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Abstract

Many data center virtualization solutions, such as VMware ESX,
employ content-based page sharing to consolidate the resources of
multiple servers. Page sharing identifies virtual machine memory
pages with identical content and consolidates them into a single
shared page. This technique, implemented at the host level, applies
only between VMs placed on a given physical host. In a multi-
server data center, opportunities for sharing may be lost because
the VMs holding identical pages are resident on different hosts.
In order to obtain the full benefit of content-based page sharing it
is necessary to place virtual machines such that VMs with similar
memory content are located on the same hosts.

In this paper we present Memory Buddies, a memory sharing-
aware placement system for virtual machines. This system includes
amemory fingerprinting system to efficiently determine the sharing
potential among a set of VMs, and compute more efficient place-
ments. In addition it makes use of live migration to optimize VM
placement as workloads change. We have implemented a prototype
Memory Buddies system with VMware ESX Server and present
experimental results on our testbed, as well as an analysis of an
extensive memory trace study. Evaluation of our prototype using
a mix of enterprise and e-commerce applications demonstrates an
increase of data center capacity (i.e. number of VMs supported)
of 17%, while imposing low overhead and scaling to as many as a
thousand servers.

Categories and Subject Descriptors D4-7 [Organization and De-
sign]: Distributed systems; D4-2 [Storage Management]: Main
Memory; D4-8 [Performance]: Measurements

General Terms Design, Management, Measurement

Keywords Virtualization, Page sharing, Consolidation

1. Introduction

Data centers—server farms that run networked applications—have
become popular in a variety of domains such as web hosting, en-
terprise applications, and e-commerce sites. Modern data centers
are increasingly employing a virtualized architecture where appli-
cations run inside virtual servers mapped onto each physical server
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in the data center. These virtual machines (VMs) run on top of a
hypervisor, which is responsible for allocating physical resources
such as memory and CPU to individual VMs.

To intelligently share RAM across VMs, modern hypervisors
use a technique called content-based page sharing (CBPS) [27; 11].
In this technique, duplicate copies of a page resident on a host are
detected and a single copy of the page is shared, thereby reducing
the memory footprint of resident VMs.

The concept of transparent page sharing was first proposed
in the Disco system [3] as a way to eliminate redundant copies
of pages (typically code pages) across virtual machines. While
Disco’s transparent page sharing required modifications to the
guest OS, VMware ESX Server introduced content-based page
sharing [27], which identifies and shares duplicate pages by ex-
amining their contents transparent to the guest operating system.
Today this technique is widely deployed in VMware ESX, with
experimental support in Xen. The potential benefits of content-
based page sharing are well documented; for instance, the original
VMware ESX paper [27] reports memory savings of as much as
33% in measured production environments. Support for memory
sharing at finer, sub-page granularity can save more than 65% [8].

However, a CBPS sharing mechanism by itself only shares re-
dundant pages after a set of VMs have been placed onto a physical
host—the mechanism does not address the problem of which VMs
within the data center to colocate onto each host so that page shar-
ing can be maximized. Thus, to fully realize the benefits of this
mechanism, a data center should implement an intelligent coloca-
tion strategy that identifies virtual machines with high sharing po-
tential and then maps them onto the same host. Such a colocation
strategy can be employed both during the initial placement of a
new VM as well as during a server consolidation phase in order to
consolidate existing VMs onto a smaller number of physical hosts.

In this paper we present Memory Buddies, a system for intel-
ligent VM colocation within a data center to aggressively exploit
page sharing benefits. The key contribution of this work is a mem-
ory fingerprinting technique that allows our system to identify VMs
with high page sharing potential. The memory fingerprints pro-
duced are compact representations of the memory contents of vir-
tual machines; these fingerprints may be compared to determine
the number of redundant pages between VMs and thus the poten-
tial for memory savings. We present two memory fingerprinting
techniques: an exact hash list-based approach and a more com-
pact Bloom filter-based approach, representing a trade-off between
computational overhead and accuracy/space efficiency.

Our second contribution is an intelligent VM colocation algo-
rithm that utilizes our memory fingerprinting techniques to identify
VMs with high page sharing potential and colocate them onto the
same host. We show how our colocation algorithm can be employed
for initial placement of new VMs onto a data center’s servers. We



also demonstrate how our method can be employed to consolidate
the existing VMs in a data center onto a smaller number of hosts us-
ing live VM migration. In addition to initial placement, our system
also implements a memory “hotspot” mitigation algorithm to adapt
to changes in application mix or behavior which may necessitate
revisiting earlier placement decisions.

These mechanisms can be employed for colocating both virtu-
alized server applications and virtualized desktops for thin-client
computing applications. In addition to the online uses described
above, our colocation strategies can also be employed for offline
planning as well. For instance, in cases such as deployment of desk-
top virtualization, where existing non-virtualized applications will
be migrated to a virtualized environment, our smart colocation al-
gorithms provide an accurate estimate of the physical servers and
memory required.

Our third contribution is the use of real memory usage data
from nearly two dozen Linux and Mac OS X servers and desktops
in our department. In addition to implementing our techniques
using VMware ESX Server on a prototype Linux data center, we
have deployed the fingerprinting portion of our implementation
on these systems. Memory trace data collected from these real-
world systems drive many of our experimental evaluations. These
evaluations validate our approach of using memory fingerprints to
drive smart colocation of virtual machines, with minimal run-time
overhead. In our experiments we observe increases in data center
capacity of 17% over naive placement, as measured by the number
of VMs supported, merely by placing VMs in such a way as to
maximize the potential of existing page sharing mechanisms.

2. Background and System Overview

Consider a typical virtualized data center where each physical
server runs a hypervisor and one or more virtual machines. Each
VM runs an application or an application component and is allo-
cated a certain slice of the server’s physical resources such as RAM
and CPU. All storage resides on a network file system or a storage
area network, which eliminates the need to move disk state if the
VM is migrated to another physical server [5].

The hypervisor uses a content-based page sharing mechanism,
which detects duplicate memory pages in resident VMs and uses a
single physical page that is shared by all such VMs. If a shared page
is subsequently modified by one of the VMs, it is unshared using
copy-on-write [27]. Thus, if V M, contains M; unique pages, and
V M3 contains M> unique pages, and .S of these pages are common
across the two VMs, then page sharing can reduce the total memory
footprint of two VMs to M7 + My — S from M; + M>. The freed
up memory can be used to house other VMs, and enables a larger
set of VMs to be placed on a given cluster.

Problem formulation: Assuming the above scenario, VM colo-
cation problem is one where each VM is colocated with a set of
other “similar” VMs with the most redundant pages. Several in-
stantiations of the smart colocation problem arise during: (i) initial
placement, (ii) server consolidation and (iii) offline planning.

During initial placement the data center servers must map a
newly arriving VM onto existing servers so as to extract the max-
imum page sharing. For server consolidation, VMs need to be
repacked onto a smaller number of servers (allowing the freed up
servers to be retired or powered off). Offline planning is a general-
ization of initial placement where a set of virtual machines must be
partitioned into subsets and mapped onto a set of physical server to
minimize the total number of servers.

In each case, the problem can be reduced to two steps: (i)
identify the page sharing potential of a VM with several candidate
VM groups and (ii) pick the group/server that provides the best
sharing/memory savings. In scenarios such as server consolidation,
live migration techniques will be necessary to move each VM to its
new home (server) without incurring application down-time [18; 5].
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Figure 1. Memory Buddies System Architecture. The Nucleus
sends memory fingerprint reports to the Control Plane, which com-
putes VM placements and interacts with each hosts to place or mi-
grate VMs according.

Finally, any data center that aggressively exploits page sharing
should also implement hotspot mitigation to address any significant
loss of page sharing due to application termination or major appli-
cation phase changes—such loss of page sharing can create mem-
ory pressure and cause swapping. Hotspot mitigation techniques
offload VMs to other servers to reduce memory pressure.

System Overview: Low-level page sharing mechanisms only
detect and share duplicate pages belonging to resident VMs—they
do not address the problem of which VMs to colocate on a host to
maximize sharing. Memory Buddies detects sharing potential be-
tween virtual machines and then uses the low-level sharing mecha-
nisms to realize these benefits.

Our system, which is depicted in Figure 1 consists of a nucleus,
which runs on each server, and a control plane, which runs on
a distinguished control server. Each nucleus generates a memory
fingerprint of all memory pages within the VMs resident on that
server. This fingerprint represents the page-level memory contents
of a VM in a way which allows efficient calculation of the number
of pages with identical content across two VMs. In addition to per-
VM fingerprints, we also calculate aggregate per-server fingerprints
which represent the union of the VM fingerprints of all VMs hosted
on the server, allowing us to calculate the sharing potential of
candidate VM migrations.

The control plane is responsible for virtual machine placement
and hotspot mitigation. To place a virtual machine it compares the
fingerprint of that VM against server fingerprints in order to deter-
mine a location for it which will maximize sharing opportunities. It
then places the VM on this server, initiating migrations if necessary.
The control plane interacts with VMs through a VM management
API such as VMware’s Virtual Infrastructure or the libvirt API [14].

The following sections describe the memory fingerprinting and
control plane algorithms in detail.

3. Memory Fingerprinting

The nucleus runs on each physical server, computing memory fin-
gerprints for each VM resident on that server, as well as for the
server as a whole. Ideally the nucleus would be implemented at the
hypervisor level, allowing re-use of many mechanisms already in
place to implement content-based page sharing. Our experiments
were performed with VMware ESX Server, however, and so lack-
ing source code access' we have implemented the fingerprinting
aspect of the nucleus within each VM, as a paired guest OS kernel
module and user-space daemon.

!'Our initial efforts had focused on the open-source Xen platform, where it
was possible to make experimental modifications to the hypervisor. How-
ever, Xen’s page sharing implementation is experimental and not compati-
ble with its live migration mechanism; since our work requires both mecha-
nisms, the work presented in this paper makes use of VMware ESX Server.
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Figure 2. Bloom filter with four hash functions, containing a sin-
gle key a.

3.1 Fingerprint Generation

Content-based page sharing implementations for both Xen and
VMware ESX use hashes of page contents in order to locate pages
with identical content which are thus candidates for sharing. In
the Memory Buddies nucleus Hsieh’s SuperFastHash algorithm [9]
is used to generate 32 bit hashes for each 4KB page. In order to
measure potential sharing between VMs, rather than self-sharing,
or sharing within a single VM, we gather the set of unique page
hashes for a VM’s pages to generate the raw memory fingerprint.
Maintained in sorted order, such a fingerprint may be compared
against the fingerprint of another VM or server, yielding a count of
the pages duplicated between the two VMs and thus the potential
memory sharing between them.

3.2 Succinct Fingerprints

The memory fingerprints we have described consist of a list of
page hashes; the intersection between two such fingerprints may be
computed exactly, but they are unwieldy to use. Not only are they
large—e.g. 1 MByte of fingerprint for each 1 GB of VM address
space—but they must be sorted in order to be compared efficiently.
To reduce this overhead, we also provide a succinct fingerprint
which represents this set of hashes using a Bloom filter. [1; 13].
A Bloom filter is a lossy representation of a set of keys, which
may be used to test a value for membership in that set with with
configurable accurracy. The filter parameters may be set to trade
off this accuracy against the amount of memory consumed by the
Bloom filter.

As shown in Figure 2, a Bloom filter consists of an m-bit
vector and a set of k hash functions H = hi, ha, hs, ..., hi (kK =
4 in the figure). For each element a, the bits corresponding to
positions H(a) = hi(a), ha(a), ..., hx(a) are set to 1; to test for
the presence of a, we check to see whether all bits in H(a) are
set to 1. If this test fails we can be certain that a is not in the
set. However, we observe that the test may succeed—i.e. result
in a false positive—if all bits in H(a) were set by the hashes of
some other combination of variables. The probability of such errors
depends on the size of the vector m, the number k of bits set per
key, and the probability that any bit in the vector is 1.

If the number of elements stored is n, the probability ‘p.’ of
an error when testing a single key against the filter is given by

pe=(1-(0-5)"
Thus given n, the number of pages belonging to a VM, proper
choice of the size of the bit vector m and the number of hash func-
tions k can yield a sufficiently small error probability. Two Bloom
filters may be compared to estimate the size of the intersection of
their key sets; this is covered in more detail in Section 3.3. In addi-
tion, multiple Bloom filters can be combined by taking the logical
OR of their bit vectors; Memory Buddies uses this to create aggre-
gate fingerprints for all VMs running on each host.

While Memory Buddies supports both fingerprint mechanisms,
we note that in practice neither full hash lists nor succinct finger-
prints will produce an absolutely accurate prediction of page shar-
ing behavior, for several reasons. First, the fingerprints are snap-
shots of time-varying behavior, and lose accuracy as the actual
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Figure 3. Root Mean Squared Error (RMSE) of page sharing esti-
mate for different memory and Bloom filter sizes.

memory contents change after the fingerprint was taken. A second
reason is that comparison of snapshots only indicates how many
pages could be shared; for various reasons the page sharing logic
within the hypervisor may fail to share some pages which might
otherwise be sharable.

3.3 Fingerprint Comparison

To estimate page sharing potential, we need to compare the mem-
ory fingerprints of two or more virtual machines and compute their
intersection: i.e. the number of identical pages between the two.
With raw memory fingerprints consisting of the full list of mem-
ory page hashes, this may be done by sorting the lists, comparing
them, and counting the number of matches. Comparing two concise
fingerprints is somewhat more complicated, although faster.

To calculate the size of this intersection, we examine the case
of two Bloom filters holding u; and w2 unique entries each, plus ¢
entries common between the two. We then take the bitwise AND
of the two filter vectors; the elements of this resulting vector will
be 1 for (a) each bit set by the ¢ common elements, and (b) each
bit set by one or more keys in each of the unique sets. We omit the
mathematical derivation, which can be found in related work [2],
but note that the expected number of shared elements is [15]:

In(z1 4+ 22 — z12 — In(z1 * 22) + In(m)
k(ln(m) —In(m — 1))

share =

1

where z; and z> are the numbers of zeros in the two Bloom filters,
z12 is the number of zeros in the AND of the two filters, m is
the size of each of the filter vectors, and k is the number of hash
functions used.

The estimate contains a correction for the expected number of
false matches between the two vectors, and is thus considerably
more accurate than the test of a single key against the same Bloom
filter. No closed-form solutions for the accuracy of this estimate
have been derived to date; however we are able to measure it for
particular cases via Monte Carlo simulation. In Figure 3 we see
error results for different numbers of keys and Bloom filter sizes;
the number of keys is expressed as a total amount of memory (i.e. 1
GB = 256K page hashes or keys) and the filter size is expressed
as a fraction of the size needed for the full hash list (i.e. 256K
hashes requires 1024KB at 4 bytes per hash). The error rate is
the percent of total pages which are incorrectly considered to be
shared or unshared by the Bloom filter. We see that with a filter
as small as 5% of the size of the hash list—i.e. only slightly more
than 1 bit per page—the expected error is less than 0.5%, allowing
us to estimate sharing quite precisely with succinct fingerprints. In
addition to the savings in communication bandwidth for reporting
these succinct fingerprints, they are also much faster to compare, as
they are both much smaller and, unlike hash lists, require no sorting
before comparison.



4. Sharing-aware Colocation

The VM and server fingerprints are periodically computed and
transmitted to the control plane by each nucleus; the control plane
thus has a system-wide view of the fingerprints of all VMs and
servers in the data center. The control plane implements a colo-
cation algorithm that uses this system-wide knowledge to identify
servers with the greatest page sharing potential for each VM that
needs to be placed.

The control plane provides support for three types of placement
decisions: initial placement of new VMs, consolidation strategies
for live data centers, and offline planning tools for data center
capacity planning.

4.1 Initial Placement

When a new virtual machine is added to a data center, an initial
host must be selected. Picking a host based simply based on current
resource utilization levels can be inefficient. The placement algo-
rithm in Memory Buddies instead attempts to deploy VMs to the
hosts which will allow for the greatest amount of sharing, reducing
total memory consumption, allowing more VMs to be hosted on a
given number of servers.

Each new VM is initially placed on a staging host where its re-
source usage and memory fingerprint can stabilize after startup and
be observed. Each VM periodically reports memory fingerprints as
well as the resource usages on each server. Monitored resources in-
clude memory, CPU, network bandwidth and disk; both the mean
usage over the measurement interval as well as the peak observed
usage are reported. The placement algorithm uses these reported
usages to identify the best candidates for placing each new VM.

The algorithm first determines the set of feasible hosts in the
data center. A feasible host is one that has sufficient available
resources to house the new VM—recall that each VM is allocated
a slice of the CPU, network bandwidth and memory on the host,
and only hosts with at least this much spare capacity should be
considered as possible targets. Given a set of feasible hosts, the
algorithm must estimate the page sharing potential on each host
using our fingerprint comparison technique—the fingerprint for the
VM is compared with the composite fingerprint of the physical
server directly using hash lists, or the number of shared pages is
estimated using Equation 1 if compact Bloom filters are being used.
The algorithm then simply chooses the feasible server that offers
the maximum sharing potential as the new host for that VM.

4.2 Server Consolidation

Memory Buddies’ server consolidation algorithm opportunistically
identifies servers that are candidates for shutting down and attempts
to migrate virtual machines to hosts with high sharing opportuni-
ties. In doing so, it attempts to pack VMs onto servers so as to
reduce aggregate memory footprint and maximize the number of
VMs that can be housed in the data center. Once the migrations
are complete, the consolidation candidates can be retired from ser-
vice or powered down until new server capacity is needed, thereby
saving on operational (energy) costs. The consolidation algorithm
comprises three phases:

Phase 1: Identify servers to consolidate. The consolidation al-
gorithm runs periodically (e.g., once a day) and can also be in-
voked manually when needed. A list of hosts which are candidates
for consolidation is determined by examining memory utilization
statistics for each host; a server becomes a candidate for consol-
idation if its mean usage remains below a low threshold for an
extended duration.? Currently our system only considers memory
usages when identifying consolidation candidates; however, it is

2 In addition, the system can also check that the peak usage over this dura-
tion stayed below a threshold, to ensure that the server did not experience
any load spikes during this period.
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Figure 4. A 2-step migration: V' M3 is first migrated from Server
2 to Server 3 to free up space for V M;. V M; can then be migrated
from Server 1 to Server 2.

easy to extend it to check usages of all resources to identify lightly
loaded servers.

Phase 2: Determine target hosts. Once the set of consolidation
candidates has been identified, the algorithm must determine a new
physical server to house each VM. To do so, we order VMs in de-
creasing order of their memory sizes and consider them for migra-
tion one at a time. For each VM, the algorithm first determines the
set of feasible servers in the data center as described in Section 4.1.
The host which will provide the greatest level of sharing (while still
ensuring sufficient resources) is then selected for each VM.

In certain cases, it is possible that there are no feasible servers
for a VM. This can happen if the VM has a large CPU, network or
memory footprint and existing servers in the data center are heavily
utilized. In this case, the consolidation algorithm must consider a
multi-way move, where one or more VMs from an existing server
are moved to other servers to free up additional capacity and make
this server feasible for the VM under consideration, as illustrated in
Figure 4. As migration does impose some overhead, the algorithm
attempts to minimize the number of moves considered in multi-way
planning.

Phase 3: Migrate VMs to targets. Once new destinations have
been determined for each VM on the consolidation servers, our al-
gorithm can perform the actual migrations. Live migration is used
to ensure transparency and near-zero down-times for the applica-
tion executing inside the migrated VMs.

To ensure minimum impact of network copying triggered by
each migration on application performance, our algorithm places a
limit on the number of concurrent migrations; once each migration
completes, a pending one is triggered until all VMs have migrated
to their new hosts. The original servers are then powered off and
retired or moved to a shutdown pool so they can be reinitialized
later if memory requirements increase.

4.3 Offline Planning Tool for Smart VM Colocation

The Memory Buddies system can also be used for offline planning
to estimate the required data center capacity to host a set of virtual
machines. The planning tool can be used to answer “what if”
questions about the amount of sharing potential for different VM
configurations, or to generate initial VM placements.

The offline planner takes as input:

1. A list of the data center’s hosts and their resource capacities.

2. Resource utilization statistics (CPU, network, and disk) for
each system to be placed.

3. Memory fingerprints for each system.

The systems to be placed within the data center may either already
be running as virtual machines, or may be sets of applications
currently running on physical hosts which are to be moved to a
virtualized setting (e.g. desktop virtualization). If the systems to be
hosted in the data center are not yet running on virtual machines,
then additional modeling techniques may be required to estimate
the resource requirements of the applications after virtualization



overheads are added [30]. In either case, the memory fingerprints
are gathered by deploying the memory tracer software (our kernel
module implementation of the nucleus) on each system to be moved
to the data center.

The planning tool can be used to analyze “what if”” scenarios
where a data center administrator wants to know about the resource
consumption of different sets of VMs hosted together. The tool can
output the amount of both inter-VM and self-sharing likely to occur
for a given set of VMs. This provides valuable information about
the expected amount of memory sharing from colocating different
applications or operating systems.

The offline planner can generate VM placements that match
each VM to a host such that the resource capacities of the host
are not violated, while maximizing the amount of sharing between
VMs. This is analogous to a bin packing problem where the re-
source constraints define the size of each bin. A variety of heuris-
tics can be used for this sort of problem. Memory Buddies uses a
dynamic programming technique which determines what subsets
of VMs will fit on each host to maximize sharing while respecting
constraints. These constraints may be simple resource consumption
thresholds such as not using more than 80% of the CPU or requiring
a portion of the server’s memory to be kept free to prevent changes
in sharing or memory requirements causing hotspots. Constraints
can also be used to enforce business rules such as only colocating a
single customer’s VMs on a given host or to ensure fault tolerance
by preventing multiple replicas of an application from being placed
together. The tool’s output provides a list of which VMs to place on
what hosts, as well as the total memory consumption and expected
rate of sharing.

5. Hotspot Mitigation

The Memory Buddies hotspot mitigation technique works in con-
junction with the consolidation mechanism to provide a sharing-
aware mechanism for resolving memory pressure caused by changes
in virtual machine behavior. Our system must detect such hotspots
when they form and mitigate their effects by re-balancing the load
among the physical hosts. We note that memory hotspots are only
one form of such overload; other kinds of hotspots can occur due
to demand for CPU, network, and disk resources. Such overloads
are best dealt with by other techniques [31] and are not considered
in this work.

A memory hotspot may arise for several reasons. First, it may
be due to increased demand for memory by one or more virtual
machines. Changing behavior on the part of applications or the
guest OS (e.g. the file system buffer cache) may result in a need
for more memory, which the hypervisor will typically attempt to
meet by contracting the memory balloon and returning memory
to the guest. The second possible cause is due to a loss of page
sharing. If changes in virtual machine behavior cause its memory
contents to change (a so-called “phase change”) in such a way as to
reduce memory sharing, then overall memory usage on a physical
server may increase even though the amount of memory seen by
each guest OS remains constant.

The control plane relies on statistics reported by the Memory
Buddies nucleus to detect memory hotspots. If implemented at the
hypervisor level, the nucleus would have direct access to informa-
tion on the availability of physical memory; in our prototype we
must instead infer this information from guest behavior and exter-
nally reported hypervisor statistics. In particular, we monitor both
the level of swap activity on each guest OS, as well as the number
of shared pages reported by the hypervisor.

When swap activity rises above a certain threshold, a hotspot is
flagged by the control plane, which then attempts to resolve it by
re-distributing VMs among physical servers. In choosing a VM to
move and a destination for that VM, we use the same algorithm
as for initial placement. In particular, we examine all VMs on
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Figure 5. Our implementation uses VMware ESX since it supports
migration and page sharing. As it is a closed source hypervisor,
the nucleus is implemented as a memory tracer component running
within each VM.

the overloaded system, and for each VM calculate the maximum
gain in sharing which could be obtained by migrating that VM to
another feasible host. We then choose to migrate the VM which
provides the highest absolute gain in sharing—i.e. which provides
the maximum system-wide increase in available memory.

If there are no feasible destinations for the virtual machines on
the overloaded host, a server must be brought in from the shutdown
pool so that it can host one or more of the VMs.

6.

The Memory Buddies implementation uses VMware ESX for the
virtualization layer as it supports both page sharing and virtual ma-
chine migration. While the ESX hypervisor already gathers page
hashes to determine sharable pages [27], this information is un-
available to our software because of ESX’s closed nature. As a
result, our system implementation moves the nucleus component
from the hypervisor into each virtual machine in the form of a mem-
ory tracing kernel module that supports Linux, Windows, and Mac
OS X. This software gathers the lists of hashes and sends them (or
compact Bloom filters) to the control plane. Figure 5 illustrates the
specifics of our implementation. We have deployed our tracer and
control plane on a testbed for evaluation.

Memory Tracer: We have developed memory analysis tools
that run on Linux, Mac OS X, and Windows. The Linux tracer
supports both 2.4 and 2.6 kernels, the Mac tracer runs under OS X
10.5 on Intel and G4 systems, and the Windows tracer supports XP
Service Pack 2 and 32-bit Vista systems. All of the tracers work by
periodically stepping through the full memory of the machine being
traced, generating 32 bit hashes for each page in memory. When
used in our testbed, the tracer is run within each virtual machine,
and the resulting hash lists (or Bloom filters) are sent to the control
plane for processing every few minutes. An alternate version of our
tracer has been designed solely for gathering memory traces, and
has been distributed to volunteers within our department to be run
on a variety of physical machines. We analyze the sharing potential
in Section 7.2.

Under memory pressure, a VMware ESX host may make use of
the balloon driver [27] to reclaim memory from running VMs. We
note that as the guest OS in unaware of the balloon driver activity,
our memory tracer may analyze such reclaimed memory pages. In
practice, however, this is not a concern, as reclaimed memory will
uniformly appear zeroed, and thus will not affect fingerprints based
on unique page hashes.

Control Plane: The control plane is a Java based server which
communicates with the VMware Virtual Infrastructure manage-
ment console via a web services based APIL. The API is used by the
control plane to discover which hosts are currently active and where
each virtual machine resides. Extra resource statistics are retrieved
from the VMware management node such as the total memory allo-
cation for each VM. This API is also used to initiate virtual machine
migrations between hosts. The control plane primarily consists of

Implementation



statistic gathering, sharing estimation, and migration components
which comprise about 3600 lines of code.

Memory Buddies Testbed: The testbed is a cluster of P4
2.4GHz servers connected over gigabit ethernet which combines
the Control Plane with a set of virtual machines, each running
the Memory Tracer. Each server runs VMware ESX 3.0.1 and the
VMware Virtual Infrastructure 2.0.1 management system is on an
additional node.

7. Experimental Evaluation

We have evaluated the Memory Buddies system to study the ben-
efits of exploiting page sharing information when determining vir-
tual machine placement.

Section 7.1 discusses our evaluation workloads and experiment
specifications. Section 7.2 analyzes the sharing characteristics of
the memory traces we have gathered. Our first case study mea-
sures the benefits of Memory Buddies for Internet Data Centers
(section 7.3) on both our testbed and through trace driven simu-
lation. Section 7.4 evaluates the hotspot mitigation algorithm on
our testbed and we explore offline planning with a desktop virtu-
alization case study in section 7.5. Finally, Section 7.6 shows the
performance tradeoffs of the fingerprinting techniques available in
Memory Buddies.

7.1 Experimental Workloads

We conduct two sets of experiments to evaluate Memory Buddies.
First, we demonstrate the performance of our consolidation and
hotspot mitigation algorithms on a small prototype Memory Bud-
dies data center running realistic applications. Second, to demon-
strate that these results apply to larger data centers and to real-world
applications, we gather memory traces from live machines in our
department and use these traces to evaluate the efficacy of our tech-
niques.

Our prototype data center experiments are based on the follow-
ing applications:

e RUBIS [4] is an open source multi-tier web application that im-
plements an eBay-like auction web site and includes a work-
load generator that emulates users browsing and bidding on
items. We use the Apache/PHP implementation of RUBiS ver-
sion 1.4.3 with a MySQL database.

TPC-W [23] models an Amazon style e-commerce website
implemented with Java servlets and run on the Jigsaw server
with a DB2 backend.

SpecJBB 2005 [24] is a Java based business application bench-
mark which emulates a 3-tier system with a workload generator.

Apache Open For Business (OFBiz) [20] is an open source
suite of enterprise web applications with accouting, finance,
and sales functionality used by many businesses. We utilize
the eCommerce component and a workload generator based
on the JWebUnit testing framework to emulate client browsing
activities.

To ensure that inter-VM sharing is predominantly due to code
pages, we randomize the data used by different instances of same
application— the workloads and database contents are different for
each VM instance to avoid sharing of data pages. For the multi-tier
applications, we run all tiers within a single virtual machine. All
Apache web servers are version 2.2.3 with PHP 4.4.4-9, MySQL
databases are 5.0.41, Jigsaw is version 2.2.6, and the DB2 server
was DB2 Express-C 9.1.2.

We extend our evaluation with a study of memory traces col-
lected by our tracer tool. We have distributed the memory tracer
application to volunteers within our department and gathered a to-
tal of over 130,000 memory fingerprints from more than 30 sys-
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Figure 6. Percentage of memory pages duplication between VMs
on a collection of 30 diverse laptops, desktops, and servers. 33% of
pages were sharable with exactly one other machine, and 37% with
one or more machines.
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Figure 7. Sharing aware vs sharing oblivious placement. Sharing
aware detects similar virtual machines and groups them on the same
hosts.

tems. * We use these traces both to analyze the sharing potential
between actual systems and to allow emulation of larger data cen-
ters. Finally, we use these memory traces to analyze the accuracy
and overhead of our different fingerprint comparison techniques.

7.2 Memory Trace Analysis

We have analyzed a subset of the traces gathered from machines
within our department to provide a summary of the level of page
sharing available across a diverse set of machines. Here we examine
the fingerprints gathered on June 10th 2008 from 24 Linux and 6
Mac OS X systems (our collection of Windows traces is currently
too small to provide significant results).

Figure 6 shows the number of pages which appear on only one,
two, or more systems. This indicates that, as expected, the majority
of pages are unique, only appearing on a single host. However, a
significant portion of the pages reside on two or more machines.
This suggests that in an ideal case where all systems could be
colocated onto a single host, the total memory requirements of
running these machines could be reduced by about 37%, giving
an upper bound on the amount of sharing which could ever occur.
We also note that while many pages appear on two systems (33%),
very few reside on three or more machines. This emphasizes that
random placement of virtual machines is unlikely to realize the full
benefits of memory sharing.

7.3 Case Study: Internet Data Center

Many web hosting services rent virtual machine servers to cus-
tomers since they can be much cheaper than providing dedicated
servers. These virtual servers are an excellent candidate for exploit-

3 We plan to release a portion of these traces and the code to process them
to researchers worldwide on the UMass Trace Repository website.



Application | Measured Sharing | Pred. Sharing
TPC-W 38% 41%
OpenForBiz 18% 22%
RUBIS 16% 15%
SpecJBB 5% 5%

Table 1. Application types and their memory sharing levels. Mea-
sured sharing is obtained from the live statistics of the hypervisor,
while predicted sharing is computed from the memory traces.

ing page sharing since the base servers often run similar operating
systems and software, such as a LAMP stack or a J2EE environ-
ment. In this case study we first test Memory Buddies’ ability to
more effectively place different classes of applications typically
found in an Internet data center. We utilize four different appli-
cations to vary the sharing rate between virtual machines, and a
testbed with four hosts. Note that while the core application data
is identical within an application class, the workloads and database
contents are different for each VM instance. Table 1 lists the differ-
ent application types and the level of sharing between pairs of vir-
tual machines of the same type; actual sharing values vary within a
few percent depending on paging activities. We present both the
predicted sharing reported by our memory tracer and the actual
level of sharing achieved by the hypervisor. For the first two ap-
plications, the predicted level of sharing is too high; this error oc-
curs when the hypervisor does not choose to share some identi-
cal pages, typically because it expects them to change too quickly.
For RUBIS, the tracer under predicts slightly, probably because our
memory tracer is unable to access all memory regions. SpecJBB
obtains the smallest amount of sharing because it is the most mem-
ory intensive application, quickly filling the VM’s memory with
randomly generated data as the benchmark runs.

We compare two placement algorithms: our sharing aware ap-
proach attempts to place each virtual machine on the host that
will maximize its page sharing and the sharing oblivious scheme
does not consider sharing opportunities when placing virtual ma-
chines, and instead places each virtual machine on the first host it
finds with sufficient spare capacity. Although the sharing oblivious
approach does not explicitly utilize sharing information to guide
placement, page sharing will still occur if it happens to place vir-
tual machines together with common pages. In addition, this means
that self-sharing within each VM occurs in both scenarios, so the
improvements we see are caused by intelligent colocation leading
to better inter-vm sharing. For simplicity, we assume that mem-
ory is the bottleneck resource and do not consider CPU or network
bandwidth as a constraint.

Initially, we create one virtual machine of each type and place
it on its own physical host. Additional VMs of each type are then
spawned on a fifth host and migrated to one of the four primary
hosts. We compare the number of virtual machines which can be
successfully hosted using both our sharing aware algorithm which
migrates each new VM to the host with the greatest sharing poten-
tial and a sharing oblivious placement algorithm which migrates
each VM to the first host it finds with sufficient memory, without
regard to sharing. The experiment terminates when no new virtual
machines can be placed.

Each virtual machine is configured with 384 MB of RAM, and
the hosts have 1.5 GB of spare memory since VMware reserves 0.5
GB for itself. Thus we expect each host to be able to run about
four VMs without sharing. Figure 7 displays the final placements
reached by each algorithm. The three web applications, TPC-W,
OFBiz, and RUBIS, demonstrate a benefit from utilizing sharing,
allowing more VMs to be packed than the base four. The sharing
oblivious algorithm places four VMs on each host, except for host
C on which it fits an extra VM due to the sharing between TPC-
W instances. The sharing aware approach is able to place a total
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Figure 8. Hotspot mitigation: When a change in workload occurs,
Memory Buddies migrates VMs to consolidate VMs with higher
sharing potential on the same hosts.

of 20 virtual machines, while the Oblivious approach can only fit
17. For this scenario, exploiting sharing increased the data center’s
capacity by a modest 17%.

We next use the memory traces gathered from these applications
to simulate a larger data center. We increase the total number of
hosts to 100 and measure the number of virtual machines which
can be placed depending on whether sharing information is used.
Our trace driven simulator utilizes the same control plane and
algorithms as described previously. On this larger scale testbed,
the sharing-aware approach places a total of 469 VMs, while the
sharing oblivious approach can only host 406, giving a benefit of
about 16% when using sharing. This matches well with the results
from our testbed; the slight change in performance is due to the
sharing oblivious approach getting ”lucky” and placing more VMs
together which happen to share pages.

Result: By reducing the total memory requirements on each
host, the effective capacity of a data center can be increased. Our
testbed and trace driven simulations obtain benefits of 16-17% due
to increased inter-vm sharing when Memory Buddies guides VM
placement.

7.4 Hotspot Mitigation

Workload variations occur over time for most web applications and
this can reduce the potential for memory sharing between colo-
cated VMs in data centers. We have reproduced a typical data cen-
ter scenario to demonstrate Memory Buddies’ ability to detect and
respond to a memory hotspot when application phase changes. The
experiment employs two hosts, the first running two virtual ma-
chines (V' M, and V M>) and the second running only one (V M3).
All of the virtual machines are allocated 512MB of memory and
serve static files generated following the SPECweb99 specification
[17] with Apache web servers. Initially, we use httperf [16] to send
an identical set of requests to each server resulting in a high poten-
tial for sharing between VMs.

Figure 8 shows the amount of memory shared by each VM with
the other VMs residing on the same host as reported by VMWare
ESX. Since V' M7 and V' M5 are colocated, they initially have a high
level of sharing at about 400MB. After 60 seconds of load injection,
we trigger a phase change for the requests being sent to V' M. As a
result, the sharing between V' M; and V M> decreases significantly
putting more memory pressure on the host. This triggers Memory
Buddies hotspot mitigation mechanism at time 360 seconds. Since
V' M; and V M3 continue to receive the same workload, there
is a high potential for sharing between them. Therefore Memory
Buddies determines that V M1 should be migrated to Host 2. After
the migration completes, the sharing rate between V My and V M3
gradually increases again as ESX Server CBPS identifies sharable
pages.

Result: Memory Buddies’ monitoring system is able to detect
changes in sharing potential brought on by application phase tran-



OS CPU RAM
Darwin 9.0.0 PowerBook 6, PowerPC | 1152
Darwin 9.2.0 Macminil, 1386 1024
Darwin 9.4.0 MacBook?2, 1386 2048
Darwin 9.4.0 iMac7, 1386 2048

Linux 2.6.9 Intel Family 15 Model 2 | 1010
Linux 2.6.18 Intel Family 6 Model 2 2018
Windows NT 5.1 | x86 Family 6 Model 15 511

Table 2. Machine configurations (as reported by their operating
system) considered in the desktop virtualization case study.

sitions. This type of hotspot is automatically resolved by determin-
ing a different host with a higher sharing potential for one of the
VMs.

7.5 Case Study: Desktop Virtualization

Desktop virtualization consists of moving traditional desktop envi-
ronments to virtual machines colocated in a data center. The user
can then access his desktop environment using a thin-client inter-
face from various locations. System administrators that are plan-
ning to deploy desktop virtualization need to estimate the memory
requirements to host all the desktop VMs on the servers. The poten-
tial effects of intra and inter-VM memory sharing are not known a
priori which makes it very hard to plan adequate memory resources.
In this case study, we show how we can use our tools to answer
“what if”” questions in order to predict the memory requirements of
colocated desktop virtual machines.

We have deployed our memory tracer on a set of real worksta-
tions running Windows, Linux and MacOS X on PowerPC and In-
tel platforms. We have collected memory traces from each machine
every 30 minutes over several weeks. This data has been consoli-
dated in a database to allow for easier mining. Table 2 summarizes
the various desktop configurations we have considered.

By combining the traces of the different machines in the
database, we can quickly compute how much memory sharing can
be achieved for a particular combination of VMs. The number of
unique hashes found in the combined traces represent the number
of physical memory pages that will be needed by the hypervisor in
case of perfect sharing. This upper-bound of sharing includes both
inter and intra-VM sharing. We use the collected data and our tools
to answer a number of “what if”” questions with different combi-
nations of OS colocation. Table 3 shows the results we obtained
for 4 questions: what is the potential sharing (i) if 3 VMs have a
different OS, (ii) if 2 VMs have the same OS but different versions
and 1 VM has a different OS, (iii) if 3 VMs have the same OS but
different versions and 1 VM has a different OS, (iv) all VMs have
the same OS version but possibly different hardware platforms.

When heterogeneous OSes are combined (first line of the ta-
ble), the sharing potential only comes from intra-VM sharing and
remains at a modest 13%. When we replace Linux by another ver-
sion of MacOS X, inter-VM sharing starts to play a significant role
and memory sharing jumps to 35% overall. Adding different ver-
sions of the same operating system (Darwin 9.0, 9.2 and 9.4) main-
tains a substantial inter-VM sharing for an overall memory sharing
close to 37%. When homogeneous software configurations are used
even on different hardware platforms, we observe memory sharing
up to 40%. These numbers represent the optimal memory sharing
case and actual sharing might be lower depending on the hypervi-
sor implementation of page sharing. Note that the predicted server
memory does not account for the hypervisor memory requirements
that are usually fixed and implementation dependent.

If the machine workload varies greatly over time, it is possible
to perform these computations with different traces taken at differ-
ent points in time to evaluate the memory sharing evolution over
time. We found in our experiments that the predicted memory shar-
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Figure 9. Bloom filter accuracy vs efficiency tradeoff. Smaller
Bloom filter bit vectors reduce the accuracy of sharing estimates,
but also significantly reduce the computation time required for
comparison.

VM Hash List | Bloom Size (KB)
RAM || Size (KB) w/0.2% Error
1GB 1024 92

4GB 4096 124

8GB 8192 368

Table 4. Per VM communication cost in KB for hash lists and
Bloom filters with a 0.2% error rate.

ing did not change significantly over time for desktop machines.
Computing the memory server prediction for a given configuration
usually only takes few seconds but this may vary depending on the
database size and number of traces to analyze. It is then possible to
use the technique to answer a broad range of “what if”” questions
like sharing potential over time or in the presence of workload vari-
ations.

Result: Memory Buddies can be used offline to compute memory
sharing and answer “what if ” questions when planning for desktop
virtualization. We found that colocating different OSes only uses
intra-VM sharing. However mixing different versions of the same
OS leads to substantial inter-VM sharing. As expected, the maxi-
mum sharing is observed when similar versions of an OS are colo-
cated.

7.6 Fingerprint Efficiency and Accuracy

Memory Buddies allows a tradeoff between the accuracy, speed
and space required for estimating sharing potential depending on
whether hash lists or Bloom filters are used.

We first measure the accuracy of Bloom filter comparisons when
varying the size of the Bloom filter’s bit vector. We use pairs of
traces gathered in our department study from systems with 512MB,
1GB, and 2GB of RAM. We report the average error in percent
of total pages for four pairs of traces of each size. Figure 9(a)
illustrates how the comparison error rapidly decreases as filter size
rises, although larger memory sizes require bigger filters to prevent
hash collisions. These results confirm the simulation data shown
previously in Figure 3; a Bloom filter of only a few hundred KB is
sufficient for an error rate of about 0.1%.

We next measure the time to compare two fingerprints to calcu-
late the potential for sharing when using our exact and compact
techniques. In both approaches, the computation time increases
when using VMs with larger amounts of RAM, because either there
are more hashes to be compared or a Bloom filter with a larger bit
vector is required in order to meet a target accuracy level. Figure
9(b) demonstrates how the comparison time for a pair of VMs in-
creases with memory size. The exact comparison technique using
hash lists first sorts the two lists before comparing them. Since sort-



OS combination Total memory | Shareable pages | Predicted server memory
Linux 2.6.9, Darwin 9.0.0, Windows NT 5.1 4223 MB 13.2% 3666 MB
Darwin 9.4.0, Darwin 9.0.0, Windows NT 5.1 5248 MB 35.3% 3397 MB
Darwin 9.2.0, Darwin 9.4.0, Darwin 9.0.0, Windows NT 5.1 6272 MB 36.8% 3966 MB
Darwin 9.4.0 (3 MacBook2 + 1 iMac7) 8192 MB 40.0% 4917 MB

Table 3. Server memory usage prediction for various colocation configuration. Total memory represents the total memory required without
sharing and predicted memory is the required memory on the server when all possible sharable pages are actually shared.

1250
1000 -
750
500
250

Detected Sharing (MB)

12 16 20 24 28 32
Hashes per Page

1 4 8

Figure 10. Splitting each page into multiple chunks allows Mem-
ory Buddies to detect sub-page level sharing between similar pages.

ing can be the dominant cost, we also present the time when lists
are presorted by each VM prior to sending the hash lists to the con-
trol plane. Presorting the lists decreases the comparison time by
about an order of magnitude, but incurs overhead on each host in
the system. Switching to Bloom filters reduces the time further, but
at the expense of reduced accuracy.

The total communication overhead of the system is dependent
on the number of VMs running in the data center, the amount of
RAM used by each VM, and the fingerprinting method used. Table
4 compares the cost of storing or transmitting Bloom filter based
memory fingerprints or hash lists of various sizes. Fingerprints only
need to be gathered once every few minutes, incurring minimal
network cost if there is a small number of VMs. For very large
data centers, the overhead of transmitting full hash lists can become
prohibitive, while the Bloom filter approach remains manageable.

Result: Employing Bloom filters in large data centers can re-
duce sharing estimation time by an order of magnitude and can
reduce network overheads by over 90%, while still maintaining a
high degree of accuracy.

7.7 Sub-Page Sharing

While VMware ESX currently only supports memory sharing at
the granularity of full pages, recent research has demonstrated that
significant benefits can be obtained by sharing portions of similar,
but not identical pages [8]. We have added preliminary support
to Memory Buddies for detecting sub-page level sharing between
systems by breaking each page into a series of n chunks, each of
which is mapped to a 32bit hash. As a result, Memory Buddies
produces a fingerprint n times as large for each system, but it can
use its existing fingerprint comparison tools to detect similarity
between different VMs.

To demonstrate the benefits of sub-page sharing, we have ana-
lyzed the amount of sharing achieved between two systems running
64bit Ubuntu Linux, each with 2GB of RAM, when the number of
hashes per page is varied between one and thirty two. Figure 10
illustrates how subpage level sharing can triple the total amount of
sharable memory. The number of hashes per page could be selected
by the system operator to balance the added overhead of larger fin-
gerprints against the increased accuracy in sub-page level sharing
estimation.

Result: Although Memory Buddies does not currently use a
hypervisor that supports sub-page level sharing, it can efficiently
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detect similar pages by generating multiple hashes per page. This
can provide significant benefits in total sharing.

8. Related Work

Transparent page sharing in a virtual machine hypervisor was im-
plemented in the Disco system [3]; however it required guest oper-
ating system modification, and detected identical pages based on
factors such as origin from the same location on disk. Content-
based page sharing was introduced in VMware ESX [27], and later
in Xen [11]. These implementations use background hashing and
page comparison in the hypervisor to transparently identify identi-
cal pages, regardless of their origin. Since our prototype lacks ac-
cess to the memory hashes gathered by the hypervisor, we duplicate
this functionality in the guest OS. In Memory Buddies, however,
we extend the use of these page content hashes in order to detect
the potential for memory sharing between distinct physical hosts,
rather than within a single host.

The Difference Engine system was recently proposed as a
means to enable even higher degrees of page sharing by allow-
ing portions of similar pages to be shared [8]. Although Memory
Buddies has preliminary support for detecting sub-page sharing
across machines by using multiple hashes per page, it currently
relies on ESX’s sharing functions which do not support sub-page
level sharing. We believe that as the technologies to share mem-
ory become more effective and efficient, the benefits of using page
sharing to guide placement will continue to rise.

Process migration was first investigated in the 80’s [19; 26].
The re-emergence of virtualization led to techniques for virtual
machine migration performed over long time scales in [22; 28;
12]. The means for “live” migration of virtual machines incurring
downtimes of only tens of milliseconds have been implemented in
both Xen [5] and VMware [18]. At the time of writing, however,
only VMware ESX server supports both live migration and page
sharing simultaneously.

Virtual machine migration was used for dynamic resource allo-
cation over large time scales in [21; 25; 6]. Previous work [31] and
the VMware Distributed Resource Scheduler [29] monitor CPU,
network, and memory utilization in clusters of virtual machines
and use migration for load balancing. The Memory Buddies sys-
tem is designed to work in conjunction with these multi-resource
load balancing systems by providing a means to use page sharing
to help guide placement decisions. Moreover, offline planning of
memory resources for desktop virtualization can be predicted ac-
curately rather than relying on generic rules of thumb that are rec-
ommended by manufacturers.

Bloom filters were first proposed in [1] to provide a tradeoff be-
tween space and accuracy when storing hash coded information.
Guo et al. provide a good overview of Bloom filters as well as an
introduction to intersection techniques [7]. Bloom filters have also
been used to rapidly compare search document sets in [10] by com-
paring the inner product of pairs of Bloom filters. The Bloom filter
intersection technique we use provides a more accurate estimate
based on the Bloom filter properties related to the probability of
individual bits being set in the bit vector. This approach was used
in [15] to detect similar workloads in peer to peer networks.



9. Conclusions

Modern hypervisors implement a technique called content-based
page sharing (CBPS) that maps duplicate copies of a page resident
on a host onto a single physical memory page. In this paper, we
have presented Memory Buddies, a system that provides sharing-
aware colocation of virtual machines by optimizing CBPS usage by
consolidating VMs with higher sharing potential on the same host.

‘We have made three contributions: (i) a fingerprinting technique
—based on hash lists or Bloom filters— to capture VM memory
content and identify high page sharing potential, (ii) a smart VM
colocation algorithm that can be used for both initial placement of
virtual machines or to consolidate live environments and adapt to
load variations using a hotspot mitigation algorithm, and (iii) a col-
lection of memory traces of real-world systems that we are making
available to other researchers to validate and explore further mem-
ory sharing experiments.

Using a mix of enterprise and ecommerce applications, we
showed that our Memory Buddies system is able to increase the ef-
fective capacity of a data center by 17% when consolidating VMs
with higher page sharing potential. These gains come from intel-
ligently grouping VMs with similar memory images to encourage
a high degree of inter-vm page sharing. We also showed that our
system can effectively detect and resolve memory hotspots due to
changes in sharing patterns. Our tools can also be used for capac-
ity planning in scenarios such as desktop virtualization. Memory
Buddies can be easily integrated in existing hypervisors such as
VMWare ESX server and their management infrastructure to opti-
mize the placement and migration of VMs in data centers.

As future work, we are continuing to collect memory traces
from desktops and servers to perform a more extensive trace anal-
ysis. We also plan to enhance our techniques to dynamically vary
how much memory is allocated to VMs to improve memory utiliza-
tion and further increase the number of VMs that can be placed on
a data center while guaranteeing application performance.
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