Decentralized Deduplication in SAN Cluster File Systems

Irfan Ahmad
VMware, Inc.

Austin T. Clements*

Abstract

File systems hosting virtual machines typically con-
tain many duplicated blocks of data resulting in wasted
storage space and increased storage array cache footprint.
Deduplication addresses these problems by storing a sin-
gle instance of each unique data block and sharing it be-
tween all original sources of that data. While deduplica-
tion is well understood for file systems with a centralized
component, we investigate it in a decentralized cluster
file system, specifically in the context of VM storage.

We propose DEDE, a block-level deduplication sys-
tem for live cluster file systems that does not require any
central coordination, tolerates host failures, and takes ad-
vantage of the block layout policies of an existing cluster
file system. In DEDE, hosts keep summaries of their
own writes to the cluster file system in shared on-disk
logs. Each host periodically and independently processes
the summaries of its locked files, merges them with a
shared index of blocks, and reclaims any duplicate blocks.
DEDE manipulates metadata using general file system in-
terfaces without knowledge of the file system implemen-
tation. We present the design, implementation, and eval-
uation of our techniques in the context of VMware ESX
Server. Our results show an 80% reduction in space with
minor performance overhead for realistic workloads.

1 Introduction

Deployments of consolidated storage using Storage Area
Networks (SAN5) are increasing, motivated by universal
access to data from anywhere, ease of backup, flexibil-
ity in provisioning, and centralized administration. SAN
arrays already form the backbone of modern data cen-
ters by providing consolidated data access for multiple
hosts simultaneously. This trend is further fueled by the
proliferation of virtualization technologies, which rely on
shared storage to support features such as live migration
of virtual machines (VMs) across hosts.

Murali Vilayannur
*MIT CSAIL

Jinyuan Li

SANs provide multiple hosts with direct SCSI access
to shared storage volumes. Regular file systems assume
exclusive access to the disk and would quickly corrupt a
shared disk. To tackle this, numerous shared disk clus-
ter file systems have been developed, including VMware
VMES [21], RedHat GFS [15], and IBM GPFS [18],
which use distributed locking to coordinate concurrent
access between multiple hosts.

Cluster file systems play an important role in virtual-
ized data centers, where multiple physical hosts each run
potentially hundreds of virtual machines whose virtual
disks are stored as regular files in the shared file sys-
tem. SANs provide hosts access to shared storage for
VM disks with near native SCSI performance while also
enabling advanced features like live migration, load bal-
ancing, and failover of VMs across hosts.

These shared file systems represent an excellent oppor-
tunity for detecting and coalescing duplicate data. Since
they store data from multiple hosts, not only do they con-
tain more data, but data redundancy is also more likely.
Shared storage for VMs is a ripe application for dedupli-
cation because common system and application files are
repeated across VM disk images and hosts can automat-
ically and transparently share data between and within
VMs. This is especially true of virtual desktop infras-
tructures (VDI) [24], where desktop machines are virtual-
ized, consolidated into data centers, and accessed via thin
clients. Our experiments show that a real enterprise VDI
deployment can expend as much as 80% of its overall
storage footprint on duplicate data from VM disk images.
Given the desire to lower costs, such waste provides mo-
tivation to reduce the storage needs of virtual machines
both in general and for VDI in particular.

Existing deduplication techniques [1,3-5,8,14,16,17,
26] rely on centralized file systems, require cross-host
communication for critical file system operations, per-
form deduplication in-band, or use content-addressable
storage. All of these approaches have limitations in our
domain. Centralized techniques would be difficult to ex-

tend to a setting with no centralized component other
than the disk itself. Existing decentralized techniques
require cross-host communication for most operations,
often including reads. Performing deduplication in-band
with writes to a live file system can degrade overall sys-
tem bandwidth and increase IO latency. Finally, content-
addressable storage, where data is addressed by its con-
tent hash, also suffers from performance issues related
to expensive metadata lookups as well as loss of spatial
locality [10].

Our work addresses deduplication in the decentralized
setting of VMware’s VMEFS cluster file system. Unlike
existing solutions, DEDE coordinates a cluster of hosts
to cooperatively perform block-level deduplication of the
live, shared file system. It takes advantage of the shared
disk as the only centralized point in the system and does
not require cross-host communication for regular file sys-
tem operations, retaining the direct-access advantage of
SAN file systems. As a result, the only failure that can
stop deduplication is a failure of the SAN itself, without
which there is no file system to deduplicate. Because
DEDE is an online system for primary storage, all dedu-
plication is best-effort and performed as a background
process, out-of-band from writes, in order to minimize
impact on system performance. Finally, unlike other sys-
tems, DEDE builds block-level deduplication atop an ex-
isting file system and takes advantage of regular file sys-
tem abstractions, layout policy, and block addressing. As
a result, deduplication introduces no additional metadata
IO when reading blocks and permits in-place writes to
blocks that have no duplicates.

This paper presents the design of DEDE. We have im-
plemented a functional prototype of DEDE for VMware
ESX Server [23] atop VMware VMFS. Using a variety
of synthetic and realistic workloads, including data from
an active corporate VDI installation, we demonstrate that
DEDE can reduce VM storage requirements by upwards
of 80% at a modest performance overhead.

Section 2 provides an overview of the architecture of
our system and our goals. Section 3 details the system’s
design and implementation. We provide a quantitative
evaluation of our system in Section 4, followed by a dis-
cussion of related work in Section 5. Finally, we conclude
in Section 6.

2 System Overview

DEDE operates in a cluster setting, as shown in Figure 1,
in which multiple hosts are directly connected to a sin-
gle, shared SCSI volume and use a file system designed
to permit symmetric and cooperative access to the data
stored on the shared disk. DEDE itself runs on each host
as a layer on top of the file system, taking advantage of
file system block layout policies and native support for

Figure 1: Cluster configuration in which multiple hosts
concurrently access the same storage volume. Each host
runs the VMFS file system driver (vm£s3), the dedupli-
cation driver (dedup), and other processes such as VMs.

copy-on-write (COW) blocks. In this section, we provide
a brief overview of our approach to deduplication and the
file system support it depends on.

DEDE uses content hashes to identify potential dupli-
cates, the same basic premise shared by all deduplication
systems. An index stored on the shared file system and
designed for concurrent access permits efficient duplicate
detection by tracking all known blocks in the file system
by their content hashes.

In order to minimize impact on critical file system oper-
ations such as reading and writing to files, DEDE updates
this index out of band, buffering updates and applying
them in large, periodic batches. As part of this process,
DEDE detects and eliminates duplicates introduced since
the last index update. This can be done as an infrequent,
low priority background task or even scheduled during
times of low activity. Unlike approaches to deduplication
such as content-addressable storage that integrate content
indexes directly into the file system storage management,
DEDE’s index serves solely to identify duplicate blocks
and plays no role in general file system operations.

DEDE divides this index update process between hosts.
Each host monitors its own changes to files in the cluster
file system and stores summaries of recent modifications
in on-disk write logs. These logs include content hashes
computed in-band, as blocks are written to disk. Each
host periodically consumes the write logs of files it has
(or can gain) exclusive access to and updates the shared
index to reflect these recorded modifications. In the pro-
cess, it discovers and reclaims any block whose content is
identical to the content of some previously indexed block.
Having each host participate in the index update process
allows the hosts to divide and distribute the burden of
deduplication, while sharing the index allows hosts to
detect duplicates even if they are introduced by separate
hosts.

Out-of-band index updates mean DEDE must be re-
silient to stale index entries that do not reflect the lat-
est content of recently updated blocks. Indeed, this
is essentially unavoidable in a decentralized setting be-
cause of communication delays alone. While this means
DEDE generally must verify block contents when updat-
ing the index, this resilience has an important implica-
tion: DEDE’s correctness does not depend on its ability
to monitor every write to the file system. This has im-
portant performance benefits. First, updates to write logs
do not have to be crash-consistent with updates to file
contents, which both simplifies fault tolerance and allows
hosts to buffer updates to write logs to minimize addi-
tional IO. Second, this allows users to trade off the CPU
and memory overhead of write monitoring for peak file
system performance on a per-file basis. For example, a
user could simply disable deduplication for VMs that are
performance-critical or unlikely to contain much dupli-
cate data. Finally, this allows the write monitor to shed
work if the system is overloaded.

Because DEDE operates on a live file system, it specif-
ically optimizes for unique blocks (blocks with no known
duplicates). Unlike shared blocks, these blocks remain
mutable after deduplication. The mutability of unique
blocks combined with DEDE’s resilience to stale index
information means these blocks can be updated in place
without the need to allocate space for a copy or to syn-
chronously update the index. As a result, deduplication
has no impact on the performance of writing to unique
blocks, a highly desirable property because these are pre-
cisely the blocks that do not benefit from deduplication.

Similar to some other deduplication work related to
virtual disks [10, 13], DEDE uses fixed-size blocks. Un-
like stream-oriented workloads such as backup, where
variable-sized chunks typically achieve better deduplica-
tion [26], our input data is expected to be block-structured
because guest file systems (e.g., ext3, NTES) typically
divide the disk into fixed-size 4 KB or 8 KB blocks them-
selves. Consistent with this expectation, earlier work [12]
and our own test results (see Section 4.1), we use a block
size of 4 KB.

2.1 Required File System Abstractions

Most approaches to deduplication unify duplicate elimi-
nation and storage management, supplanting the file sys-
tem entirely. DEDE, in contrast, runs as a layer on top
of VMFS, an existing file system. This layer finds poten-
tially identical blocks and identifies them to the file sys-
tem, which is then responsible for merging these blocks
into shared, copy-on-write blocks.

DEDE requires the file system to be block oriented
and to support file-level locking. The file system block
size must also align with the deduplication block size, a

requirement VMFS’s default 1 MB block size, unfortu-
nately, does not satisfy. Our only non-trivial change to
VMES was to add support for typical file system block
sizes (i.e., 4 KB), as detailed later in Section 2.2.

Finally, DEDE requires block-level copy-on-write sup-
port, a well understood, but nevertheless uncommon fea-
ture supported by VMFS. Specifically, it requires an un-
usual compare-and-share operation, which replaces two
blocks with one copy-on-write block after verifying that
the blocks are, in fact, identical (using either bit-wise
comparison or a content hash witness). Despite the speci-
ficity of this operation, it fits naturally into the structure
of block-level copy-on-write and was easy to add to the
VMES interface. DEDE manipulates file system blocks
solely through this interface and has no knowledge of the
underlying file system representation.

There are two noteworthy capabilities that DEDE does
not require of the file system. First, hosts running DEDE
never modify the metadata of files they do not have ex-
clusive locks on, as doing so would require cross-host
synchronization and would complicate per-host metadata
caching. As a result, a host that discovers a duplicate
block between two files cannot simply modify both files
to point to the same block if one of the files is locked by
another host. Instead, when DEDE detects a duplicate
between files locked by different hosts, it uses a third
file containing a merge request as an intermediary. One
host creates a merge request containing a COW reference
to the deduplicated block, then passes ownership of the
merge request file’s lock to the other host, which in turn
replaces the block in its file with a reference to the block
carried by the merge request.

Second, DEDE does not require the file system to ex-
pose a representation of block addresses. Much like any
regular application, it only refers to blocks indirectly, by
their offset in some locked file, which the file system can
resolve into a block address. This restricts the design of
our index, since it cannot simply refer to indexed blocks
directly. However, this limitation simplifies our overall
design, since requiring the file system to expose block
addresses outside the file system’s own data structures
would interfere with its ability to free and migrate blocks
and could result in dangling pointers. Worse, any op-
erations introduced to manipulate blocks directly would
conflict with file-level locking and host metadata caching.

In lieu of referring to blocks by block addresses, DEDE
introduces a virtual arena file. This is a regular file in the
file system, but it consists solely of COW references to
shared blocks that are present in at least one other file.
This file acts as an alternate view of all shared blocks
in the system: DEDE identifies shared blocks simply by
their offsets in the virtual arena file, which the file system
can internally resolve to block addresses using regular
address resolution.

Because DEDE builds on the underlying file system,
it inherits the file system’s block placement policy and
heuristics. If the underlying file system keeps file blocks
sequential, blocks will generally remain sequential after
deduplication. Shared blocks are likely to be sequen-
tial with respect to other blocks in at least one file, and
common sequences of shared blocks are likely to remain
sequential with respect to each other. Furthermore, the
placement and thus sequentiality of unique blocks is com-
pletely unaffected by the deduplication process; as a re-
sult, deduplication does not affect IO performance to indi-
vidual unique blocks because they do not require copying,
and it maintains sequential IO performance across spans
of unique blocks.

2.2 VMFS

Many of the design decisions in DEDE were influenced
by the design of its substrate file system, VMFS. VMFS
is a coordinator-less cluster file system [21] designed to
allow hosts to cooperatively maintain a file system stored
on a shared disk. In this section, we provide a quick
overview of how VMFS addresses and manages concur-
rent access to its resources in order to provide better con-
text for the design of DEDE.

VMES organizes the shared disk into four different re-
source pools: inodes, pointer blocks, file blocks, and sub-
blocks. Inodes and pointer blocks play much the same
role as in traditional UNIX file systems, storing per-file
metadata and pointers to the blocks containing actual file
content. File blocks and sub-blocks both store file con-
tent, but are different sizes, as discussed below. The di-
visions between these pools are currently fixed at format
time and can only be expanded by adding more storage,
though this is not a fundamental limitation. In each pool,
resources are grouped into clusters. The header for each
cluster maintains metadata about all of its contained re-
sources; most importantly, this includes a reference count
for each individual resource and tracks which resources
are free and which are allocated.

In order to support concurrent access by multiple hosts
to file and resource data, VMFS uses a distributed lock
manager. Unlike most cluster file systems, which use an
IP network for synchronization, VMFS synchronizes all
file system accesses entirely through the shared disk itself
using on-disk locks. VMFS ensures atomic access to on-
disk lock structures themselves using SCSI-2-based LUN
reservations to guard read-modify-write critical sections.
In addition to taking advantage of the reliability of stor-
age area networks, using the same means to access both
file system state and synchronization state prevents “split
brain” problems typical of IP-based lock managers in
which multiple hosts can access the file system state but
cannot communicate locking decisions with each other.

inode

inode

Figure 2: Mixed block sizes allow any 1 MB file block to
be divided into 256 separate 4 KB sub-blocks.

VMES protects file data from concurrent access by as-
sociating a coarse-grain lock with each file that covers all
of a file’s metadata (its inode and pointer blocks) as well
as all of the file blocks and sub-blocks comprising the
file’s content. Files in VMFS tend to be locked for long
durations (e.g., a VM’s disk files are locked as long as
the VM is powered on). DEDE respects file system lock-
ing by partitioning the deduplication process according
to which hosts hold which file locks.

VMES protects resource metadata using per-cluster
locks. Thus, allocation and deallocation of resources
must lock all clusters containing any of the resources
involved. The number of resources packed per cluster
reflects a trade-off between locking overhead and cross-
host cluster lock contention. Higher cluster density al-
lows hosts to manipulate more resources with fewer locks,
but at the cost of increased lock contention. Since DEDE
stresses the sub-block resource pool more than typical
VMES usage, we increase the sub-block cluster density
from 16 to 128 resources per cluster, but otherwise use
the default VMEFES densities.

VMFS maintains two separate resource types for stor-
ing file content: file blocks and sub-blocks. File sizes in
VMES typically fit a bimodal distribution. Virtual ma-
chine disks and swap files are usually several gigabytes,
while configuration and log files tend to be a few kilo-
bytes. Because of this, VMFS uses 1 MB file blocks
to reduce metadata overhead and external fragmentation
for large files, while for small files, VMFS uses smaller
sub-blocks to minimize internal fragmentation. DEDE
must be able to address individual 4 KB blocks in order
to COW share them, so we configure VMFS with 4 KB
sub-blocks. Furthermore, rather than simply eschewing
the efficiency of 1 MB blocks and storing all file content
in 4 KB blocks, we extend VMFS to support mixed block
sizes, depicted in Figure 2, so that DEDE can address
individual 4 KB blocks of a file when it needs to share
a duplicate block, but when possible still store unique
regions of files in efficient 1 MB blocks. This change
introduces an optional additional pointer block level and

allows any file block-sized region to be broken into 256
separate 4 KB blocks, which, in turn, add up to the origi-
nal file block. This can be done dynamically to any 1 MB
block based on deduplication decisions, and leaves ad-
dress resolution for other data intact and efficient.

Beyond these unusual block sizes, VMFS supports a
number of other uncommon features. Most important to
DEDE is support for block-level copy-on-write (COW).
Each file or sub-block resource can be referenced from
multiple pointer blocks, allowing the same data to be
shared between multiple places in multiple files. Each
reference to a shared resource is marked with a COW bit,
indicating that any attempts to write to the resource must
make a private copy in a freshly allocated resource and
write to that copy instead. Notably, this COW bit is as-
sociated with each pointer to the resource, not with the
resource itself. Otherwise, every write operation would
need to take a cluster lock to check the COW bit of the
destination block, even if the block was not COW. How-
ever, as a result, sharing a block between two files re-
quires file locks on both files, even though only one of
the references will change. Thus, DEDE must use merge
requests for all cross-host merging operations.

VMES forms the underlying substrate of DEDE and
handles critical correctness requirements such as special-
izing COW blocks and verifying potential duplicates, al-
lowing DEDE to focus on duplicate detection. Virtual
arenas and merge requests allow DEDE to achieve com-
plex, decentralized manipulations of the file system struc-
ture without knowledge of the file system representation,
instead using only a few general-purpose interfaces.

3 Design and Implementation

In this section, we provide details of the design and im-
plementation of DEDE’s best-effort write monitoring sub-
system and the out-of-band indexing and duplicate elimi-
nation process.

3.1 Write Monitoring

Each host runs a write monitor, as shown in Figure 3,
which consists of a lightweight kernel module (dedup)
that monitors all writes by that host to files in the file
system and a userspace daemon (dedupd) that records
this information to logs stored in the shared file system.
The write monitor is the only part of the system that lies
in the IO critical path of the file system, so the write
monitor itself must incur as little additional disk IO and
CPU overhead as possible.

The kernel module provides the userspace daemon
with a modification stream indicating, for each write done
by the host: the file modified, the offset of the write, and

File Block# SHA-1
D.VITTOK 87 Q& 7D0U0..

a.vmdk 32 6cd412..
a.vmdk 33 12067c..
a.vmdk 34 c277d6..
b.vmdk 87 ab8849..

[] []

(dedup) b.vmdk 19 373dc2..
a.vmdk write log l
-)(32:6cd412.)33:12067c.)34:c277d6.)

=2 b.vmdk write log
—) 14:1aa2a3..)87:ab8849.)19:373dc2.)

Figure 3: Only a lightweight kernel module lies in the
1O critical path, opportunistically calculating hashes of
blocks while they are still in memory. A userspace dae-
mon (dedupd) flushes write logs to disk periodically. Du-
plicate detection and elimination occur out of band.

the SHA-1 hashes of all modified blocks. While the in-
band CPU overhead of the monitor could have been virtu-
ally eliminated by computing these hashes lazily (e.g., at
indexing time), this would have required reading the mod-
ified blocks back from disk, resulting in a large amount
of additional random IO. We opted instead to eliminate
the extra IO by computing these hashes while the blocks
were in memory, though the trade-off between run-time
CPU overhead and deduplication-time 1O overhead could
be set dynamically by user-defined policy.

The userspace daemon divides the modification stream
by file, aggregates repeated writes to the same block, and
buffers this information in memory, periodically flushing
it to individual write log files associated with each regular
file. These write logs are stored on the shared file system
itself, so even if a host fails or transfers ownership of a
file’s lock, any other host in the system is capable of read-
ing logs produced by that host and merging information
about modified blocks into the index.

The daemon can safely buffer the modification stream
in memory because the index update process is designed
to deal with stale information. Without this, write logs
would have to be consistent with on-disk file state, and
each logical write to the file system would result in at
least two writes to the disk. Instead, buffering allows our
system to absorb writes to over 150 MB of file blocks
into a single infrequent 1 MB sequential write to a log
file. This is the only additional IO introduced by the write
monitor.

Similarly, we rely on the best-effort property of write
monitoring to minimize IO in the case of partial block
writes. If a write to the file system does not cover an
entire block, the monitor simply ignores that write, rather
than reading the remainder of the block from disk simply
to compute its hash. In practice, this is rarely a problem
when writes originate from a virtual machine, because

guest operating systems typically write whole guest file
system blocks, which are generally at least 4 KB.!

Write monitoring can be enabled or disabled per file.
If the performance of some VM is too critical to incur the
overhead of write monitoring or if the system administra-
tor has a priori knowledge that a VM’s duplication ratio
is small, such VMs can be opted out of deduplication.

3.2 The Index

The shared on-disk index tracks all known blocks in the
file system by their content hashes. As discussed in Sec-
tion 2, each host updates this index independently, in-
corporating information about recent block modifications
from the write logs in large batches on a schedule set by
user-defined policy (e.g., only during off-peak hours). A
match between a content hash in the index and that of
a recently modified block indicates a potential duplicate
that must be verified and replaced with a copy-on-write
reference to the shared block.

The index acts as an efficient map from hashes to
block locations. Because DEDE treats unique blocks
(those with only a single reference) differently from
shared blocks (those with multiple references), each in-
dex entry can likewise be in one of two states, denoted
Unique(H, f,0) and Shared(H,a). An index entry iden-
tifies a unique block with hash H by the inumber f of
its containing file and its offset o within that file. Be-
cause index updates are out-of-band and unique blocks
are mutable, these entries are only hints about a block’s
hash. Thus, because a mutable block’s contents may have
changed since it was last indexed, its contents must be ver-
ified prior to deduplicating it with another block. Shared
blocks, on the other hand, are marked COW and thus their
content is guaranteed to be stable. The index identifies
each shared block by its offset a in the index’s virtual
arena, discussed in the next section.

3.2.1 Virtual Arena

When duplicate content is found, DEDE reclaims all but
one of the duplicates and shares that block copy-on-write
between files. Because hosts can make per-file, mutable
copies of shared blocks at any time without updating the
index, we cannot simply identify shared blocks by their
locations in deduplicated files, like we could for unique
blocks. The index needs a way to refer to these shared
blocks that is stable despite shifting references from dedu-
plicated files. As discussed earlier, DEDE cannot simply
store raw block addresses in the index because exposing
these from the file system presents numerous problems.

Unfortunately, owing to an ancient design flaw in IBM PC parti-
tion tables, guest writes are not necessarily aligned with DEDE blocks.
Section 4.1 has a more detailed analysis of this.

Instead, we introduce a virtual arena file as an additional
layer of indirection that provides stable identifiers for
shared blocks without violating file system abstractions.

The virtual arena is a regular file, but unlike typical
files, it doesn’t have any data blocks allocated specifi-
cally for it (hence, it is virtual). Rather, it serves as an
alternate view of all shared blocks in the file system. In
this way, it is very different from the arenas used in other
deduplication systems such as Venti [16], which store
actual data blocks addressed by content addresses.

In order to make a block shared, a host introduces an
additional COW reference to that block from the virtual
arena file, using the same interface that allows blocks
to be shared between any two files. Apart from uncol-
lected garbage blocks, the virtual arena consumes only
the space of its inode and any necessary pointer blocks.
Furthermore, this approach takes advantage of the file
system’s block placement policies: adding a block to the
virtual arena does not move it on disk, so it is likely to
remain sequential with the original file.

The index can then refer to any shared block by its
offset in the virtual arena file, which the file system can
internally resolve to a block address, just as it would for
any other file. The virtual arena file’s inode and pointer
block structure exactly form the necessary map from the
abstract, stable block identifiers required by the index to
the block addresses required by the file system.

3.2.2 On-disk Index Representation

DEDE stores the index on disk as a packed list of entries,
sorted by hash. Because DEDE always updates the index
in large batches and since the hashes of updates exhibit
no spatial locality, our update process simply scans the
entire index file linearly in tandem with a sorted list of
updates, merging the two lists to produce a new index
file. Despite the simplicity of this approach, it outper-
forms common index structures optimized for individual
random accesses (e.g., hash tables and B-trees) even if the
update batch size is small. Given an average index entry
size of b bytes, a sequential IO rate of s bytes per second,
and an average seek time of k seconds, the time required
to apply U updates using random access is Uk, whereas
the time to scan and rewrite an index of / entries sequen-
tially is 2/b/s. If the ratio of the batch size to the index size
exceeds U/1 = 2b/sk, sequentially rewriting the entire in-
dex is faster than applying each update individually. For
example, given an entry size of 23 bytes and assuming
a respectable SAN array capable of 150 MB/s and 8 ms
seeks, the batch size only needs to exceed 0.004% of the
index size. Furthermore, hosts defer index updates until
the batch size exceeds some fixed fraction of the index
size (at least 0.004%), so the amortized update cost re-
mains constant regardless of index size.

In order to allow access to the index to scale with the
number of hosts sharing the file system, while still re-
lying on file locking to prevent conflicting index access,
hosts shard the index into multiple files, each represent-
ing some subdivision of the hash space. Once the time a
host takes to update a shard exceeds some threshold, the
next host to update that shard will split the hash range
covered by the shard in half and write out the two result-
ing sub-shards in separate files. This technique mirrors
that of extensible hashing [6], but instead of bounding the
size of hash buckets, we bound the time required to up-
date them. Combined with file locking, this dynamically
adjusts the concurrency of the index to match demand.

3.3 Indexing and Duplicate Elimination

As the index update process incorporates information
about recently modified blocks recorded in the write logs,
in addition to detecting hash matches that indicate poten-
tial duplicates, it also performs the actual COW sharing
operations to eliminate these duplicates. The duplicate
elimination process must be interleaved with the index
scanning process because the results of block content ver-
ification can affect the resulting index entries.

In order to update the index, a host sorts the recent
write records by hash and traverses this sorted list of
write records in tandem with the sorted entries in the
index. A matching hash between the two indicates a po-
tential duplicate, which is handled differently depending
on the state of the matching index entry. Figure 4 gives
an overview of all possible transitions a matching index
entry can undergo, given it current state.

When DEDE detects a potential duplicate, it depends
on the file system’s compare-and-share operation, de-
scribed in Section 2.1, to atomically verify that the
block’s content has not changed and replace it with a
COW reference to another block. Based on user-specified
policy, this verification can either be done by reading the
contents of the potential duplicate block and ensuring that
it matches the expected hash (i.e., compare-by-hash), or
by reading the contents of both blocks and performing
a bit-wise comparison (i.e., compare-by-value). If the
latter policy is in effect, hash collisions reduce DEDE’s
effectiveness, but do not affect its correctness. Further-
more, because hashes are used solely for finding poten-
tial duplicates, if SHA-1 is ever broken, DEDE has the
unique capability of gracefully switching to a different
hash function by simply rebuilding its index. The con-
tent verification step can be skipped altogether if a host
can prove that a block has not changed; for example, if
it has held the lock on the file containing the block for
the entire duration since the write record was generated
and no write records have been dropped. While this is a
fairly specific condition, it is often met in DEDE’s target

@ Unique(H,f,0)

(a) When the hash H of the block at offset o in file f is not in the
index, a new unique entry is added.

Unique(H,f,0) Verify Shared(H,a)

(b) When a second occurrence of hash H is found and the block’s
content passes verification, we place it in the virtual arena and
upgrade the index entry to shared.

Shared(H,a) Verify

(c) When a duplicate of a shared block is found, we verify its con-
tents and replace the block with a reference to the existing shared
block.

Unique(H,f,0)

Shared(H,a)

(d) Unique entries are garbage collected when the indexing process
finds a write record to that block with a different hash. Shared
entries are garbage collected when only the reference from the
virtual arena remains.

Figure 4: All possible updates to an index entry.

setting because locks on VM disks are usually held for
very long durations.

3.3.1 Single Host Indexing

We begin with an explanation of the index update process
assuming only a single host with exclusive access to the
file system. In a single host design, the host can mod-
ify the metadata of any file. We lift this assumption in
the next section, where we extend the process to support
multiple hosts.

Any write record without a corresponding hash in
the index indicates a new, unique block. Even though
this write record may be stale, because index entries for
unique blocks are only hints, it is safe to simply add
the new unique block to the index without verifying the
block’s content, performing an absent-to-unique transi-
tion as shown in Figure 4(a). This single sequential,
buffered write to the index is the only IO incurred when
processing a new unique block.

When a write record’s hash corresponds to an index en-
try for a unique block, then the host attempts to share both
blocks (freeing one of them in the process) and upgrade
the index entry to refer to the shared block. This unique-
to-shared transition is shown in Figure 4(b). However, be-
cause the write record and index entry may both be stale,
the host must verify the contents of both blocks before ac-

tually sharing them. Assuming this verification succeeds,
the file system replaces both blocks with a shared block
and the host inserts this block into the virtual arena and
upgrades the index entry to refer to the new, shared block.

Finally, if a write record’s hash matches an index entry
for a shared block, then the host attempts to eliminate this
newly detected potential duplicate, performing a shared-
to-shared transition as shown in Figure 4(c). Because
the write record may be stale, it first verifies that the con-
tent of the potential duplicate has not changed. If this
succeeds, then this block is freed and the reference to
the block is replaced with a reference to the shared block
found via the virtual arena.

3.3.2 Multi-Host Indexing

Extending the index update process to multiple hosts, we
can no longer assume that a host will have unfettered
access to every file. In particular, hosts can only ver-
ify blocks and modify block pointers in files they hold
exclusive locks on. As a result, indexing must be dis-
tributed across hosts. At the same time, we must min-
imize communication between hosts, given the cost of
communicating via the shared disk. Thus, sharing of
blocks is done without any blocking communication be-
tween hosts, even if the blocks involved are in use by
different hosts.

In the multi-host setting, the write logs are divided
amongst the hosts according to which files each host has
(or can gain) exclusive access to. While this is necessary
because hosts can only process write records from files
they hold exclusive locks on, it also serves to divide the
deduplication workload between the hosts.

Absent-to-unique transitions and shared-to-shared tran-
sitions are the same in the multi-host setting as in the
single host setting. Adding a new, unique block to the
index requires neither block verification, nor modifying
block pointers. Shared-to-shared transitions only verify
and rewrite blocks in the file referenced by the current
write log, which the host processing the write log must
have an exclusive lock on.

Unique-to-shared transitions, however, are compli-
cated by the possibility that the file containing the unique
block referenced by the index may be locked by some
host other than the host processing the write record.
While this host may not have access to the indexed block,
it does have access to the block referred to by the write
log. The host verifies this block’s content and promotes
it to a shared block by adding it to the virtual arena and
upgrading the index entry accordingly. However, in or-
der to reclaim the originally indexed block, the host must
communicate this deduplication opportunity to the host
holding the exclusive lock on the file containing the orig-
inally indexed block using the associated merge request

file. The host updating the index posts a merge request for
the file containing the originally indexed block. This re-
quest contains not only the offset of the unique block, but
also another COW reference to the shared block. Hosts
periodically check for merge requests to the files they
have exclusive locks on, verifying any requests they find
and merging blocks that pass verification. The COW ref-
erence to the shared block in the merge request allows
hosts to process requests without accessing the arena.

3.3.3 Garbage Collection

As the host scans the index for hash matches, it also
garbage collects unused shared blocks and stale index
entries, as shown in Figure 4(d). For each shared block
in the index, it checks the file system’s reference count
for that block. If the block is no longer in use, it will
have only a single reference (from the virtual arena), in-
dicating that it can be removed from the virtual arena and
freed. In effect, this implements a simple form of weak
references without modifying file system semantics. Fur-
thermore, this approach allows the virtual arena to double
as a victim cache before garbage collection has a chance
to remove unused blocks.

Unique blocks do not need to be freed, but they can
leave behind stale index entries. Hosts garbage collect
these by removing any index entries that refer to any
block in any of the write records being processed by the
host. In the presence of dropped write records, this may
not remove all stale index entries, but it will ensure that
there is at most one index entry per unique block. In this
case, any later write or potential duplicate discovery in-
volving a block with a stale index entry will remove or
replace the stale entry. The garbage collection process
also check for file truncations and deletions and removes
any appropriate index entries.

4 Evaluation

In this section, we present results from the evaluation of
our deduplication techniques using various microbench-
marks and realistic workloads. We begin in Section 4.1
with experiments and analysis that shows the space sav-
ings achievable with deduplication as well as the space
overheads introduced by it, using data from a real corpo-
rate VDI deployment. We also draw a comparison against
linked clones, an alternative way of achieving space sav-
ings.

We have implemented a functional prototype of DEDE
atop VMware VMFS. Although we haven’t spent any sig-
nificant time optimizing it, it is worthwhile examining
its basic performance characteristics. In Section 4.2, we
present the run-time performance impact of write mon-
itoring and other changes to the file system introduced

by deduplication, as well as the run-time performance
gained from improved cache locality. Finally, we look
at the performance of the deduplication process itself in
Section 4.3.

4.1 Analysis of Virtual Disks in the Wild

To evaluate the usefulness of deduplication in our target
workload segment of VDI, we analyzed the virtual disks
from a production corporate VDI cluster serving desktop
VMs for approximately 400 users on top of a farm of
32 VMware ESX hosts. Out of these, we selected 113
VMs at random to analyze for duplicate blocks, totaling
1.3 TB of data (excluding blocks consisting entirely of
NULL bytes). Each user VM belonged exclusively to
a single corporate user from a non-technical department
like marketing or accounting. The VMs have been in use
for six to twelve months and all originated from a small
set of standardized Windows XP images. From our expe-
rience, this is typical for most enterprise IT organizations,
which limit the variation of operating systems to control
management and support costs.

Figure 5 shows the reduction in storage space for this
VDI farm using deduplication block sizes between 4 KB
and 1 MB. As expected, VDI VMs have a high degree
of similarity, resulting in an ~80% reduction in storage
footprint for the 4 KB block size, which falls off loga-
rithmically to ~35% for 1 MB blocks. Deduplication
at the 4 KB block size reduces the original 1.3 TB of
data to 235 GB. Given the significant advantage of small
block sizes, we chose to use a default 4 KB block size
for DEDE. However, a reasonable argument can be made
for the smaller metadata storage and caching overhead
afforded by an 8 KB block size. We are exploring this as
well as dynamic block size selection as future work.

Figure 6 shows a CDF of the same data, detailing the
duplication counts of individual blocks in terms of the
number of references to each block in the file system af-
ter deduplication. For example, at the 4 KB block size,
94% of deduplicated blocks are referenced 10 or fewer
times by the file system (equivalently, 6% of deduplicated
blocks are referenced more than 10 times). Thus, in the
original data, most blocks were duplicated a small num-
ber of times, but there was a very long tail where some
blocks were duplicated many times. At the very peak of
the 4 KB distribution, some blocks were duplicated over
100,000 times. Each of these blocks individually repre-
sented over 400 MB of space wasted storing duplicate
data. Overall, this data serves to show the potential for
space savings from deduplication in VDI environments.

90%

m DeDe
80% - @ Realigned partitions |
O Linked clones only
70% -
60% -
50% -
40%

30% -+

20% +

Reduction in storage space

10% +

0% L
4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

Block size

Figure 5: Duplication available at various block sizes and
for different variations on the approach. Data is from a
production VDI deployment of 113 Windows XP VMs.

100%

1MB
512KB
- 256KB
128KB
-~ 64KB
32KB
-~ 16KB
8KB
85% — 4KB

95% -+

90% ./

80% /7

75%

Fraction of deduplicated blocks

70%

1 10 100 1000

Maximum reference count

Figure 6: CDF of block duplication counts. A few blocks
occur over 100,000 times. Data is from the same deploy-
ment as shown in Figure 5.

4.1.1 Space Overheads

While DEDE reduces the amount of space required by file
data, it requires additional space for both the index and
the additional metadata introduced by mixed block sizes.
For our VDI data set, at a 4 KB block size, this additional
data totaled 2.7 GB, a mere 1.1% overhead beyond the
deduplicated file data.

The index represented 1.5 GB of this overhead,
194 MB of which was file system metadata (pointer
blocks) for the virtual arena. The size of the index scales
linearly with the size of the deduplicated data because
each deduplicated block has one index entry. However,
its relative overhead does vary with the ratio of unique to
shared blocks, because shared blocks require 4 bytes to
locate plus virtual arena metadata, while unique blocks
require 12 bytes beyond the 18 bytes required on average
for each entry’s header and hash. However, even in the
worst case, the index represents only 0.73% overhead.

Prior to deduplication, file metadata (inodes and
pointer blocks) represented a mere 0.0004% overhead,
owing to the efficiency of tracking VMFS’s 1 MB file
blocks. After deduplication, each 1 MB block that was
divided into sub-blocks requires a new pointer block at
1 KB apiece. As a result, metadata overhead increased
to 0.49% after deduplication, or 1.1 GB of data in total.
While this is a dramatic increase, metadata is still a very
small fraction of the overall space.

4.1.2 Partition Alignment Issues

Our approach of dividing disks into fixed size blocks is
sensitive to the alignment of data on those disks. Un-
fortunately, for historical reasons, the first partition of
partition tables created by utilities like fdisk on com-
modity PC systems has a start address 512 bytes short
of a 4 KB boundary, which can in turn cause all logical
file system blocks to straddle 4 KB disk block boundaries.
This has well-known negative performance effects [22],
particularly for storage array caches, which are forced to
fetch two blocks for each requested file system block. We
were initially concerned that this partition misalignment
could negatively impact deduplication opportunities, so
we “fixed” the alignment of our VDI data by shifting all
of the virtual disks by 512 bytes. Figure 5 compares the
results of deduplication with and without this realignment
and shows that, in practice, partition alignment actually
had very little impact on achieved deduplication. While
this may still prove to be a problem for well-aged guest
file systems, if necessary, it can be solved in a virtual-
ized environment by padding the virtual disk image file
to realign the guest file system blocks with the host file
system blocks.

4.1.3 Deduplication Versus Linked Clones

Linked clones are a simpler space saving alternative to
deduplication where individual user VMs are initially
constructed as block-level COW snapshots of a golden
master VM. This uses the same COW mechanism as
DEDE, but all sharing happens during VM creation and
the user VM images strictly diverge from the base disk
and from each other over time.

In order to compare the efficacy of linked clones versus
full deduplication, we simulated the structured sharing of
linked clones on our VDI data set. This comparison was
necessarily imperfect because we had access to neither
the base disks nor ancestry information for the VDI VMs,
but it did yield a lower bound on the total space required
by linked clones. The analysis used our regular dedupli-
cation algorithm but restricted it to deduplicating blocks
only when they were at the same offset in two files, a
reasonable approximation to user disks that are a mini-

Yo~ Baseline DEDE

Sequential || 7 (MB/s) | L (ms) | CPU || T (MB/s) | L (ms) | CPU
100% 233 86 [33% [233 8.6 [220%
0% 84 24 | 16% 84 24 | 92%

Table 1: Overhead of in-band write monitoring on a pure
10 workload. Results are in terms of throughput (7) and
latency (L) for Iometer issuing 32 outstanding 64 KB IOs
to a 5 GB virtual disk. The CPU column denotes the
utilized processor time relative to a single core.

mal delta from the base disk (e.g., no security patches or
software updates have been installed in the user disks).

Figure 5 compares the savings achieved by linked
clones against those achieved by DEDE, again at vari-
ous COW block sizes. Linked clones max out at a 44%
reduction in space, reducing the 1.3 TB of original data
to 740 GB, a storage requirement over three times larger
than full deduplication achieved.

4.2 Run-time Effects of Deduplication

DEDE operates primarily out of band and engenders no
slowdowns for accessing blocks that haven’t benefited
from deduplication. It can also improve file system per-
formance in certain workloads by reducing the working
set size of the storage array cache. For access to dedu-
plicated blocks, however, in-band write monitoring and
the effects of COW blocks and mixed block sizes can im-
pact the regular performance of the file system. Unless
otherwise noted, all of our measurements of the run-time
effects of deduplication were performed using Iometer [9]
in a virtual machine stored on a 400 GB 5-disk RAID-5
volume of an EMC CLARiiON CX3-40 storage array.

4.2.1 Overhead of In-Band Write Monitoring

Since DEDE’s design is resilient to dropped write log
entries, if the system becomes overloaded, we can shed
or defer the work of in-band hash computation based on
user-specified policy. Still, if write monitoring is enabled,
the hash computation performed by DEDE on every write
IO can represent a non-trivial overhead.

To understand the worst-case effect of this, we ran a
write-intensive workload with minimal computation on a
5 GB virtual disk. Table 1 shows that these worst case
effects can be significant. For example, for a 100% se-
quential, 100% write workload, the CPU overhead was
6.6 that of normal at the same throughput level. How-
ever, because VMware ESX Server offloads the execution
of the IO issuing path code, including the hash computa-
tion, onto idle processor cores, the actual IO throughput
of this workload was unaffected.

‘ Baseline ‘ Error ‘ SHA-1 ‘ Error ‘

29989 | 1.4% | 29719 | 0.8%
60ms |0.8% | 6lms | 1.4%

Operations/Min
Response Time (ms)

Table 2: Overhead of in-band write monitoring on a SQL
Server database VM running an online e-commerce appli-
cation. The mean transaction rate (operations/min) and
response times for 10 runs are within noise for this work-
load. The reported “error” is standard deviation as a per-
centage of mean.

We don’t expect the effect of the additional compu-
tation to be a severe limitation in realistic workloads,
which, unlike our microbenchmark, perform computa-
tion in addition to IO. To illustrate this, we ran the in-
band SHA-1 computation on a realistic enterprise work-
load. We experimented with a Windows Server 2003 VM
running a Microsoft SQL Server 2005 Enterprise Edi-
tion database configured with 4 virtual CPUs, 6.4 GB of
RAM, a 10 GB system disk, a 250 GB database disk, and
a 50 GB log disk. The database virtual disks were hosted
on an 800 GB RAID-0 volume with 6 disks; log virtual
disks were placed on a 100 GB RAID-0 volume with
10 disks. We used the Dell DVD store (DS2) database
test suite [2], which implements a complete online e-
commerce application, to stress the SQL database and
measure its transactional throughput and latency. The
DVD Store workload issues random 8 KB 10s with a
write/read ratio of 0.25, and a highly variable number of
outstanding write IOs peaking around 28 [7]. Table 2 re-
ports a summary of overall application performance with
and without the in-band SHA-1 computation for writes.
For this workload, we observed no application-visible
performance loss, though extra CPU cycles on other pro-
cessor cores were being used for the hash computations.

4.2.2 Overhead of COW Specialization

Writing to a COW block in VMEFS is an expensive op-
eration, though the current implementation is not well
optimized for the COW sub-blocks used extensively by
DEDE. In our prototype, it takes ~10 ms to specialize
a COW block, as this requires copying its content into
a newly allocated block in order to update it. As such,
any workload phase shift where a large set of previously
deduplicated data is being specialized will result in signif-
icant performance loss. However, in general, we expect
blocks that are identical between VMs are also less likely
to be written to and, unlike most approaches to dedupli-
cation, we do not suffer this penalty for writes to unique
blocks. Optimizations to delay sharing until candidate
blocks have been “stable” for some length of time may
help further mitigate this overhead, as suggested in [8].

% Sequential | IO Type | Throughput (MB/s) | Overhead
BS=1MB| BS=4KB
100% Writes 238 150 37%
0% Writes 66 60 9%
100% Reads 245 135 45%
0% Reads 37 32 14%

Table 3: Overhead of mixed block fragmentation.
Throughput achieved for 64 KB sequential and random
workloads with 16 outstanding I0s. The comparison is
between two virtual disks backed by block sizes (BS) of
1 MB and 4 KB, respectively. In the 4 KB case, the vir-
tual disk file consists of 163 disjoint fragments, which
implies a sequential run of 31 MB on average.

4.2.3 Overhead of Mixed Block Sizes

VMFS’s 1 MB file blocks permit very low overhead trans-
lation from virtual disk IO to operations on the physi-
cal disk. While the mixed block size support we added
to VMES is designed to retain this efficiency whenever
1 MB blocks can be used, it unavoidably introduces
overhead for 4 KB blocks from traversing the additional
pointer block level and increased external fragmentation.

To measure the effects of this, we compared IO to two
5 GB virtual disks, one backed entirely by 1 MB blocks
and one backed entirely by 4 KB blocks. These configu-
rations represent the two extremes of deduplication: all
unique blocks and all shared blocks, respectively. The
first disk required one pointer block level and was broken
into 3 separate extents on the physical disk, while the sec-
ond disk required two pointer block levels and spanned
163 separate extents.

The results of reading from these virtual disks are sum-
marized in Table 3. Unfortunately, sub-blocks introduced
a non-trivial overhead for sequential 10. This is partly
because VMEFES’s sub-block placement and IO handling
is not yet well-optimized since sub-blocks have not pre-
viously been used in the VM IO critical path, whereas
VMES’s file block IO has been heavily optimized. One
possible way to mitigate this overhead is by preventing
the deduplication process from subdividing file blocks
unless they contain some minimum number of 4 KB can-
didates for sharing. This would impact the space savings
of deduplication, but would prevent DEDE from subdi-
viding entire file blocks for the sake of just one or two
sharable blocks. Improvements in sub-block IO perfor-
mance and block subdivision are considered future work.

4.2.4 Disk Array Caching Benefits

For some workloads, deduplication can actually improve
run-time performance by decreasing the storage array
cache footprint of the workload. To demonstrate this, we

920

—%— Fully copied
80 —— Cold dedup
~E- Warm dedup

Average boot time (secs)

2 4 6 8 10 12 14 16 18 20
VMs booting concurrently

Figure 7: Windows XP VM boot up time comparison
between fully copied VMs and deduplicated VMs. Dedu-
plicated VMs are booted twice in order to measure the
impact of writing to deduplicated blocks.

picked a common, critical, time-limited VDI workload:
booting many VMs concurrently. VDI boot storms can
happen as part of a nightly cycle of shutting down VMs
and their hosts to conserve power, from patching guest
operating systems en masse, from cluster fail-over, or for
a myriad of other reasons.

To test the cache effects of deduplication, we compared
the average time required to boot from one to twenty
VMs simultaneously between two configurations: (1) the
VMs were each full copies of the golden VM (much like
the VDI configuration from Section 4.1) and (2) VMs
were deduplicated copies. The results plotted in Figure 7
show a dramatic improvement of deduplication versus
full copies, owing to the decrease in cache footprint.

To further validate the overhead of COW specializa-
tion for a realistic workload, we also booted the set of
VMs a second time after deduplication. The disk images
were “cold” the first time; they consisted entirely of COW
blocks. The second time, any blocks written to were al-
ready specialized and could be written to directly. The
graph shows virtually no difference between these two
cases, indicating that COW specialization overhead is not
an issue for this workload. This is not unexpected, as
there are only a few write operations during VM boot.

4.3 Deduplication Rate

While our prototype’s implementation of indexing has
not yet been optimized, we measured the overall rate at
which it could process modified blocks, as well as the
performance of the three main operations performed by
it: scanning the index, subdividing 1 MB blocks into
4 KB blocks, and COW sharing duplicates.

The index scanning process operates at nearly the
disk’s sequential access rate, as discussed in Section 3.2.2.

At ~23 bytes per index entry, our prototype can process
entries for 6.6 GB of blocks per second. However, unlike
block subdivision and COW sharing, which require time
proportional to the number of newly shared blocks, the
index scan requires time proportional to the total number
of blocks in the file system, so it is critical that this be
fast. Once new duplicates have been discovered by the in-
dex scan, 1 MB file blocks containing any of these dupli-
cates can be subdivided into 4 KB blocks at 37.5 MB/sec.
Finally, these newly discovered duplicates can be elimi-
nated via COW sharing at 2.6 MB/sec.

The COW sharing step limits our prototype to process-
ing ~9 GB of new shared blocks per hour. Unique blocks
(i.e., recently modified blocks whose hashes do not match
anything in the index) can be processed at the full index
scan rate. Furthermore, provisioning from templates, a
source of large amounts of duplicate data, can be per-
formed directly as a COW copy (at roughly 1 GB/sec),
so our deduplication rate applies only to duplicates that
arise outside of provisioning operations. Still, we feel
that our COW sharing rate can be significantly improved
with more profiling and optimization effort. However,
even at its current rate, the prototype can eliminate du-
plicates at a reasonable rate for a VDI workload given
only a few off-peak hours per day to perform out of band
deduplication.

5 Related Work

Much work has been done towards investigating dedu-
plication for file systems with a centralized compo-
nent. Venti [16] pioneered the application of content-
addressable storage (CAS) to file systems. Venti is a
block storage system in which blocks are identified by
a collision-resistant cryptographic hash of their contents
and stored in an append-only log on disk. An on-disk
index structure maps from content hashes to block loca-
tions. Venti’s append-only structure makes it well suited
to archival, but not to live file systems. Venti also depends
heavily on a central server to maintain the block index.
Various other systems, notably Data Domain’s archival
system [26] and Foundation [17], have extended and en-
hanced the Venti approach, but still follow the same ba-
sic principles. While deduplication for archival is gener-
ally well understood, deduplication in live file systems
presents very different challenges. Because backup sys-
tems are concerned with keeping data for arbitrarily long
periods of time, backup deduplication can rely on rela-
tively simple append-only data stores. Data structures
for live deduplication, however, must be amenable to dy-
namic allocation and garbage collection. Furthermore,
live file systems, unlike backup systems, are latency sen-
sitive for both reading and writing. Thus, live file system
deduplication must have minimal impact on these criti-

cal paths. Backup data also tends to be well-structured
and presented to the backup system in sequential streams,
whereas live file systems must cope with random writes.

Many CAS-based storage systems, including [5,16,20],
address data exclusively by its content hash. Write op-
erations return a content hash which is used for subse-
quent read operations. Applying this approach to VM
disk storage implies multi-stage block address resolution,
which can negatively affect performance [10]. Further-
more, since data is stored in hash space, spatial locality
of VM disk data is lost, which can result in significant
loss of performance for some workloads. DEDE avoids
both of these issues by relying on regular file system lay-
out policy and addressing all blocks by (filename, offset)
tuples, rather than content addresses. DEDE uses content
hashes only for identifying duplicates.

Both NetApp’s ASIS [14] and Microsoft’s Single In-
stance Store [1] use out of band deduplication to detect
duplicates in live file systems in the background, similar
to DEDE. SIS builds atop NTFS and applies content-
addressable storage to whole files, using NTFS filters to
implement file-level COW-like semantics.

While SIS depends on a centralized file system and
a single host to perform scanning and indexing, Farsite
builds atop SIS to perform deduplication in a distributed
file system [3]. Farsite assigns responsibility for each file
to a host based on a hash of the file’s content. Each host
stores files in its local file system, relying on SIS to lo-
cally deduplicate them. However, this approach incurs
significant network overheads because most file system
operations, including reads, require cross-host communi-
cation and file modifications require at least updating the
distributed content hash index.

Hong’s Duplicate Data Elimination (DDE) system [8]
avoids much of the cross-host communication overhead
of Farsite by building from IBM’s Storage Tank SAN file
system [11]. DDE hosts have direct access to the shared
disk and can thus read directly from the file system. How-
ever, metadata operations, including updates to dedupli-
cated shared blocks, must be reported to a centralized
metadata server, which is solely responsible for detect-
ing and coalescing duplicates. DEDE is closest in spirit
to DDE. However, because DEDE uses a completely de-
centralized scheme with no metadata server, it doesn’t
suffer from single points of failure or contention. Further-
more, DEDE prevents cross-host concurrency issues by
partitioning work and relying on coarse-grain file locks,
whereas DDE’s approach of deduplicating from a central
host in the midst of a multi-host file system introduces
complex concurrency issues.

Numerous studies have addressed the effectiveness of
content-addressable storage for various workloads. Work
that has focused on VM deployments [12, 17] has con-
cluded that CAS was very effective at reducing storage

space and network bandwidth compared to traditional
data reduction techniques like compression.

Other work has addressed deduplication outside of
file systems. Our work derives inspiration from Wald-
spurger [25] who proposed deduplication of memory con-
tents, now implemented in the VMware ESX Server hy-
pervisor [23]. In this system, identical memory pages
from multiple virtual machine are backed by the same
page and marked copy-on-write. The use of sharing hints
from that work is analogous to our merge requests.

6 Conclusion

In this paper, we studied deduplication in the context of
decentralized cluster file systems. We have described
a novel software system, DEDE, which provides block-
level deduplication of a live, shared file system without
any central coordination. Furthermore, DEDE builds
atop an existing file system without violating the file sys-
tem’s abstractions, allowing it to take advantage of regu-
lar file system block layout policies and in-place updates
to unique data. Using our prototype implementation, we
demonstrated that this approach can achieve up to 80%
space reduction with minor performance overhead on re-
alistic workloads.

We believe our techniques are applicable beyond vir-
tual machine storage and plan to examine DEDE in other
settings in the future. We also plan to explore alternate in-
dexing schemes that allow for greater control of dedupli-
cation policy. For example, high-frequency deduplication
could prevent temporary file system bloat during opera-
tions that produce large amounts of duplicate data (e.g.,
mass software updates), and deferral of merge operations
could help reduce file system fragmentation. Addition-
ally, we plan to further explore the trade-offs mentioned
in this paper, such as block size versus metadata over-
head, in-band versus out-of-band hashing, and sequential
versus random index updates.

DEDE represents just one of the many applications
of deduplication to virtual machine environments. We
believe that the next step for deduplication is to inte-
grate and unify its application to file systems, memory
compression, network bandwidth optimization, etc., to
achieve end-to-end space and performance optimization.

Acknowledgments

We would like to thank Mike Nelson, Abhishek Rai, Man-
junath Rajashekhar, Mayank Rawat, Dan Scales, Dragan
Stancevic, Yuen-Lin Tan, Satyam Vaghani, and Krishna
Yadappanavar, who, along with two of the coauthors, de-
veloped the core of VMFS in unpublished work, which
this paper builds on top of. We are thankful to Orran

Krieger, James Cipar, and Saman Amarasinghe for con-
versations that helped clarify requirements of an online
deduplication system. We are indebted to our shepherd
Andrew Warfield, the anonymous reviewers, John Blu-
menthal, Mike Brown, Jim Chow, Peng Dai, Ajay Gulati,
Jacob Henson, Beng-Hong Lim, Dan Ports, Carl Wald-
spurger and Xiaoyun Zhu for providing detailed reviews
of our work and their support and encouragement. Fi-
nally, thanks to everyone who has noticed the duplication
in our project codename and brought it to our attention.
This material is partly based upon work supported under a
National Science Foundation Graduate Research Fellowship.

References

[1]

[3]

[4

=

[5]

[6

=

[7

—

[8

=

[9
[10]

(11]

[12]

[13

[t

W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. Single
instance storage in Windows®2000. In Proceedings of the 4th
USENIX Windows Systems Symposium (WSS ’00), Seattle, WA,
Aug. 2000. USENIX.

Dell, Inc. DVD Store.
page/DVD+store.

J. Douceur, A. Adya, W. Bolosky, P. Simon, and M. Theimer.
Reclaiming space from duplicate files in a serverless distributed
file system. In Proceedings of the 22nd International Conference
on Distributed Computing Systems (ICDCS ’02), Vienna, Austria,
July 2002. IEEE.

C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,
P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki.
Hydrastor: A scalable secondary storage. In Proceedings of the
7th USENIX Conference on File and Storage Technologies (FAST
’09), San Francisco, CA, Feb. 2009. USENIX.

EMC Centera datasheet. http://www.emc.com/
products/detail/hardware/centera.htm.

http://delltechcenter.com/

R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Ex-
tendible hashing—a fast access method for dynamic files. ACM
Transactions on Database Systems, 4(3), Sept. 1979.

A. Gulati, C. Kumar, and I. Ahmad. Storage workload charac-
terization and consolidation in virtualized environments. In 2nd
International Workshop on Virtualization Performance: Analysis,
Characterization, and Tools (VPACT), 2009.

B. Hong, D. Plantenberg, D. D. E. Long, and M. Sivan-Zimet.
Duplicate data elimination in a SAN file system. In Proceedings
of the 21st Symposium on Mass Storage Systems (MSS *04), God-
dard, MD, Apr. 2004. IEEE.

Jometer. http://www.iometer.org/.

A. Liguori and E. V. Hensbergen. Experiences with content ad-
dressable storage and virtual disks. In Proceedings of the Work-
shop on I/0 Virtualization (WIOV "08), San Diego, CA, Dec. 2008.
USENIX.

J. Menon, D. A. Pease, R. Rees, L. Duyanovich, and B. Hillsberg.
IBM storage tank—a heterogeneous scalable SAN file system.
IBM Systems Journal, 42(2), 2003.

P. Nath, M. A. Kozuch, D. R. O’Hallaron, J. Harkes, M. Satya-
narayanan, N. Tolia, and M. Toups. Design tradeoffs in applying
content addressable storage to enterprise-scale systems based on
virtual machines. In Proceedings of the USENIX Annual Technical
Conference (ATEC ’06), Boston, MA, June 2006. USENIX.

P. Nath, B. Urgaonkar, and A. Sivasubramaniam. Evaluating the
usefulness of content addressable storage for high-performance

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

data intensive applications. In Proceedings of the 17th High Per-
formance Distributed Computing (HPDC "08), Boston, MA, June
2008. ACM.

Netapp Deduplication (ASIS). http://www.netapp.com/
us/products/platform-os/dedupe.html.

K. W. Preslan, A. P. Barry, J. E. Brassow, G. M. Erickson, E. Ny-
gaard, C.J. Sabol, S. R. Soltis, D. C. Teigland, and M. T. O’Keefe.
A 64-bit, shared disk file system for Linux. In Proceedings of the
16th Symposium on Mass Storage Systems (MSS ’99), San Diego,
CA, Mar. 1999. IEEE.

S. Quinlan and S. Dorward. Venti: A new approach to archival
data storage. In Proceedings of the 1st USENIX Conference on
File and Storage Technologies (FAST ’02) [19].

S. Rhea, R. Cox, and A. Pesterev. Fast, inexpensive content-
addressed storage in Foundation. In Proceedings of the USENIX
Annual Technical Conference (ATEC ’08), Boston, MA, June
2008. USENIX.

F. Schmuck and R. Haskin. GPFS: A shared-disk file system
for large computing clusters. In Proceedings of the 1st USENIX
Conference on File and Storage Technologies (FAST '02) [19].

USENIX. The Ist USENIX Conference on File and Storage Tech-
nologies (FAST '02), Monterey, CA, Jan. 2002.

M. Vilayannur, P. Nath, and A. Sivasubramaniam. Providing tun-
able consistency for a parallel file store. In Proceedings of the
4th USENIX Conference on File and Storage Technologies (FAST
’05), San Francisco, CA, Dec. 2005. USENIX.

VMware, Inc. VMFS datasheet. http://www.vmware.com/
pdf/vmfs_datasheet.pdf.

VMware, Inc. Recommendations for aligning VMFS partitions.
Technical report, Aug. 2006.

VMware, Inc. Introduction to VMware Infrastructure. 2007.

http://www.vmware.com/support/pubs/.

VMware, Inc. VMware Virtual Desktop Infrastructure (VDI)
datasheet, 2008. http://www.vmware.com/files/pdf/
vdi_datasheet.pdf.

C. A. Waldspurger. Memory resource management in VMware
ESX Server. In Proceedings of the 5th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI ’02), Boston,
MA, Dec. 2002. USENIX.

B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in
the Data Domain deduplication file system. In Proceedings of the
6th USENIX Conference on File and Storage Technologies (FAST
’08), San Jose, CA, Feb. 2008. USENIX.

