribution, and is a function of, such that,, increases rate region Rq; + sRa] (Se€ Section 4).
with ¢. Appendix A explains how to compute confidence Fsa¢| The threshold for the percentage of requests
intervals at a desired confidence level. that must complete under a specified threshold

The tightness of the confidence interval capturesthe | Lsat| latency.Lia;
curacy of the true value of the metric. A tighter bound i i
implies that the mean response time from a set of tfi-¢ | Targetaccuracy(based on confidence interval

als is closer to its true value. For a confidence interval width) for the estimated value dt.
[low, high], we compute the percentage accuracy as: | € Targetconfidence levebr the estimated?, ;.

high — low r Runlength of each trial of the workload at a test

accuracy = 1—error = (1— m) x 100% (2) load.
9 ow t Number of independent trials at a test load.

2.2 Problem Statement p | Load factor= A/A* whereX is a test load.
The goal of the automated feedback-driven controller is ol Number of test loads run before converging|to
address the following problems. A* with desired accuracy and confidence levgl.

1. Find Peak Rate For a given sample from the outer Table 2: Benchmarking parameters used in this paper.
loop of Algorithm 1, minimize the benchmarking o
cost for finding the peak rat&* subject to a target 3 Finding the Peak Rate

_confidence levek an_d target accuracy. Deter_min- In the inner loop of Algorithm 1, the automated controller
ing the NFSOPS rating of an NFS filer is one instane®, - - hes for the peak raté for a sample in'F, 7))
of this problem. by subjecting the server to a sequence of test loads. The

2. Map Response Surface Minimize the total bench- inner loop must converge efficiently to an estimate of the

marking cost for mapping a response surface fBfakrate\” thatmeets the targetaccuracy and confidence.
all (Fy,...,F,) samples in the outer loop of Algo-We emphasize that this step is itself a common bench-

rithm 1. marking task to determine a standard rating for a server
configuration in industry. Common practice is to script
Minimizing benchmarking cost involves choosing vala sequence of runs for a standard workload at escalating
ues carefully for the runlength, the number of trialg, load levels. Thistrawmanapproach proceeds as follows
and test loads so that the controller converges quickly tg¢the notation is from Table 2):
the peak rate. Sections 3 and 5 present algorithms that the
controller uses to address these problems. e Runlengthr. Use afixedr for each test load.

16

Algorithm 1: Mapping Response Surfaces

T T
—<— efficient policy
—&— strawman policy

1) Inputs: (a) (F1, ..., F,), which is the subset of
factors of interest from the full set of factors in
(W, R, C)); (b) Different possible settings of each
factor;

2) // Outer Loop: Map Response Surface.
foreachdistinct sample€Fy = f1,..., Fn=fn)
do

3) | /lInner Loop: Find Peak Rate for the Sample.

Design a sequence of test lodds, ..., \;] to

search for the peak rate’;

foreachtest load\ € [\q,..., ;] do

Load Factor

Choose number of independent triaf®r A; 0 2 N 6 8 N T

Benchmarking Cost (hours)

0 I I I I

Choose runlength for each trial;
Figure 3: An efficient policy for finding peak rate con-

verges quickly to a load factor neéyand reduces bench-
marking cost by obtaining a high-confidence result only

Dot independent runs of lengtheach, with
workload generated at load

end for the load factor ofi. It is significantly less costly than
SetA* = \, where) € [\i,..., \] is the largest a simple linear search with a fixed runlength, and fixed
load that does not take the server to the number of trials per test load (e.g., SPECsfs [7]).

saturation state;

end not close tol, and unnecessarily incurs cost to reach the
same accuracy at each load. Sections 4 and 5 present ap-
proaches that improve on these limitations.

e Number of trials ¢. Use afixedt for each testload. Number of trials. The runlength- and the number of in-

e Sequence of testloadg\y, ..., \;]. Start at a default dependent trialg for each test load determine the bench-
value, and use éinear increasing sequence of testnarking costincurred at that load. Figure 4 shows a scatter
loads\ where each load differs from the previous onplot of mean server response time at different test loads for
by a small fixed increment. Stop when the current testrials at each load. Note that the variability across multi-
load saturates the file server. ple trials increases with load. The figure shows thaust

adapt to the choice of the test load in the search process.
A simple workbench controller with feedback can improvmea"y't is high near load factar, and low otherwise. For

significantly upon the strawman approach policies. Wge strawman approach() trials may be too many at low
discuss the limitations aftrawmanas a prelude to the im- o4 factors and too little near = 1, depending on the

proved controller algorithm in Section 4. variability of response time.

Sequence of test loads The number of loadd, in the Rynlength. Figure 5 shows the scatter plot of mean server
strawman depend on the increment size to generate S¥&ponse times at two load factops= 0.3 andp = 0.9.
cessive test loads. If the increment is too low, then it wilte figure plots the mean response times for different run-
may take many iterations to reach the peak rate. If itis tRghgths. It illustrates that the variability decreaseshwit
high, the test may overshoot the peak rate and compromjggeased runlength. Thus, with short-duration runs more
accuracy. trials are needed to obtain an accurate measure of mean
Figure 3 illustrates the search fat using the strawman response time. We also observe that for a given runlength,
approach for runlength = 5 minutest = 10 trials, and a tne variability is higher at higher load factors, espegiall
small increment to produce an accurate result. We repen the runlength is small. Thus, for the strawman ap-

sent the sequence of test loads by load fagter, 3. At proach, with10 trials per test load; = 5 minutes may be
load factor ofl, A = A*, and the search for the peak ratgyg high at low load factors.

terminates. The figure comparssawmanto an efficient))
technique for finding the peak rate, using a straightforwardt ©10osing the Runlengths and Number of Trials
search algorithm, as discussed later. to Meet Target Confidence and Accuracy

The figure shows thatrawmarcan incur a much higher An automated approach for finding the peak rate must se-
benchmarking cost to converge to the peak rate. Tleet a suitablet andr for each test load\, while adapt-
strawman considers a large number of load factors that arg to: (a) the value of the load factor, and (b) the target

load factor (p) = 0.3 load factor (p) = 0.9
T T

60

+ +
I
11 B
50+ B
L + 4
10 N
1
))
or B 40 B
£ £ * +
~ ~ + + +
[} . [} +
E sf N 1 E N +
+
p ! g @ & 1 t . 1
@ * + 1) O, by ¥ e N
c 7r 4+ 1 c AN £+ '—r——,%,fff—fé
<] n + i S N T I
[=3 T + + o * \g/’ + % i
2 + 4 + 2 + +
N Lo,
& ; + + ‘% N
5 I F +]
4+ T v
N + + 101 + 4+ T
4 i + N F +
3 o
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Runlength (secs) Runlength (secs)

Figure 5: Mean server response time at different workloademgths for thédB_TP fstressworkload usingl disk and
4 NFS daemon (nfsd) threads for the server. The variabilitm@an server response time for multiple trials decreases
with increase in runlength. The results are representafie¢her server configurations and workloads.

creases, requiring more trials to maintain a target accu-
racy. For the scatter plot in Figure 5, at load factiod
1 and runlength oH0 seconds, the data gives @8% con-
| fidence that5.6 < R < 6, or 95% confidence that
5 < R < 6.5. (R is the mean server response time.) From
the data we can determine the runlength needed to achieve
target confidence and accuracy: a runlengtho$econds
achieves an accuracy 87% with 95% confidence, but it
takes a runlength df00 seconds to achiew#s% accuracy
with 95% confidence. Accuracy and confidence decrease
with higher load factors. For example, at load fadidr
and runlength0, the data gives us0% confidence that
& 21 < R < 24 (93.3% accuracy), 095% confidence that
0 02 0.4 06 08 1 12 14 16 20<R<27 (85.1% accuracy).
Load Factor We can longer runlengths to achieve a given target con-
fidence level and/or accuracy. For example, in order to
Figure 4: Mean server response time at different test loagshieve accuracy 87% at 95% confidence, we need a
for the DB_TP fstressworkload usingl disk and4 NFS run|ength of120 seconds or more. Another way to im-
daemon (nfsd) threads for the server. The variability fifove confidence and accuracy is to run more trials. Fig-
mean server response time for multiple trials increasgg 6 quantifies the tradeoff between the runlength and the
with load. The results are representative of other serv@imber of trials required to attain a target accuracy and
configurations and workloads. confidence for different workloads. It shows the number
of trails required to meet an accuracydoPb at95% confi-
dence level for different runlengths. The figure shows that
confidence and accuracy fai*. The goal is to convergeto attain a target accuracy and confidence, one needs to
quickly to an accurate reading at= 1. More trials and conduct more independent trials at smaller runlengths, and
longer runlengths are useful near a load factod pbut vice-versa. It also shows a sweet spot for the runlengths
accuracy is less crucial during the search. that reduces the number of trials needed. A controller can

From Equations 1 and 2 for confidence intervals aht$€ such curves as a guide to pick a suitable runlength.
accuracy, it follows that, .for a given confld_ence leeel 4. Search Algorithm for Peak Rate
more trials tend to give tighter confidence intervals, and
hence higher accuracy. Similarly, as the confidence levdgorithm 2 illustrates our end-to-end search-based ap-
increases, the width of the confidence interval also iproach for estimating the peak rate for a given setting of

Response Time (ms)
N w Py o (2] ~
o o o o o o
n
+ +
\\\

\

o

load factor (p) = 0.3
150 :

load factor (p) = 0.9
150 :

—<— DB_TP —v— DB_TP
—&— Webserver \ —&— Webserver
—— Mail | —#— Mail
—&— Specsfs97 \

—&— Specsfs97
|

|
100 100 |

Number of trials
Number of trials

50 i

\
N\

)
EIS(\\V”i;g&\,,f"ﬂ— /Ew””””’"*f—a;kx . X) g

- - 0
0 50 100 150 200 250 300 350 0 50 100 150 200
Runlength (secs) Runlength (secs)

I
350

Figure 6: Number of trials to attai®0% accuracy for mean server response tim@héb confidence level at low and high

load factors for different runlengths. The results are fwvsr configuration with disk and4 nfsds, and representative
of other server configurations.

factors. The measures used by this algorithm are summ& Number of Trials
rized in Table 2. . . _
The inputs to Algorithm 2 specify various constraints:For @ test load\...., Algorithm 2 first conducts two tri-
als to generate an initial confidence interval foy, ., the
e R, the threshold on the mean server response tinhgSan server response timg atload,, at95_% confidence_
The server saturates when it exceeds this threshdftY€!- (Step$ and7 in Algorithm 2). Next, it tests to see if
ie. R> Ruu the confidence interval overlaps with the peak-rate region
L sat-

input (Step). These steps establish with% confidence
e Pyq, the threshold on the percentage of requests th@je| whether the current test load is a potential peak rate.

must complete under a threshold latericy,;. The |f there is no overlap, then Algorithm 2 moves on to the
server saturates when this threshold is not met, i.gext test load as guided by Algorithm 3 (Step 2).
P < Py

If the regions overlap, then Algorithm 2 identifies the
o Width parametes that defines thepeak-rate region current test load\..,, as an estimate of a potential peak

[Rsat £ 5Rsq:). The peak rate” is any test load that rate. It then computes the accuracy of the mean server
causes the mean server response time to be in thisressponse timek,,_, . at the current test load, at the target
gion. (The region Py, & s Py,] is defined similarly.) confidence level 0#% (Section 2). If it reaches the target
o Target confidencein the peak rate that the algorithn2CUracy, then the algorithm terminates (Stép other-
estimates. wise it conducts more trials at the current test load (Step
6) to narrow the confidence interval (Section 3.1). As a
» Target accuracy of the peak rate that the algorithmesylt, one of two things happens: (i) the overlap test of
estimates. the confidence interval and the peak-rate region fails (Step

_ _ _ 10), in which case the algorithm moves on to the next test
Algorithm 2 consists of three key steps that involvad; or (i) the overlap test does not fail and after some

choosing: (a) a sequence of test loads to try; (b) the nuAmber of trials, the algorithm attains the target accuracy
ber of independent trials at any test load; and (c) the run-

length of the workload at that load. 4.3 Runlength for Test Load

4.1 Sequence of Test Loads

To simplify the choice of runlength for each experiment
Algorithm 2 uses one of severtlad-pickingalgorithms. at a test load (Step 5), Algorithm 2 uses the sweet spot
Section 5 describes the algorithms and their cost and derived from Figure 6 (Section 3.1). The figure shows
curacy tradeoffs. All load-picking algorithms take as ihpthat for all workloads that this paper considers, a runlbngt

the set of past test loads and their results. The output Besund3 minutes attains the sweet spot for the number of
comes the next test load in Algorithm 2. trials.

4.4 Discussion Algorithm 2: Searching for the Peak Rate
Algorithm 2 automatically adapts the number of trials at
any test load according to the load factor and the desitgdnitialization. Peak Rate)* = 0; Current accuracy
confidence and accuracy. Section 6 presents empirical resf the peak rateg,- = 0; Current test load,

sults that demonstrate the same. Acur = 0; Previous test loady,e, = 0;

For very low or very high ngd factors, th.e algorith@) Use Algorithm 3 to choose a test loady giving
conducts a small (oﬁen the minimum ()f two in Our eXper- ¢ rrent test load,,., previous test load, ..., and
iments) number of trials to _estabhsh with% confidence | oon server response tinkg, . at ., as inputs;
that the current test load is not the peak rate (Step
However, as soon as the algorithm identifies a test Doa:é) Selprev = Acur ANAAcur = A,
to be a potential peak rate, which happens near a load fad/ Conduct trials until the target accuracy for the
tor of 1, it spends more time at to check whetheritis in ~ peak rate is reached at the desired confidence.
fact the peak rate. Since the algorithm computes the cpnwhile (ay- < a at confidence)
fidence interval after each trial, it conducts the mining?
number of trials to establish whethkiis the peak rate. ,

The while condition in Steg of Algorithm 2 matches®) Conduct the trial ak...,, and measure server
the current accuracy of the potential peak rate with the tar-"€SPONSe time from this trialz
get accuracy at a target confidence. Since the accurgcy Compute mean server response time at
and confidence improve with more trials, if the target con- Acyr, Ra..,.., from all trials at\.,... Repeat Steg if
fidence and accuracy are low, the algorithm will automat- the number of trialst, at A, is 1,

ica."y conduct less trials before it terminates. Thus, tQ)E Compute confidence interval for the mean server
benchmarking cost will be low if the desired target confi- response?, . at target confidence level

dence and accuracy are low, and vice-versa. 9) Check for overlap between the confidence
5 Mapping Response Surfaces interval for Ry, and the peak rate region.

We now relate the peak rate algorithm to the larger cH)- if (no overlap with95% confidence)
lenge of mapping a peak rate response surface efficientlys0 to Step 2 to choose the next test load;
and effectively, based on Algorithm 1. else

A large number of factors can affect performance, so it
is important to sample the multi-dimensional space with
care as well as to optimize the inner loop. For example, A" = Aeurs
suppose we are mapping the impact of five factors on a file Compute accuracy,- at confidence;
server's peak rate, and that we sample five values for each
factor. If the benchmarking process takes an hour to find
the peak rate for each factor combination, then the total end
time for benchmarking i430 days. An automated work- gng
bench controller can shorten this time by pruning the sam-
ple space, planning experiments to run on multiple hare
ware setups in parallel, and optimizing the inner loop.

We consider two specific challenges for mapping a re- the controller can choose more efficient techniques.
sponse surface: Section 5.5 discusses some of these techniques.

e Algorithm 2 from Section 4 is used for the inner loop.) o)
However, the algorithm needs a good load-pickinyl The Binsearch Load-Picking Algorithm
policy to generate a sequence of test loads. An éflgorithm 3 outlines theBinsearchalgorithm. Intuitively,
ficient controller policy will generate a new test loadinsearch keeps doubling the current test load until it finds
based on the feedback of the previous results, eglpad that saturates the server. After that, Binsearch ap-
the server response time and throughput observedpies regular binary search, i.e., it recursively halves th
the earlier test loads. Sections 5.1-5.4 describe tim®st recent interval of test loads where the algorithm esti-
load-picking algorithms that this paper considers. mates the peak rate to lie.

e Algorithm 1 also needs a policy for choosing the sam- This algorithm allows the controller to find the lower
plesin the outer loop. Section 1 explains that exhawsid upper bounds for the peak rate within a logarithmic
tive enumeration of the full factor space in the outerumber of test loads. The controller can then estimate the
loop can incur an exorbitant benchmarking cost. Dpeak rate using another logarithmic number of test loads.
pending on the goal of the benchmarking exerciddence the total number of test loads is always logarithmic

Choose the runlengthfor the trial;

cur?

cur

/I A potential peak rate has been reached

/I Check if it meets target accuracy (Step 4)

Algorithm 3: Binsearchinput: Previous load\,,c.; Algorithm 4: Model-GuidedInput: Previous loads
Current load\.,-; Mean response tim&)_,, at A, A1, A2,y ooy Aewr—1; Current load).,,-; Mean response
Output: Next load),, e times Ry, Ry, ..., R, at A1, Aa, ... Ay Output:
Next load\,, ¢t

cur

1) Initialization.

if Aewr == 0); 1) Initialization.
Anezt = 50 requests/sec; if (Acur ==0)
Start Geometric Phase, and retin.,¢; Return\,,.,; = 50 requests/sec;
2) Geometric Phase. end
if (Rx,,, < Rsat) if (number of test loads == 1)
elsgeturn)\nemt = Aeur X 2; if (chw < Ruut)
/l End Geometric Phase; Start Binary Segrch Return\ et = Acur X 2;
binsearch,, = Aprev, and Go to Step 3; else
end Return,ezt = Acur/2;
3) Binary Search Phase. end
if (Rx... < Rsat); end
binsearchw = Acur; 2) Model Learning and Prediction.

else

. Choose a value aR; from Ry, , ..., Ry,,,_, thatis
binsearch;qn, = Acur;

nearest taR,;. Let the corresponding load be;

end b g
o .) Learn the modeR = a + 3 with two tuples
Return\,..,: = (binsearch;,;, + binsearch,,,)/2; Oveurs B) and(\s, Ry):

Return\,,c.: =

cur

Rsqt—a’

irrespective of the start test load or the peak rate.

5.2 The Linear Load-Picking Algorithm controller observes mor@\, R,) tuples, the model-fit will
TheLinearalgorithm is similar to Binsearch except in thdMProve progressively, and hence the model will guide the

initial phase of finding the lower and upper bounds for th%?arc_h to an ?Cc_,:”att? pea;k rage.l :n many csasetg, thés hap-
peak rate. In the initial phase it picks an increasing SEnsin a singie iteration of mode earning (Section 6).

quence of test loads such that each load differs from thdiowever, unlike the previous approaches, a model-
previous one by a small fixed increment. guided search is not guaranteed to converge. Model-

] o] guided search is dependent on the accuracy of the model,

5.3 Model-guided Load-Picking Algorithm which in turn depends on the choice(©f R,) tuples that
The generashapeof the response-time Vs. load curve igre used for learning. The choice of tuples is generated by
well known, and it does not change drastically for diffeprevious model predictions. This creates the possibility o
ent workloads or server configurations. Using the insigtite learning aincorrectmodel which in turn yields incor-
offered by the open-loop queuing theory results [13], wect choices for test loads. For example, if most of the test
capture the curve by a modeR = a + g whereR is the loads chosen for learning the model happen to lie signifi-
response time) is the load, and andlj are constants thatcantly outside the peak rate region, then the model-guided
depend on the settings of factors(W, R, C). To learn choice of test loads may be incorrect or inefficient. Hence,
the model, the controller needs tuples of the fdpmR,). in the worst case, the search may never converge or con-
Since the controller can record the server response timegeige slowly to the peak rate. We have experimented with
different test loads, it can learn the model online as it caither models including polynomial models of the form
lects()\, R,) tuples for a given sample in the outer loop oR = a + bA + c¢A?; they are all prone to similar pitfalls.
Algorithm 1. To avoid the worst case, the algorithm uses a simple

Algorithm 4 outlines themodel-guidedalgorithm. If heuristic to choose the tuples from the list of available tu-
there are insufficient tuples for learning the model, it usptes. Each time the controller learns the model, it chooses
a simple heuristic to pick the test loads for generating th&o tuples such that one of them is the last prediction, and
tuples. After that, the algorithm uses the model to preditte other is the tuple that yields the response time closest
the peak rate\ = * for R = R, returns the predic- to threshold mean server response tiR\g;. More robust
tion as the next test load, and relearns the model using teehniques for choosing the tuples is a topic of ongoing
new (\, R,) tuple at the prediction. The whole processtudy. Section 6 reports our experience with the model-
repeats until the search converges to the peak rate. Asghéaled choice of test loads.

5.4 Better Seeding Cost for Finding Peak Rate Sections 4 and 5 present

The load-picking algorithms in Sections 5.2-5.3 generai%)’eral policies for finding the peak rate. We evaluate
§

a new load given one or more previous test loads. H
can the controller generate the first load,seedto try? ¢ The sequence of load factors that the policies con-
One way is to use a conservative low load as the seed, sider before converging to the peak rate for a sample.
but this approach increases the time spent ramping up to a An efficient policy must quickly direct the bench-
high peak rate. When the benchmarking goal is to plot a marking effort to load factors that are near ofat
response surface, the controller uses another approach thg The number of independent trials for each load factor.
uses the peak rate of the “nearest” previous sample as the The number of trials should be less at low load factors

se policies as follows:

seed. and high around load factor af
To illustrate, assume that the factors of interest, _
(Fy,...,F,), in Algorithm 1 are(number of disks, num- Cost for Mapping Response SurfacesWe compare the

ber of nfsds) (as shown in Figure 2). Suppose the cortotal benchmarking cost for mapping the response surface
troller uses Binsearch with a low seed & to find the across all the samples.

peak rate\’ , for sample(1, 1). Now, for finding the peak COst Versus Target Confidence and Accuracy We
rate A} , for’samp|e<1’ 2), it can use the peak rate , as demonstrate that the policies adapt the total benchmark-

seed. Thus, the controller can jump quickly to a load vali[f cost to target confidence and accuracy. Higher confi-
close toA? . dence and accuracy incurs higher benchmarking cost and

In the common case, the peak rates for “nearby” saMice-versa. _ .
ples will be close. Even if they are not, the load-picking Section 6.1 presents the experiment setup. S_ect|on 6.2
algorithms will still guide the search in the right direatio Presents the workloads that we use for evaluation. Sec-

However, they may incur additional cost to recover frofiP" 6.3 evaluates our benchmarking methodology as de-

a bad seed. The notion of “nearness” is not always wéfiribed above.
defined. While the distance between samples can be n&a- Experimental Setup

sured if the factors are all quantitative, if there are cate- le 1 sh the factors in thel". . ors f
gorical factors—e.g., file system type—the nearestsamgfébe shows the factors in tHéV’, &, C') vectors for a

may not be well defined. In such cases the controller u lQrage server. we benchmark_an NFS server to evaluate
a default seed to start the search. our methodology. In our evaluation, the factordihcon-

o sist of samples that yield four types of workloads: SPEC-
5.5 Approximating the Response Surface sfs97, Web server, Mail server, and DB (Section 6.2).

If the overall goal of server benchmarking is to understardl® controller uses Fstress to generate samplég diat
the overall trend of how the peak rate is affected by s&@respond to these workloads. We report results for a
tings of certain factors of interedtr? . . ., F,)—rather single factor m]if: the number of disks Qttached to _the
than finding accurate peak rate values for each sampld¥fS server ranging fronil, 2, 3, 4), and a single factor in
(F\,..., F,)—then much more efficient techniques exidt: the number of nfsd daemons for the NFS server rang-
than iterating over all samples as in Algorithm 1. We cdRg from (1,2, 4,8, 16,32, 64, 100) to give us a total 082
leverage Response Surface Methodology (RSM) [17]samples.
branch of statistics that gives techniques to choose a smailhe workbench tools can generate both virtual and
set of samples carefully so that the controller can approRfysical machine configurations automatically. In our
mate the overall response surface efficiently. evaluation we use physical machines that have MB

By assuming that a low-degree multivariate polynemory,2.4 GHz x86 CPU, and run thi4.18 Linux ker-
nomial model—e.g., a quadratic equation of the for?_‘?'- To conduct an expe_zrimen;c), the workbench CO”tr?”e_f
A= " 3R nosm 3 R irst prepares an experiment by generating a sample in
s ﬁf;i-j—%éﬁoiima;:zszZtr_&azéarlf;é;ﬁ ?n tiu; (W, R,C). Itthen consults the benchmarking policy(ies)
dirln_ensionaI<F1, ..., F,) space, RSM provides princi—'n Sections 5.1-5.5t0 pl_ota response _surface and/o_rsearch
pled techniques for selecting a minimal set of sampl the peak rate for a given sample with target confidence

for which the controller must obtain tha* to learn and accuracy.
a fairly-accurate model (i.e., estimate values of the 6.2 Workloads
parameters in the model). We evaluate one such R

.) . %/Vle use Fstress to generatéecorresponding to four work-
technique in Section 6. 9 ate P g

loads as summarized in Table 3. A brief summary follows.

6 Experimental Evaluation Further details are in [2].
We evaluate the benchmarking methodology and policiess SPECsfs97 The Standard Performance Evalua-
with multiple workloads on the following metrics. tion Corporation introduced their System File Server

10

| workload | file popularities | file sizes | dir sizes | /0 accesses |
SPECsfs97 random 10% 1KB-1MB large (thousands) random r/w
Web server Zipf (0.6 < a < 0.9) | long-tail (avg 10.5 KB) small (dozens) sequential reads
DB_TP few files large (GB - TB) small random r/w
Mail Zipf (o = 1.3) long-tail (avg 4.7 KB) large (500+) seq r, append w

Table 3: Summary dfstressworkloads used in the experiments.

benchmark (SPECsfs) [7] in 1992, derived from thienger to reach close to load factor bfas compared to

earlier self-scaling LADDIS benchmark [15]. A re-policies with seeding. All policies with seeding start at
cent (2001) revision corrected several defects identbad factor close td, since they use the peak rate of a
fied in the earlier version [12]. previous sample with disks andl6 nfsds as the seed load.

e Web server. Several efforts (e.g., [3]) attempt to Lineartakes a significantly longer time because it uses
identify durable characterizations of the Web. We dé-fixed increment by which to increase the test load. How-
rive the distributions for various parameters and tiver,Binsearchiumps to the peak rate region in logarith-

operation mix from the previous published studig®ic number of load factors. ThHdodelpolicy is the quick-
(e.g.,[18,9,1, 10, 3)). est to jump near the load factor bbecause the controller

o DB_TP: We model our database workload aftdf@ms anaccurate model quickly.
TPCC [8], reading and writing within a handful of
large files in a 2:1 ratio. 1/O access patterns a _ 1:7
random, with some short (256 KB) sequential asyi§ ||
chronous writes witttcommit(fsync) to mimic batch 4|
log writes. oLt

e Mail: Electronic mail servers frequently handle
many small files, one file per users’ mailbox. Serve _ .|
append incoming messages, and sequentially read ; i}
mailbox file for retrieval. Some users or servers trur s os|
cate mailboxes after reading. The workload mod o=~
follows that proposed by Saito et. al. [19].

©— linear
—+— linear.seeding

oo %e0e9

N

il

g —+— model.seeding
6.3 ReSUltS g 1L / MFH‘*—O—F*O—O—F#—I—F%—H& oo 06006660 J
For evaluating the overall methodology and the polici¢= osr 7]
outlined in Sections 4 and 5, we define the peak pdte % 1 > s 7 5 6

Time (hours)

to be the test load that causes: (a) the mean server re-))
sponse time to be if86, 44] ms region; or (b) more thanFigure 7: Time spent at each load factor for searching the
10% of the requests to complete 0\100 ms. We derive P€ak rate for different policies fobB.TP with 4 disks,

the 36, 44] region by choosing mean server response tirf@d32 nfsds. The result is representative of other samples
threshold at the peak rate to bi@,,, = 40 and the width and workloads. All policies except linear quickly converge
factors = 10% in Table 2. For all results except where wé the load factor ofl and conduct more trials there to
note explicitly, we aim for a* to be accurate within0% achieve the target accuracy and confidence.

of its true value witt95% confidence.

6.3.1 Costfor Finding Peak Rate Figure 8 compares the total normalized benchmarking cost
Figure 7 shows the choice of load factors for finding tHer mapping the response surfaces for the three workloads
peak rate for a sample withdisks and32 nfsds using the using the policies outlined in Section 5. The costs are
policies outlined in Section 5. Each point on the curveormalized with respect to the lowest total cost, which
represents a single trial for some load factor. More poiritsthe Binsearch with Seedingolicy to find the peak rate
indicate higher number of trials at that load factor. Fdor DB_TP . The benchmarking results f&PECsfs97are
brevity, we show the results only f@B_TP. Other work- still in progress.Binsearch Binsearch With Seedingnd
loads show similar behavior. Linear with Seedingut the total cost drastically as com-
For all policies, the controller conducts more trials gtared to the linear policy.
load factors at or near than at other load factors to find We also observe thainsearch Binsearch with Seed-
the peak rate with the target accuracy and confidence. #ly), andLinear With Seedingre robust across the work-
policies without seeding start at a low load factor and takeads, but the model-guided policy is sensitive to some

6.3.2 Cost for Mapping Response Surfaces

11

workloads. This is not surprising given that the accuraéy3.3 Cost Versus Target Confidence and Accuracy

of the model guides the search. While an accurate moﬁ?dure 9 shows how the benchmarking methodology

can guide the search quickly to the peak rate, an inacCurgi its the total benchmarking cost to the target confidence
model can direct the search in the wrong direction. Thug'accyracy of the peak rate. The figure shows the total
the model-guided policy may take longer to find the per['J‘énchmarking cost for mapping the response surface for

rate. . o L the DB_TP using theBinsearchpolicy for different target
The linear policy is not only inefficient, but alsoconfidence and accuracy values.

highly sens_ltlve to th_e magnitude of peak rate. The Higher target confidence and accuracy incurs higher

benchmarking cost dfinear for Web server peaks at a benchmarking cost. A10% accuracy, note the cost differ-

hlgher abS.OIUte value for all samples thanm_TP and ence between the different confidence levels. Other work-
Mail, causing more than a factor diincrease in the total 5 45 ang policies exhibit similar behavior, withail in-

cost for mapping the surface. curring a normalized benchmarking costoét target ac-

curacy 0f90% and target confidence 65%.

I linear
I linear.seeding
[—binsearch
[__Ibinsearch.seeding
[model

I model.seeding

T
—%— Confidence = 95%
—+— Confidence=90%
——&— Confidence=75%

—— =60
14 Confidence=60% i

131

IS

12

11F

Normalized Benchmarking Cost
w
Normalized Benchmarking Cost

~

09 B

0

DB_TP Web server Mail 0.8

Workloads 40 50 60 80 9 100

70
Accuracy of Peak Rate (%)

Figure 8: The total cost for mapping response surfaces ffure 9: The total benchmarking cost adapts to the de-
three workloads using different policies. sired confidence and accuracy. The cost is shown for map-
Reducing the Number of SamplesTo evaluate the RSM ping the response surface fOB_TP using theBinsearch
approach presented in Section 5.5, we approximate thefelicy. Other workloads and policies show similar results.
sponse surface by a quadratic curve in two dimensionsSo far, we configure the target accuracy of the peak rate
peak rate = func(number of disks, number of nfsds). Vg configuring the accuracy, of the response time at the
use a D-optimal design [17] from RSM to obtain the bepkak rate. The width parameterlso controls the accu-
of 6, 8, and10 samples out of a total af2 samples for racy of the peak rate (Table 2) by defining the peak rate
learning the response surface equation. WeBissearch region. For examples = 10% implies that if the mean
to obtain the peak rate for the chosen samples. server response time at a test load is withi% of the
After learning the equation, we use it to predict the peahreshold mean server response tinRe,,, then the con-
rate at all the other samples in the surface. Table 4 preserdfier has found the peak rate. As the region narrows, the
the mean absolute percentage error in predicting the peéglget accuracy of the peak rate region increases. In our
rate across all the samples. The results show that if @eeriments so far, we fix = 10%.
goal is simply to approximate the surface, we can drasti-Figure 10 shows that the benchmarking cost adapting
cally reduce the size of the sample space. to target accuracy of the peak rate region for different
policies at a fixed target confidence interval 9B_TP

Workload | Num. of Samples MAPE (c = 95) and fixed target accuracy of the mean server re-
DB_TP 6,8, 10 14,14, 15 sponse time at the peak rate £ 90%). The results for
Web server 6,8,10 9,9,9 other workloads are similar. All policies except the model-
Mail 6,8,10 3.3,2.8,2.7 guided policy incur the same benchmarking cost near or at

the peak rate since all of them do binary search around that

T?b,le 4: Mean Absolute Prediction Error (MAPE) in Prer'egion. Since a narrower peak rate region causes more tri-
dicting the Peak Rate

als at or near load factor df, the cost for these policies

12

converge. that govern such interactions. Our benchmarking method-
ology benchmarks a server across the multi-dimensional

‘ 1 . . space of workload, resource, and configuration factors ef-
a5l oo et - | ficiently and accurately, and avoids brittle claims [16] and
modelséaang G- lies [24] about a server performance.

T - /; T Synthetic workloads emulate characteristics observedin
2 2| T real environments. They are often self-scaling [6], aug-
E — * .o menting their capacity requirements with increasing load

3 r X B] levels. The synthetic nature of these workloads enables

st T r T “ _ =" 1 them to preserve workload features as the file set size
- s B grows. In particular, the SPECsfs97 benchmark [7] (and
T i its predecessor LADDIS [15]) creates a set of files and
os| g applies a pre-defined mix of NFS operations. The ex-

, periments in this paper use Fstress [2], a synthetic, flexi-

% o2 o % o w ble, self-scaling NFS workload generator that can emulate

Accuracy of Peak Rate (%)

Figure 10: Benchmarking cost adapts to the target ac%gaErgef %f7N|'::St workloads, 'Bd;(lj.":g (?PtEESI§97.W@L|ke
racy of the peak rate region for all policies. As the regio SISY/7, PSIress uses probabilistic distributionsve go

narrows, the majority of the cost is incurred at or near tﬁg Wgrﬁllgf‘igerg'x diiirne((j:t?)?cetrseseczgea(:r?gSst;wcff. eFS;r:dSSo?hdedrs
peak rate. Linear and Binsearch incur the same cost cl 5 Pop ’ y Pe,

to the peak rate, and hence their cost converges as t 9 trols. Fstress includes several important workload con
conduct more trials near the peak rate. The cost is shoy rations, such as Web server.ﬁle accesses, to simplify
for DB.TP. Other workloads show similar results. ile system performance evaluation under different work-

loads [22] while at the same time allowing standardized
7 Related Work comparisons across studies.
I§erver benchmarking isolates the performance effects

Several researchers have made a case for statistica]f X :) . . .)
choices in server design and configuration, since it sub-

significant results from system benchmarking, e.g., [5]. i)
Auto-pilot [26] is a system for automating the benchmar octs the server to a steady offered load independent of its

ing process such that a benchmarking experiment can GiRPonse time. Relatn(e to_ Oth?r methodologies such as
tain results with the target confidence and accuracy fo?gpl'caﬂon be_nchmarkllng, I Fe"ab'y stresses t.he system
single test load on the system. We use this idea as a Bgc_ier test to |j[s saturation point where interesting perfor
sis for an efficient and accurate search for the peak rgpgnce behaviors may appear. In the Storage argna,_NFS
through a larger space of a test loads, e.g., to obtain gfLver benchmarking is a powerful tool for investigation
saturation throughput for a server under a given Workloa%f, all layers of the storage stack. A workload mix can be
resource allocation, and configuration. _selected_to stress any part of the sy_stem, e.g., the buffer-
While there are large numbers and types of benchmaﬂ@,lca‘:hmg system, file systqm, or d'?" S.ySte.m.' By vary-
(e.q., [6, 14, 4, 15]) that test the performance limits of129 the component.s alone orin combilnatlon, it is possible
system in a variety of ways, there is a lack of a genetlgl focus on a pa_rt|cular _componel_'lt in the storage stack,
benchmarking methodology that provides benchmarkiﬂgto explore the interaction of choices across the compo-
results from these benchmarks efficiently with confidenB&"tS-
and_ accuracy. Our mgthodology and techniques for bal- Conclusion
ancing the benchmarking cost and accuracy are applicable
to all these benchmarks. This paper focuses on the problem of workbench automa-
Zadok et al. [25] present an exhaustive nine yet@n for storage server benchmarking. We propose an au-
study of file system and storage benchmarking that ii®mated benchmarking system that plans, configures, and
cludes benchmark comparisons, their pros and cons [22jecutes benchmarking experiments on a common hard-
and makes recommendations for systematic benchmatmare pool. The activity is coordinated by an automated
ing methodology that considers a range of workloads feentroller that can consider various factors in plannieg, s
benchmarking the server. Smith et al. [23] make a cageencing, and conducting experiments. These factors in-
for benchmarks the capture realistic application behaglude accuracy vs. cost tradeoffs, availability of hardevar
ior. Ellard et al. [11] show that benchmarking an NFgesources, deadlines, and the results reaped from previous
server is challenging because of the interactions betweperiments.
the server software configurations, workloads, and the re\We present efficient and effective controller policies that
sources allocated to the server. One of the challenge®iat the saturation throughput or peak rate over a space
understanding the interactions is the large space of factof workloads and system configurations. The overall ap-

13

proach consists of iterating over the space of workloads] M. Crovella, M. Tagqu, and A. Bestavrok A Practical Guide To
and Conﬁgurations to f|nd the peak rate for Samp'es in the Heavy Tails chapter 1 (Heavy-TaiIed Probability Distributions in
space. The policies find the peak rate efficiently while

meeting target levels of confidence and accuracy to enst}

statistically rigorous benchmarking results. The comgrol
may use a variety of heuristics and methodologiesto prune Delivery, June 2001.

the sample space to map a complete response service, @, Ellard and M. Seltzer. NFS Tricks and Benchmarkingys.
this is a topic of ongoing study.
APPENDIX: Confidence Intervals

Given N observations of response time froii runs at
given arrival rate), the confidence interval for the re-

(12]

sponse time at that with a desired confidence levelf7s, [13]
is computed as follows:
e Compute the mean server response time: = [14]

Zf.vzl R;/N, whereR; is the server response time
for thed” run. (15]

Compute the standard deviation for the server re-

sponse timeo = \/ZfV:l(Ri —w)?2/(N -1). [16]
Confidence interval for the response time at con-
fidence 100c% is given as: [u — 2,0/V N, +
zp0/\/N], wherep = (1 + ¢)/2, andz, is the quan- [17]
tile of the unit normal distribution at.

If N <= 30, we replacey, byt,.,_1, which is thep-
guantile of at-variate withn — 1 degrees of freedom,
assuming that the response time values fl@muns
come from a normal distribution. We verified that, o
response times do come from a normal distribution
using a normal proability plot.

(18]

References [20]
[1] National laboratory for applied network research (NLRN
http://moat.nlanr. net. 21]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

D. C. Anderson and J. S. Chase. Fstress: A flexible netfiterker-
vice benchmark. Technical Report CS-2002-01, Duke Unityers

Department of Computer Science, January 2002. [22]

M. Arlitt and C. Williamson. Web server workload charadra-

tion: The search for invariants. IRroceedings of the ACM SIG- (23]
METRICS Conference on Measurement and Modeling of Computer
Systemgspages 126-137, April 1996. [24]

T. Bray. Bonnie file system benchmark, 19961 t p: / / www.
textuality.com bonnie.

A. B. Brown, A. Chanda, R. Farrow, A. Fedorova, P. Marsatind [25]
M. L. Scott. The many faces of systems research: And how te eva
uate them. IrHOTOS '05: Proceedings of the 10th conference on
Hot Topics in Operating Systenages 26—26. "USENIX Associ-
ation”, 2005.

P. Chen and D. Patterson. A new approach to I/O performantz6]
evaluation—self-scaling 1/0 benchmarks, predicted 1/Gfqgre
mence. InProceedings of the ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Syst@ages 1-12,
May 1993.

S. P. E. Corporation. SPEC SFS release 3.0 run and repleg,r [27]
2001.

T. P. P. Council. TPC benchmark C standard specificatargust
1992. Edited by Francois Raab.

14

the World Wide Web). Chapman & Hall, 1998.

pé R. Doyle, J. Chase, S. Gadde, and A. Vahdat. The tridklen

effect: Web caching and server request distributiorPioceedings
of the Sixth International Workshop on Web Caching and Ginte

In Proceedings of the FREENIX 2003 Technical Conferepages
101-114, June 2003.

S. Gold. Defects in SFS 2.0 which affect the working-set
July 2001. http://ww. spec. or g/ osg/ sfs97/sfs97_
defects. htm .

R. Jain.The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulatiorg
Modeling John Wiley & Sons, May 1991.

J. Katcher. Postmark: A new file system benchmark. Tieathn
Report 3022, Network Appliance, October 1997.

B. Keith and M. Wittle. LADDIS: The next generation in ISF
file server benchmarking. IRroceedings of the USENIX Annual
Technical Conferen¢gpages 111-128, June 1993.

J. C. Mogul. Brittle Metrics in Operating Systems Resba In
HOTOS '99: Proceedings of the The Seventh Workshop on Het Top
ics in Operating Systempage 90, Washington, DC, USA, 1999.
IEEE Computer Society.

R. H. Myers and D. C. MontgomenRResponse Surface Methodol-
ogy: Process and Product in Optimization Using Designedeixp
ments John Wiley & Sons, Inc., New York, NY, USA, 1995.

C. Roadknight, I. Marshall, and D. Vearer. File popitiacharac-
terisation. InProceedings of the 2nd Workshop on Internet Server
PerformanceMay 1999.

] V. Saito, B. Bershad, and H. Levy. Manageability, aaility and

performance in Porcupine: A highly scalable, cluster-tdassil
service. InProceedings of the 17th ACM Symposium on Operating
System Principlegages 1-15, December 1999.

B. Schroeder, A. Wierman, and M. Harchol-Balter. Opemsus
closed: A cautionary tale. INetworked Systems Design and Im-
plementation (NSDJ)Apr. 2006.

C. Small, N. Ghosh, H. Saleed, M. Seltzer, and K. Smittoe®
systems research measure up, November 1997.

K. Smith. Workload-Specific File System BenchmatRkD thesis,
Harvard University, June 2001.

K. A. Smith. Workload-Specific File System BenchmarkdhD
thesis, Harvard University, Cambridge, MA, Jan 2001.

D. Tang and M. Seltzer. Lies, Damned Lies, and File Syste
Benchmarks. IWVINO: The 1994 Fall HarvestHarvard Division
of Applied Sciences Technical Report TR-34-94, Decembér19

A. Traeger, N. Joukov, C. P. Wright, and E. Zadok. A nine
year study of file system and storage benchmarking. Technica
Report FSL-07-01, Computer Science Department, Stony Broo
University, May 2007. www. f sl . ¢s. sunysh. edu/ docs/

f sbench/ f shench. pdf.

C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and. Zadok.
Auto-pilot: a platform for system software benchmarking.n |
ATEC'05: Proceedings of the USENIX Annual Technical Cenfer
ence 2005 on USENIX Annual Technical Conferepeges 53-53.
USENIX Association, 2005.

A. Yumerefendi, P. Shivam, D. Irwin, P. Gunda, L. Grit, Bem-
berel, J. Chase, and S. Babu. Towards an Autonomic Computing
Testbed. IProc. of Work. on Hot Topics in Autonomic Computing
Jun 2007.

