
Computer Science Review 29 (2018) 56–73

Contents lists available at ScienceDirect

Computer Science Review

journal homepage: www.elsevier.com/locate/cosrev

Survey

A survey of memory management techniques in virtualized systems
Debadatta Mishra a,*, Purushottam Kulkarni b
a Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, India
b Department of Computer Science and Engineering, Indian Institute of Technology Bombay, India

h i g h l i g h t s

• Discussion of resource virtualization challenges for virtualization techniques.
• Research challenges of memory partitioning and management in virtualized systems discussed.
• Survey of memory virtualization techniques and their implications.
• Classification and detailed description of dynamic memory management techniques.

a r t i c l e i n f o

Article history:
Received 22 July 2016
Received in revised form 19 June 2018
Accepted 20 June 2018
Available online 28 June 2018

Keywords:
Operating system
Virtualization
Memory virtualization
Memory management

a b s t r a c t

Virtualization technology allows multiple operating systems to share hardware resources of a computer
system in an isolated manner. Traditionally, memory is shared by an operating system using segmen-
tation and paging techniques. With virtualization, memory partitioning and management has several
new challenges. For isolated and safe execution, hypervisors do not provide direct access to hardware
resources. Lack of direct access to the memory management hardware like page tables disqualifies direct
usage of virtualmemory solutions used on native (non-virtualized) setups. Further, aspects of dual control
of the memory resource (by the guest OS and the hypervisor) and lack of semantics regarding memory
usage in virtual machines present additional challenges for memory management. This paper surveys
different techniques of memory partitioning and management across multiple guest OSs in a virtualized
environment.

An important goal of virtualization is to increase the physical machine utilization in order to save
costs. With varying application demand for memory and diverse memory management policies of the
guest OSs, ensuring optimal usage of memory is non-trivial. In this survey, challenges of memory
management in virtualized systems, different memory management techniques with their implications,
and optimizations to increase memory utilization are discussed in detail.

© 2018 Elsevier Inc. All rights reserved.

Contents

1. Introduction... 57
1.1. Scope ... 58

2. Memory virtualization challenges and techniques .. 58
2.1. Hypervisor memory allocation model .. 58
2.2. Virtualizing the memory management unit... 59
2.3. Shadow paging—software-based MMU virtualization .. 59
2.4. Direct paging—para-virtualized MMU virtualization .. 60
2.5. Nested paging—hardware assisted MMU virtualization ... 61
2.6. Beyond hardware assisted MMU virtualization ... 61

3. Memory resource management in virtualized systems... 62
3.1. Memory management complexity of operating systems.. 62
3.2. Hypervisor memory management challenges ... 63

3.2.1. Loss of hypervisor control of the allocated memory .. 63

* Corresponding author.
E-mail addresses: deba@cse.iitk.ac.in (D. Mishra), puru@cse.iitb.ac.in (P. Kulkarni).

https://doi.org/10.1016/j.cosrev.2018.06.002
1574-0137/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.cosrev.2018.06.002
http://www.elsevier.com/locate/cosrev
http://www.elsevier.com/locate/cosrev
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cosrev.2018.06.002&domain=pdf
mailto:deba@cse.iitk.ac.in
mailto:puru@cse.iitb.ac.in
https://doi.org/10.1016/j.cosrev.2018.06.002

D. Mishra, P. Kulkarni / Computer Science Review 29 (2018) 56–73 57

3.2.2. Limited access to guest OS information .. 63
3.2.3. No direct influence on guest OS policies ... 63
3.2.4. Diverse nature of guest OSs ... 63

4. Memory management approaches .. 63
4.1. Exploiting dynamic memory demands... 63
4.2. Content deduplication ... 64
4.3. Hypervisor and guest OS symbiosis .. 64

5. Dynamic memory provisioning techniques .. 64
5.1. Dynamic provisioning enablers... 64

5.1.1. Memory ballooning .. 65
5.1.2. Memory hot-plugging .. 65

5.2. Controllers for dynamic memory provisioning.. 65
5.2.1. Black-box approaches of balloon control .. 66
5.2.2. Gray-box balloon controllers ... 67

6. Exploiting content similarity for memory management ... 67
6.1. Page sharing by out-of-band scanning ... 68
6.2. Out-of-band sharing at multiple granularity ... 68
6.3. Deduplicating memory on the I/O access path .. 69

7. Memory management through hypervisor and guest OS symbiosis .. 69
7.1. System level second chance caching... 70
7.2. Collaborative memory state maintenance.. 71

8. Discussion.. 71
9. Conclusion ... 72

Conflict of interest... 72
References ... 72

1. Introduction

Historically, operating systems have been designed to be sole
owners and managers of hardware resources in a computer sys-
tem. A modern multitasking operating system provides software
abstractions of hardware devices and enables interfaces to access
and use the devices in an isolated manner. For example, operating
systems provide interfaces to create and run processes in a concur-
rent manner by sharing the CPUs. The file abstraction and related
file operations (create, read, write etc.) is another example
to enable shared access of hard disk by different applications.

Virtualization technology raises the abstraction beyond individ-
ual resources to provide an abstraction of the computer system.
A Virtual Machine (VM) is the equivalent of a physical computer
that can host an operating system to manage the virtual hardware
just like an operating system running on a physical hardware.
An important advantage of virtualization is that computing sys-
tems become detachable from the underlying hardware. Virtual
machines – hardware independent software computers – can en-
able mobility, controlled execution, state replication etc. However,
the transition from resource level multiplexing to system (VM)
level multiplexing is not trivial. With system virtualization, a soft-
ware layer known as the Virtual Machine Monitor (VMM) or the
hypervisor1 owns the physical hardware and orchestrates sharing
of resources to provide virtual hardware abstractions.

Towards the design of hypervisors, a set of requirements (as
stated by Popek and Goldberg [1]) are,

• Equivalence: Provide the same hardware and instruction
interfaces as that of the bare metal (physical) hardware
for which the operating system is designed. This condition
allows operating systems designed for native hardware to
execute inside a virtual machine without anymodifications.

• Resource Control: All physical resources of a machine are
completely controlled and managed by the hypervisor. A
guest OS should not use any resource that is not allocated
to it and the hypervisor can gain control of any resource at
any point of time. This property is amandatory requirement
for hypervisors to provide isolation, security and improved
resource utilization.

1 VMM and hypervisor are used interchangeably in this document.

• Efficiency: As much as possible, the guest OS operations
should be executed natively without involvement of the hy-
pervisor. This is a performance requirement that separates
pure software emulators like QEMU [2] from hypervisors.

Hypervisors have been designed and built with varying adherence
to the above requirements, mostly exploring the tradeoff between
efficiency and equivalence [3–7].

Virtualization based provisioning [8,9] is a growing trend for
hosting services and applications for data centers. Such a de-
ployment model has several benefits—elastic resource provision-
ing [10–12], run timemigration [13], checkpointing [14], sandbox-
ing of applications [15] etc. Towards enabling a pay-on-use model
of provisioning and maximization of resource utilization, dynamic
management of resources allocated to virtual machines plays a
vital role.

Efficient utilization of physical resources—CPU,memory and I/O
devices, has a direct implication on the cost in terms of hardware,
maintenance, power consumption and performance of applica-
tions (commonly specified in terms of service level agreement or
SLA). Even though a virtual machine is provisioned with certain
resources, it may not use all the resources at all times. For example,
a virtual machine configured with 1 GB of main memory may
require 1 GB of memory only during peak demand periods. During
‘‘average’’ load conditions, the unused memory can potentially be
used by any other virtual machine.

Following are the challenges involved to achieve efficient re-
source management in virtualized systems,

• Darkness: The hypervisor by design is in the dark about
the resource usage quality of the guest OS. By quality we
mean whether resources allocated to a virtual machine are
used for as important a purpose as by the other VMs. For
example, a VM may use the CPU resources to run an anti-
virus scanner when two other VMs urgently need additional
CPU for transaction processing.

• Duality: Resource management decisions are controlled by
two entities in virtualized systems—(i) by the VM as per
the OS design and administrator policies, and, (ii) by the
hypervisor dictated by the virtualization technique and the
administrator policies determined by customer service level

58 D. Mishra, P. Kulkarni / Computer Science Review 29 (2018) 56–73

agreements. For example, I/O schedulers of the guest OS and
the hypervisor can make contradictory decisions regarding
the order in which I/O requests are issued. This duality can
result in inefficient resource utilization and impact perfor-
mance.

• Diversity: Even though the guest OS policy and the hyper-
visor policy may not be in sync, if a single type of guest
policy is assumed, hypervisor resource management can
be relatively easily tuned to be in sync with the guest VM
policies. However in a real setup, OSs and applications ex-
ecuting within different VMs are heterogeneous in nature.
As a consequence, it is difficult to develop generic techniques
at the hypervisor level to complement policies employed by
different guest OSs.

• Dynamism: Dynamic levels of resource demand in dif-
ferent VMs enables over-commitment of resources. Over-
commitment requires the hypervisor resource manager to
detect, adapt and act to the varying resource needs of the
VMs in order to maximize utilization and adhere to the
performance requirements.

The focus of this work is the main memory subsystem of a
computing system. Memory management of a computer system
in a multitasking OS is a well researched area [16–18]. Operating
systems partition memory into independently managed chunks
and assign them to different execution entities like processes and
threads at run-time. Segmentation and paging are common in-
stances of partitioning based memory management techniques.
Hardware support like segmentation hardware, Memory Manage-
ment Unit (MMU) and Translation Look-aside Buffer (TLB) for effi-
cient implementation of segmentation and paging are commonly
available in most of the modern commodity processors. Memory
virtualization adds an additional layer of memory management
for which traditional MMU based approaches and the meta-data
management need to be controlled (and if required owned) by the
hypervisor to ensure correctness and isolation.

Memory management in system virtualization is challenging
because of the general resource management challenges of vir-
tualized environments—darkness, duality, diversity and dynamism.
Additionally, unlike the time multiplexed resources like CPU and
I/O devices,memory is spacemultiplexed (partitioned).With time-
multiplexed resources, the hypervisor periodically gains control of
the resource for decision making. For example, hypervisor level
CPU scheduler may be invoked periodically to change the CPU
allocations to VMs.With space-partitioned resources such periodic
decision making on the resource-access or allocation path is not
possible and adds to the challenge of efficient resource provision-
ing.

1.1. Scope

In this survey, we focus on virtualization and management of
memory on a single host, where a hypervisor controls andmanages
the memory sub-system of the machine. Memory virtualization
solutions, implemented both in software andwith hardware assis-
tance, are discussed and evaluated against virtualization require-
ments. Further, we discuss existing work related to performance
implications of the memory virtualization techniques.

The complexities and challenges of efficient memory manage-
ment are discussed before delving into classification of individual
techniques. A high-level classification based on different design
philosophies is also presented. Individual techniques, optimiza-
tions, usage of the techniques and performance implications are
discussed in detail.

The rest of the paper is organized as follows.Memory virtualiza-
tion techniques are discussed in Section 2. Memory management

Fig. 1. Flexible page-level memory allocation in virtualized systems with dynamic
pseudo (guest) physical pages to machine pages mapping.

challenges and complexities in a system virtualized solution are
presented in Section 3. Section 4 presents a broad classification
of memory management techniques which are discussed in detail
in Sections 5–7. Finally, we discuss future research directions of
memory management in virtualized systems in Section 8 and
present conclusions in Section 9.

2. Memory virtualization challenges and techniques

There are several techniques to partition and allocate memory
among virtual machines in a virtualized system. Allocation can be
simple continuous fixed partition based or a dynamic page level
allocation scheme like demand paging. Further, guest OSs employ
virtual memory mechanisms to support multi-tasking making use
of MMU hardware to allow controlled memory access for the
processes. By implication, process level memory isolation requires
MMU hardware features to be accessible from the virtual machine.
Allowing direct access to the hardware without hypervisor control
is not a straightforward design feature as it presents challenges
w.r.t. isolation requirements and efficiency aspects.

2.1. Hypervisor memory allocation model

Most modern operating systems manage physical memory by
dividing it into fixed size regions called pages. The basic page entity
is used by an OS to manage allocation, permissions and translate
virtual address to physical address. Virtualization solutions employ
the same notion of paged memory for management of memory
across different virtual machines.

Linearly addressable physical memory starting at physical ad-
dress zero is the underlying assumption of operating systems. If the
guest OS has no explicit knowledge of the underlying hypervisor
(unlike in para-virtualization techniques like Xen [4]), memory
allocation by the hypervisor should ensure that the guest operating
systemdoes not need special handling for physicalmemory layout.
To address this fundamental requirement, hypervisors implement
pseudo-physical memory as a logically continuous physical mem-
ory abstraction for each virtual machine. Fig. 1 shows a generic
memory allocation model employed by hypervisors for memory
virtualization.

Processes executing in a virtual machine share the guest phys-
ical address by virtue of the virtual to physical mapping provided
by the virtual memory subsystem of the guest OS (referred as V-
to-P in the figure). As shown in Fig. 1, from a guest OS perspective,

D. Mishra, P. Kulkarni / Computer Science Review 29 (2018) 56–73 59

each virtual address (VA) of processes P1 and P2 is translated to the
guest physical address (referred to as P and implies guest physical
frames in the figure). The guest physical page frame number2
(GPFN) to actual machine frame number (MFN) translation is
performed by the hypervisor (P-to-Mmapping as shown in Fig. 1).

Given this generalized two layer model for mapping memory
addresses, the central question is, how physical memory is allo-
cated and managed across virtual machines? Following are the
possibilities,

• Statically allocating fixed region physical memory to each
virtual machine, while this scheme is simple to implement,
large portions of memory allocated to virtual machines
could never be utilized and lead to inefficient memory us-
age.

• Dynamicmapping similar to the way a process in an operat-
ing system is allocatedmemory and allocations are changed
if the situation demands. To implement dynamic mapping
for virtual machines, hypervisors need to maintain and
manage guest to machine memory mappings in a dynamic
manner.

Dynamic mapping facilitates better memory resource manage-
ment. The mapping from guest physical address to machine phys-
ical address can be provided in an on-demand basis. For example,
consider a virtual machine configured with 1 GB memory, and not
all of it is mapped to machine memory. A particular guest physical
page number (GPFN) can be mapped to machine frame number
(MFN) when the guest allocates the page to any process running
inside the guest OS. Additionally, the hypervisor can invalidate
some GPFN to MFN mappings and reassign the machine pages to
other virtual machines. As shown in Fig. 1, for many guest PFNs
there are no machine framemappings. The advantages of dynamic
GPFN to MFN mapping are as follows,

• Memory over-commitment is possible with page level dy-
namic allocation. With hypervisor level page swapping, the
hypervisor can swap-out guest pages to disk before inval-
idating the GPFN to MFN mapping and swap-in the guest
page when the guest access causes a page fault. Similar
to virtual memory systems, the virtual machine can be
promised more memory than the actual physical memory.

• Page level dynamic allocation acts as a building block to
support memory content deduplication at the allocation
granularity. Consider two GPFNs (from same or different
guest VMs) mapped to two distinct MFNs with same data
contents. The GPFN to MFN mapping can be changed to
a shared mapping to release one MFN (in Fig. 1 one such
shared mapping is shown). As a consequence of dedupli-
cation, memory efficiency of the virtualized system can be
improved.

2.2. Virtualizing the memory management unit

The virtual memory subsystem in an operating system provides
the illusion of unlimited memory (as large as the address space) to
processes. The virtual to physical address mapping is performed
at run time using specialized hardware, the Memory Management
Unit (MMU). Virtual to physical mapping is maintained at a page
granularity and is indexed at several levels (the page tables) to
reduce space requirements for storage of translation information.
When a process is scheduled on a CPU, pointer to the level one page
table physical page (also known as Page Directory or PGD) that

2 A frame number indicates logical number of the page frame when memory is
divided into page frames.

Fig. 2. Example of MMU based virtual to physical address translation in 32-bit x86
architectures with 4 KB pages.

contains the second levelmappings is loaded into a designated CPU
register (the CR3 register in x86 architectures [19]). TheMMU uses
thememory location stored in the CR3 register towalk through the
page table hierarchy to reach to the physical page corresponding to
a given virtual address.

An example of page table structures and translation for 32-bit
x86 systems is shown in Fig. 2. On a context switch, the CR3 register
is loaded with the physical page address that contains the PGD of
the process. When the process accesses a 32-bit virtual address,
10 most significant bits of the virtual address are used as an offset
into the PGD page frame to locate address of the page frame that
contains the Page Table Entries (PTEs). The next 10 significant
bits are used to offset into the PTE page frame to locate the user
accessed page frame. The least significant 12-bits are used as an
offset into the physical page to access the address inside the page.

The page table walk is performed entirely in hardware without
any software involvement. The operating system gets involved ei-
ther on a process context switch or to handle hardware exceptions
during page table walk. Page fault is the most common exception
generated in a demand paging system. One of the most common
scenarios of page faults is when the hardware page table walker
encounters a non-existentmapping for a requested virtual address.
The operating system allocates a free page frame to the process
(swaps out some other page if required) on a page fault exception
and updates the page table accordingly before returning from the
exception handler.

In the context of virtualization, virtualizing the MMU has addi-
tional factors to consider.

• In virtualized systems, the page table structures are man-
aged by the guest OS which operates with pseudo physical
pages (GPFNs). The hardwareMMUpage tablewalk requires
machine page frames (MFNs) for translation of virtual ad-
dresses to physical addresses.

• To ensure isolation and correctness, access to the CR3 reg-
ister is not granted to guest OSs by the hypervisor. This
implies that page table modifications may need hypervisor
intervention.

2.3. Shadow paging—software-based MMU virtualization

Waldspurger [5] proposes a basic framework of shadow page
tables for VMware ESX server. In shadow paging, the page table

60 D. Mishra, P. Kulkarni / Computer Science Review 29 (2018) 56–73

Fig. 3. Hypervisor maintains shadow page tables for each process of the guest
OS and facilitates guest-transparent MMU virtualization ensuring isolation and
correctness.

physical resources—the page table base register (e.g., CR3 in x86)
and the machine pages that contain the guest process page tables,
are protected by the hypervisor. CR3 protection is achieved by ar-
chitecture provided protection mechanisms—CPU privilege levels
(x86 rings) and/or explicit hardware support for virtualization like
Intel VT-X [20] and AMD SVM [21]. Fig. 3 shows the guest OS view
of page table (above the dotted line) and the actual page table
used by the MMU for address translation. The machine pages that
contain the page table structures are protected by making them
read-only for the guest OS. Note that, the hypervisor maintains
a per-process shadow page table for each guest OS which is used
by the MMU when a process executing within a virtual machine
accesses any virtual address.

Page table reads execute without an exception, which implies
that as long as a process executing inside a virtual machine per-
forms read or write operation on the pages those are already
mapped in the page table, the hypervisor is not involved. When-
ever page table entries aremodified because the guest OS allocates
or de-allocates a guest PFN, an exception occurs. The exception is
handled by the hypervisor by updating the shadow page tables.
Page fault trap handler at the hypervisor looks into the guest page
tables to check if the page table entry is valid. If not valid, the
hypervisor injects this fault into the guest OS which is handled
by modifying the page table. If the virtual address to guest PFN
mapping is valid in the guest page table, the shadow page table is
updated with a machine frame and the guest PFN to MFNmapping
is updated in the hypervisor.

The advantage of shadow paging is that it requires no sup-
port from the hardware and the guest OS does not require any
modifications. Further, isolation and equivalence requirements, as
stated by Popek and Goldberg [1], are met by shadow paging.
The overheads of software MMU virtualization can be substantial
because it requires per process shadowpage table to bemaintained
the hypervisor. Moreover, a large number of exits to the hypervisor

Fig. 4. Para-virtualized guest OS issues VMCALLs (hypercalls) to update the page
table entries. Read operations on the page table are allowedwithout the hypervisor
involvement.

(a.k.a. VMExit) may have to be handled if the memory map of pro-
cesses changes frequently. Wang et al. [22] show that, for certain
workloads this overheads can be substantial compared to other
techniques that we will discuss shortly. All virtualization solutions
that support full virtualization (Xen [4], VMware [5] and KVM [3])
implement shadow paging to support execution of unmodified
operating systems on virtualization-agnostic hardware architec-
tures. In spite of the software complexity associated with shadow
page tables, this technique performs very similar to hardware
page walks in the best case and does not require any additional
hardware support. Therefore, even with hardware extensions to
aidmemory virtualization, shadowpaging remains a relevant tech-
nique for the research community. For example, Gandhi et al. [23]
propose architectural extensions to design an agile paging system
with shadow page table used as the base technique.

2.4. Direct paging—para-virtualized MMU virtualization

Barham et al. [4] propose the concept of para-virtualization
where a subset of instructions in x86 Instruction Set Architecture
(ISA) is available for the guest OS. Change in ISA was primarily
motivated to address architectural limitations with regard to non-
deterministic behavior of sensitive instructions resulting in non-
equivalent virtualization. Robin et al. [24] provide an excellent
analysis of issues and challenges in design of virtualization solu-
tions on x86 platforms of that era. One of the major issues in x86
systems was that several instructions were silently ignored with-
out causing any trap when executed from a lower privilege level.
With the para-virtualized approach, modifications to the guest OS
are proposed to carry out these sensitive operations through the
hypervisor. VMCALL or hypercall API is provided to guest OSs by
para-virtualization platforms to execute privileged operations by
the hypervisor ensuring isolation and correctness. The relaxation
achieved due to guest OS changes can also be used for efficient
MMU virtualization.

In Fig. 4, direct paging used in a para-virtualized setting is
shown. From the guest OS view, the per-process page table struc-
tures (shown above the dotted line in the figure) are stored in the
GPFNs (mapped to write protected MFNs by the hypervisor). Page

D. Mishra, P. Kulkarni / Computer Science Review 29 (2018) 56–73 61

Fig. 5. MMU virtualization using in-hardware support for two levels of address
translation—guest virtual to GPFN through guest page table, and GPFN toMFNusing
hypervisor page table.

table read by the guest OS or the MMU hardware does not require
hypervisor involvement. The page table updation interfaces in
the guest OS are modified to update (write) the page tables via
hypercalls to the hypervisor.

The guest page table MFNs are marked read-only and any guest
modification to the page table structures for a particular process is
achieved by a hypercall from the guest OS to the hypervisor (as
shown in Fig. 4). Hypercall handler implemented by the hyper-
visor validates the changes requested to ensure isolation before
applying the changes to the machine pages that correspond to the
guest page tables (shown as write protected MFNs in the figure).
Requests can be bundled together as an optimization to reduce the
hypercall overheads. Similar to the case of shadowpage tables, nor-
mal page table reads execute without hypervisor intervention. The
MMU register that points to the page directory (the CR3 register
in case of x86) points to the applicable machine page on a process
context switch in the guest OS. On a page fault, the guest OS finds
a free GPFN and makes a hypercall to update the page table for the
faulting virtual address. The hypervisor translates theGPFN toMFN
and updates the page table entry. The primary advantage of direct
paging is efficiency, which comes at the cost of losing equivalence
as guest OS modifications are required to realize this solution.

2.5. Nested paging—hardware assisted MMU virtualization

As virtualized platforms are becoming an ubiquity, hard-
ware vendors and researchers continuously strive to design
virtualization-aware hardware. Advancements of this nature that
are applicable to memory virtualization are extended page tables
(EPT) [20] and nested page tables (NPT) [25]. These techniques
provide twoMMU states per CPU—one for the virtual machine and
other for the hypervisor. Guest OSs and the hypervisor have access
to their private CR3 registers. The guest OS CR3 register points
to the guest PFN of page directory (PGD) and the hypervisor CR3
points to the page table structures maintained by the hypervisor
to map guest physical frames to machine frames.

The hypervisor page table structures are same for all the pro-
cesses executing within a VM. The guest accesses andmanages the
guest page tables without any exits to the hypervisor. The guest
PFN to MFN mapping is maintained by the hypervisor.

A sample page table walk for a 32-bit guest virtual address is
shown in Fig. 5. Every entry in the guest page table is in terms of

a GPFN. The guest CR3 (gCR3) register containing the guest PFN
of the page directory (PGD) is converted to MFN by performing
a nested hypervisor page table walk. The 10-bit offset into the
PGD is used to find the guest PFN that contains the page table
entry (PTE). The corresponding MFN is determined by a nested
walk before offsetting into the MFN that contains the GPFN for the
virtual address. Onemore nestedwalk in hardware determines the
machine page and the physical address is accessed using the 12
LSB bits of the virtual address. All these walks happen in hardware
without the guest OS or the hypervisor involvement.

On a page fault, if the fault is due to missing or invalid entries
in the guest page table, then the hypervisor injects the page fault
into the guest OS. If the fault is because of the failure in nestedwalk,
then the hypervisor allocates amachine page and updates the page
table before returning from the exception. Using EPT/NPT, equiv-
alence is achieved easily without additional software complexity
unlike the earlier solutions. Drawback of nested page tables is the
TLB-miss penaltywhich is the cost associatedwithmultiple nested
walks required to translate a single virtual address. Specifically, on
a TLBmiss, nested page table with n levels will result in (n+1)2−1
number of memory accesses to translate a given virtual address in
the worst case [23].

2.6. Beyond hardware assisted MMU virtualization

Wang et al. [22] provide a very good comparative analysis of
MMU virtualization efficiency with shadow paging and hardware
assisted EPT. The authors established that neither shadow paging
nor extended page tables were clear winners for all workload
scenarios. For workloads resulting in significant TLB misses, EPT
experiences higher MMU translation overhead (up to 15% more)
compared to shadow page tables [26,22]. On the other hand, work-
loads resulting in a lot of page faults, the performance of shadow
page tables is shown to be 35% slower than the hardware assisted
page tables. Wang et al. [22] used these insights to propose a
dynamic switching between the two paging schemes and demon-
strate that the hybrid scheme is capable in leveraging the best of
both worlds to achieve improved virtualization efficiency.

Hardware vendors (both AMD and Intel) have proposed sev-
eral optimizations like extended TLB support, hardware MMU
caches [25,27] for the nested mapping etc. to circumvent the
problems arising due to nested walks. Gandhi et al. [28] show that
revived usage of hardware functionalities like segmentation at the
hypervisor level tomap guest physical tomachine physical address
can improve the translation overheads. However, this approach
is applicable for big memory workloads (e.g., in-memory graph
processing, key–value stores etc.) executing on systems with huge
memory capacity. Agile paging (Gandhi et al. [23]) builds on the
intuitions provided by Wang et al. [22] to propose modifications
in the page table hardware. In agile paging, depending on the
modification possibilities of any page table entry, extended paging
is enabled selectively for the virtual address range covered by the
page table entry. In the best case, agile paging incurs 4% overhead
compared to native systems.

Summary: Two levels of memory translation required for memory
virtualization is the primary source of complexity and overhead in
virtualized systems. In our opinion, the optimal page table layout
in virtualized system depends on the workload, more specifically
on the memory usage and access footprint of applications. De-
pendence on application characteristics is the most challenging
aspect in designing generic MMU hardware frameworks. Further,
hardware vendors provide limited flexibility in terms of configur-
ing the page table hardware. For example, the hypervisor cannot
dynamically customize the number of levels in page table trans-
lations because of the hardware constraints. We believe, if future
hardware architectures enable more software customization pos-
sibilities in the MMU hardware, memory virtualization overheads
can be addressed more efficiently.

62 D. Mishra, P. Kulkarni / Computer Science Review 29 (2018) 56–73

Fig. 6. Parameters influencing memory management in virtualized systems.

3. Memory resource management in virtualized systems

Memory management in a virtualized system involves three
major entities—user-level applications, guest OS, and hypervisor
(shown in Fig. 6). The applications executing within a virtual
machine allocate memory using the memory allocation routines
provided by the guest OS. Almost all operating systems provide
administrator controlled policies (accessible from user space) that
can influence the OS memory management. For example, an ad-
ministrator may toggle the huge page feature in Linux (support for
page sizemore than 4 kB) [29], in turn impactingmemorymanage-
ment policies of Linux kernel related to allocation, evictions and
de-fragmentation etc.

Operating system memory management is designed with the
assumption that the OS is the sole owner of physical memory.
A typical guest OS implements memory management policies to
maximize local application performance, conforming to priorities
enforced either by design or by administrator policies.

The hypervisor manages memory allocation across different
VMsdepending on the allocation policy and virtualizationmethods
(described in previous section). Several memory optimizations are
proposed and used by hypervisors for efficient management of
memory. Memory management techniques of hypervisors take
advantage of dynamic memory demands of the virtual machines
to provision memory in a dynamic manner.

An efficient memory management method in virtualized sys-
tems should ensure high resource utilization andmeet application
performance and other SLA guarantees. The complexity of guest OS
memorymanagement presents a non-trivial challenge to correctly
size the guest VM memory to meet memory requirements of user
applications.

3.1. Memory management complexity of operating systems

Memory subsystem management is an important aspect of
typical Von Neumann architectures where instructions and data

reside in memory. The access speed of memory is an order of
magnitude slower than the CPU. Latencies increasewith the virtual
memory mechanism due to additional memory accesses required
for address translation. The situation is far more worse when a
swap partition on a storage device is required to be used as the last
resort to support multiplexing of memory across processes. Both
hardware extensions (TLB and faster CPU caches) and software
techniques (e.g., compiler optimizations) are employed to decrease
wasted CPU cycles for memory subsystem access.

The guest OS (shown in the middle part of Fig. 6) employs
memory management techniques based on several parameters.
Application priority, disk block caching and hardware constraints
are example parameters influencing memory management poli-
cies of an operating system. Some memory management design
parameters of a typical operating system are as follows,

• Physical memory range divisions: Physical memory is di-
vided into multiple logical partitions based on the way they
are allocated for different purposes. The partitioning is re-
quired for two primary reasons—(i) hardware constraints
(e.g., DMA address range for old devices), (ii) efficiency rea-
sons (e.g., memory used by Linux kernel is preferably placed
in a particular physical memory range for cache/translation
efficiency).

• Multiple types of allocations: Operating systems allow
interfaces for multiple types of memory allocation. Some
devices require physically continuous memory to operate
while operating system code and data structures may be
placed in physically continuousmemory to improve locality.
Memory allocated for OS code sections andmemory used by
certain device drivers may require that allocated memory
should not to be evicted to a swap device. Normal user allo-
cation requests reserve only the virtual address during the
allocation while the actual physical allocation takes place in
an on demand manner.

• Prioritization: Memory allocation and eviction are done
based on priority defined by either the entity that is re-
questing/usingmemory (anOSpage is not normally selected
as a victim to evict) or the usage history of the page (LRU,
ARC [30] and adaptive CLOCK [31] are classical example of
such priorities) or both.

• Memory usage thresholds: Different watermarks of mem-
ory usage are common inmost of the operating systems that
can drastically change the way memory is managed. A free
memory low watermark may trigger swapping as a precau-
tionarymeasure tomaintain aminimum freememory in the
system.

• Caching content of slower storage: To expedite access to
slower block devices, most operating systems cache con-
tentswith the hope that those device blockswill be accessed
in near future. Along the same lines there can be prefetch-
ing [32,33] optimizations to take advantage of temporal
locality of access. Linux page caches [34] is an example cache
implementation for files stored in disk storage.

Apart from the above stated general design parameters, there
can be many micro level parameters and tunables which influence
the memory management of an operating system. A couple of
examples are explained here for the interested readers. In Linux,
two kernel threads pdflush and kswapd [35] take care of flushing
memory pages onto disk. Scheduling of these threads impacts the
Linux kernel decisions regarding future allocation requests. An-
other example of a tunable is known as swappiness determines
under what memory load conditions swapping can start.

Application designersmay develop applications that impact the
memorymanagement inside the guest OS. Consider an application
that tries to maintain its own cache (a database for example)

D. Mishra, P. Kulkarni / Computer Science Review 29 (2018) 56–73 63

and employs direct block device access bypassing the OS disk
caching layer. Memory used by the application layer disk cache
will be incorrectly accounted as anonymous memory usage by the
operating system. Salomie et al. [36] reported similar behavior
for database applications and applications executing within JAVA
runtime environment. Further, administrators (operating system
distributions for that matter) maywant to change default behavior
of the operating system by configuring different OS configurations.
This would in turn trigger changes in the OSmemorymanagement
decisions.

3.2. Hypervisor memory management challenges

The complex and diverse nature of operating systems present
several challenges to design efficient memory management poli-
cies in virtualized systems.

3.2.1. Loss of hypervisor control of the allocated memory
Memory is space partitioned across VMs—hypervisor does not

have any idea regarding the usage of the allocated memory. For
a time multiplexed resource like CPU, the hypervisor can take
back the control and access the state of the CPU (e.g., program
counter) to gain insights regarding its use. The hypervisor is in
the dark regarding the utility of the allocatedmemory unless some
explicit communication channel between the virtual machine and
the hypervisor exists.

3.2.2. Limited access to guest OS information
The resource usage statistics provided by operating systems

are not standardized. The nature and semantics of the informa-
tion changes between operating systems, even between different
versions of the same operating system. In light of guest OS di-
versity, designing hypervisor memory management policies based
on information from guest OSs is challenging. Another source
of information is indirectly deduced information from the page
table updates depending on the memory virtualization method
employed (Fig. 6). Assuming page table updates can be tracked by
the hypervisor (not easy to track EPT/NPT updates), this method
presents two difficulties—first, data gathering incurs larger over-
heads and second, deduction of usable information from the raw
page table data to take memory management decisions is non-
trivial.

3.2.3. No direct influence on guest OS policies
The policy decisions of the guest OS are influenced by many

factors as shown in Fig. 6. The algorithms used by the guest OS are
not easy tomanipulate from the hypervisor. For example, changing
the victim page selection algorithm of a guest OS from the hypervi-
sor is difficult because either equivalence has to be compromised
or a complex dynamic execution time binary translation [26,37]
scheme is required. Several indirect designs to influence the guest
OS memory management decisions are proposed and we will dis-
cuss them in Section 7.

3.2.4. Diverse nature of guest OSs
The design objectives of operating systems are complex and di-

verse. If the hypervisor can assume generic memory management
features of guest OSs, it can indirectly influence the memory man-
agement in the guest OSs. The involvement of the hypervisor in
the guest VM without guest OS modifications is a desirable design
to support heterogeneous guest OSs. Moreover, guest OS intrusive
techniques to improve memory efficiency cannot be applied if
the guest OS cannot be modified because of commercial or other
restrictions.

Summary: Memory management in virtualized system is com-
plicated as several constraints and requirements need to be si-
multaneously met for an efficient solution. For example, meeting

the requirements of high memory utilization under the constraint
of adhering to application performance objectives is a non-trivial
proposition. Further, design of generic techniques to address the
diversity aspects of guest OSs and applications is particularly diffi-
cult. The rest of the paper discusses solutions that deal with these
tradeoffs and constraints.

4. Memory management approaches

The objective of resource management involving multiple en-
tities is to allocate resources as greedily as possible and still meet
the individual resource needs of each entity. In case ofmemory, the
hypervisor must allocate enough memory to each VM so that no
SLAs (or higher level policies or goals) are violated. Such a policy
ensures tight packing and saves cost by increasing the number of
VMs that can be hosted on a physical machine.

With a page level allocation that allows flexibility to support
allocation and de-allocation of machine memory to guest VMs,
the hypervisor is required to maintain the mapping dynamically.
Few optimizations to increase the global memory utilization may
requiremodifications to the guestOSwhile other optimizations are
transparent to the guest OS. As shown in Table 1, the methods for
managing memory efficiently can be broadly classified into three
categories.

1. Techniques that exploit varying levels of guest OS memory
requirements

2. Techniques to reduce physical memory usage by content
deduplication

3. Hypervisor and guest OS symbiosis based techniques.

Each of these techniques can be further classified based on the
exact implementation methods. The classifications are not mu-
tually exclusive; and if more than one of these techniques are
combined, then the hypervisor should be aware of the implications
and impact of one on the other.

4.1. Exploiting dynamic memory demands

Memory requirement of applications varies over time. The hy-
pervisor can exploit this fact to make memory allocation decisions
such that the amount of memory allocated to a virtual machine at
any point of time is just enough for the applications executing on
it.

Techniques to enable dynamic memory allocation – hypervisor
swapping, ballooning and memory hotplug –take advantage
of the flexibility of guest physical memory to machine physical
memory mappings, to achieve dynamic memory resizing of the
virtual machines. However, the adjustments need to be carefully
designed such that either the guest OS has knowledge about its
implications or is transparent to the guest OS. If transparency is
not achievable and modifications are required, then the design
should target minimal and non-intrusive changes in the guest OS.
An illustration of intrusive and complex change is to modify the
page eviction algorithm of a guest OS to consume inputs from the
hypervisor and the other guest OSs tomeet system level objectives.

Once a technique is devised to enable dynamic memory allo-
cations to the VMs in a transparent manner, the challenge lies
in design of a controller that is accurate and prompt. Accurate
estimation of the memory requirement of the virtual machines
in a dynamic manner is non-trivial. If the estimation of memory
requirements is conservative then memory is under-utilized. An
inaccurate estimation on the other handmay result in degraded ap-
plication performance due to memory thrashing. The promptness
to detect change in memory requirement and take actions is an-
other aspect of the controller design. If the control interval is small,
frequent change in allocationsmay result due to transientmemory

64 D. Mishra, P. Kulkarni / Computer Science Review 29 (2018) 56–73

Table 1
Classification of memory management techniques in virtualized systems.

Optimization Optimization aspects Challenges Solutions

Exploiting varying memory
demands

Dynamism, darkness (indirect) WSS estimation, control interval (i) Dynamic allocation enablers—Demand paging by
hypervisor [5], ballooning and memory hotplug [5,38].

(ii) Black box controllers—WSS estimation
based [5,39,40], Miss Ratio Curve (MRC) based [41,42],
Guest IO monitoring [43], hypervisor exclusive
caching [44].

(iii) Gray-box controllers—Guest OS
self-ballooning [45], True working set based [46],
Application driven ballooning [36]

Content deduplication Darkness, Diversity Transparency, sharing overheads (i) Out-of-band scanning—Page level deduplication
(VMWare [5], KSM [47–49], singleton [50]),
Sub-page deduplication (Difference engine [51]).

(ii) Deduplication in IO path—satori [52]

VMM and guest symbiotic
memory management

Darkness, dynamism, duality Guest operating system changes (i) Efficient management of memory used for disk
block caching—Transcendent memory (tmem) [53–55],
tmem enabled for distributed applications
(Mortar) [56], hypervisor exclusive caching [44].

(ii) Collaborative memory management [57].

demands of the guest resulting in additional overheads. A large
control interval on the other hand may be too slow to respond to
changing memory requirements. Techniques for memory demand
estimation and the control methods are discussed in Section 5.

4.2. Content deduplication

The memory content of different virtual machines can be sim-
ilar if the operating systems and the applications running in the
VMs are similar. A content deduplicationmethod identifies similar
content and maintains a single copy, resulting in increased free
memory. However, to make the deduplication process transparent
to the guest VM, the hypervisor needs to handle the writes to the
shared content by any virtual machine involved in sharing.

The method to find content similarity and the granularity at
which the content similarity is searched are two important aspects
of this technique. Different search methods and the associated
parameters determine the additional resource overheads e.g., CPU
cycles, and the savings due to sharing. Lower the granularity of
sharing, higher is the sharing benefits while resource requirement
to achieve the sharing can be higher. Deduplication techniques
based on out-of-band memory scanning (e.g., VMWare [5]) can
address the problem of diversity as their design is generic and
transparent to the guest OSs.

While content deduplication is an elegant optimization for
managing memory better, it does not guarantee optimal resource
utilization when used as the only technique. For example, con-
sider a trivial counter example where two virtual machines are
completely idle but they do not have any content similarity. As
a result, stand alone controllers for content deduplication are not
commonand are used to complement other optimizations. Content
deduplication is elaborated in Section 6.

4.3. Hypervisor and guest OS symbiosis

Typically, a guest OS does not know whether it is executing on
a physical machine or a hypervisor. The hypervisor is not aware of
the guest OSmemory requirements and thememorymanagement
policies. Changes in thememorymanagement policies of the guest
OS as per some standard enforced by the hypervisor when running
on a virtualized platform is one approach to solve the problem. This
requires several modifications in the guest OS and all the virtual
machines hosted on the hypervisor are required to implement

these changes. If some VMs do not change their policies, fairness
of resource usage can be an issue.

Alternatively, the hypervisor can take inputs from the guest OSs
regarding their memory management policies and state informa-
tion to make intelligent decisions regarding memorymanagement
at the hypervisor level. This approach is less intrusive for the
guest OS memory management because some counters need to
be shared with the hypervisor. However, as discussed earlier, the
complexity and the diversity of OS design makes the choice of
exact information exchange and decision making based on those
information at the hypervisor non-trivial.

The extent of intervention in guest OS memory management
plays an important role in symbioticmemorymanagement. Drastic
changes in the OS design is not desirable but changes that can
be made with small modifications may be implemented if the
overallmemory utilization is optimized. In Section 7, the symbiotic
approaches are discussed in detail.

Summary: Memory management techniques in virtualized sys-
tems can be classified into three broad categories—techniques
enabling dynamic memory management, content deduplication
techniques, and techniques based on guest OS and hypervisor
cooperation. Dynamic memory management requires dynamic
memory allocation and control techniques. Content deduplication
techniques are based on identification and removal of duplicate
memory content. Extent of hypervisor and guest OS cooperation
and the exact nature of cooperation are two important aspects
of symbiotic memory management techniques. In next three sec-
tions, we provide details for each class of memory management
approaches.

5. Dynamic memory provisioning techniques

5.1. Dynamic provisioning enablers

Swapping combined with paging to implement virtual mem-
ory subsystems in the OSs is a well known technique to support
multiprogramming and increase memory utilization. Hypervisor
level swapping is a natural extension of OS employed page-level
swapping to support dynamic memory allocation to VMs. In a
dynamic allocation scheme, a time varying set of guest physical
pages are not backed bymachine pages. In the event of a page fault
caused due to the missing PFN to MFN mapping, the hypervisor

D. Mishra, P. Kulkarni / Computer Science Review 29 (2018) 56–73 65

handles the fault by allocating amachine page for the faulting guest
page. If no free machine pages are available, the hypervisor swaps
out used MFNs to the swap device. Hypervisor swapping has the
advantage of addressing diversity issues by operating in a guest
OS transparent manner. However, there are three basic challenges
with hypervisor swapping.

• In order to implement hypervisor level swapping, a demand
paging like system needs to be implemented by the hyper-
visor. Xen [4] for example, does not implement hypervisor
level swapping by design to keep the hypervisor thin.

• The hypervisor may not have explicit information (e.g., us-
age and access recency) to prioritize the memory pages
used by a VM. This may result in an inefficient victim page
selection mechanism at the hypervisor level.

• Waldspurger [5] describes the possibility of double swapping
when the hypervisor swaps out a page and afterwards the
guest OS decides to swap out the same page based on its
eviction policy. To serve the guest OS swap-out, the hyper-
visor has to swap-in the memory page, only to be swapped
out by the guest. This problem arises because of multiple
management points (duality) for the same resource where
one party (hypervisor) takes an un-informed decision.

5.1.1. Memory ballooning
To overcome the problems of hypervisor swapping, a well

known technique known as memory ballooning (Waldspurger [5]
and Schopp et al. [38]) is used to adjust the guest memory allo-
cations at run-time. A balloon process inside the guest VM (see
Fig. 7) allocates memory on hypervisor request and gives back
allocated memory to the hypervisor. Once the hypervisor gets the
guest physical frames (GPFNs), it frees up their corresponding asso-
ciation with the machine frames (MFNs) and reuses them for allo-
cations to other virtual machines. This process is known as balloon
inflation. If the hypervisor decides to give back somememory pages
to the VM, it first assigns MFNs to the balloon allocated GPFNs and
instructs the balloon process to free up allocated memory to the
guest OS. This process is known as the balloon deflation. Artificially
created memory pressure through balloon inflation triggers guest
OS actions according to its memory management policies to read-
just memory allocations.

The main idea of ballooning is to divide the responsibility of
managing a single resource between two decision making entities.
During memory pressure, the hypervisor decides the victim VM
from which machine pages are to be obtained. Ballooning helps
to indirectly push the selected VM to adjust itself to the reduced
amount of memory (mostly using swapping). Therefore, unlike
hypervisor swapping, ballooning has the advantage of better vic-
tim selection at both the levels which results in efficient mem-
orymanagement decisions. However, memory ballooning requires
careful design and guest OS intrusive changes which is not needed
in hypervisor swapping. Some subtle points related to design and
implementation of ballooning technique are highlighted below,

• Memory allocated to the balloon process should not be
reclaimed by the guest OS. Typically, operating systems
provide APIs to allocate non-evictable memory which may
be used by the balloon process.

• Typically, it is guaranteed that the guest will not swap out
or assign pages that are allocated to the balloon process. In
theworst case of guest OS not supporting page pinning, page
faults caused due to guest OS access to the ballooned pages
should be handled by the hypervisor.

• Repeated balloon inflation and deflation may cause the ac-
tualmachine pages allocated to the guest VM to be scattered
all over the physical memory. This may impact the applica-
tions that assume physically continuous memory.

Fig. 7. Variation inmapping of physicalmapping of pages to a virtualmachine based
on the inflation and deflation of the balloon.

5.1.2. Memory hot-plugging
Schopp et al. [38] proposed Linux kernel support for memory

hot-plug and hot-unplug. Hot-plug and hot-unplug expand mem-
ory by inserting a new memory chip and removing a memory
chip, respectively, while the OS is live and running. This feature is
better applicable in virtualized systems where the memory chip is
a virtual hardware resource enabled by the hypervisor for the VMs.
Therefore, unlike the infrequent addition or extraction of physical
memory chips, a virtualized system can perform frequent change
in memory allocations by creating memory chips in software. The
primary challenges with memory hot-plug are,

• The memory granularity at which the hot-plug and unplug
work is restricted by the hardware architecture. Unmodified
OSs running on top of virtual hardware implement hot-plug
at the same granularity. For adjustingmemory size of virtual
machines, granularity constraints restrict the optimization
possibilities.

• OS support for memory hot plug may not be available
because of the complexity of the feature. For instance, to
implement hot-unplug, theOS should supportmemory page
migration.

Memory ballooning supports dynamic memory sizing at a page
granularity, which is more flexible compared to memory hot-
plugging. To overcome the memory granularity problem, Schopp
et al. [38] proposed a combination of ballooning and hot-plug
techniques to implement dynamic memory allocations.

5.2. Controllers for dynamic memory provisioning

One of the main challenges in designing a dynamic memory
provisioning controller is to ensure that virtual machines execute
with enough amount of memory without causing degradation to
the application performance. To achieve this objective, controllers

66 D. Mishra, P. Kulkarni / Computer Science Review 29 (2018) 56–73

Fig. 8. Black Box and Gray Box approaches for ballooning based memory manage-
ment.

should be aware of thememory requirement of each individual VM
at any point of time and take a prompt action when the memory
needs change. Denning [39,40] proposed Working Set Size (WSS)
model to estimate memory requirement of applications, a widely
accepted and standard technique for efficient memory manage-
ment. Working set size is the amount of physical memory that
is being actively accessed by an application during a recent time
interval. WSS is a good approximation of thememory requirement
of a VM provided the time interval used to decide the active na-
ture of memory pages is appropriately chosen. Another important
parameter of balloon controllers is the decision interval. If periodic
estimation of WSS is taken as input to the balloon controller and
the period happens to be very large, the reaction to change in
memory requirements of the virtual machine may not be prompt.
This in turn will result in either wastage of memory or degradation
in application performance. Choosing small intervals may lead
to balloon deflation and inflation for transient loads leading to
ballooning overheads (GPFN to MFNmap and unmap operations).

A typical controller in a dynamic ballooning based virtualized
setup is shown in Fig. 8. The balloon controller resides in the
hypervisor or the control domain (e.g., domain-0 of Xen) or in
the host (in a hosted VM architecture like KVM). Information
regarding memory requirement and usage of virtual machines can
be collected in a guest transparent manner or by querying the
guest OS memory usage statistics. The controllers consume this
information to control the balloon size of individual VMs through
the hypervisor providedAPI for balloon inflation or deflation. Other
alternate implementations integrate the balloon controller inside
the balloon process (e.g., Xen self ballooning [45]).

As shown in Fig. 8, black box balloon controllers deduce the
memory usage and requirements at the hypervisor level in a guest
transparent manner. The gray box balloon controllers access guest
OS exposed metrics related to memory usage to deduce memory
requirements and usage of a virtual machine.

5.2.1. Black-box approaches of balloon control
One of the primary challenges in black box balloon controller

design is to estimate the working set size (WSS) in a guest OS
transparent manner. The first challenge in WSS estimation is to
determine the time interval to mark a page active or inactive de-
pending on its access or idleness, respectively. Secondly, accurate
calculation of the WSS of a virtual machine at the hypervisor in a

Fig. 9. Miss ratio curve (MRC) for a webserver workload with least recently used
eviction policy.

black box manner efficiently is difficult because of the darkness in
virtualized platforms as explained in Section 1. Several techniques
to estimate the WSS of VMs to aid black box balloon controller
design are described below,

Access interception based techniques: Interception of each
memory page access by invalidating the guest physical page
(GPFN) to the machine physical page (MFN) mapping is the sim-
plest mechanism to estimate the WSS. This approach is applicable
to both shadow paging and EPT/NPT based memory virtualiza-
tion techniques. However, this method potentially incurs high
CPU overhead as every page access results in a page fault. To
reduce the page fault trap overheads, a sample set of pages can
be invalidated and accesses to them can be tracked. Extrapolation
based on WSS estimate of the sampled set yields WSS of the
virtual machine [5,42]. The accuracy of sampling based method
depends largely on the representativeness of the sampled mem-
ory w.r.t. the executing workload(s). Previous works proposed
by Waldspurger [5] and Zhao et al. [42] provide configurables to
find a tradeoff between estimation accuracy and page fault trap
overheads. For example, VMWare ESX server (Waldspurger [5])
employs indirect estimation through sampling idle pages through
a configurable to find a balance between accuracy and sampling
overheads.

Miss ratio curves: Zhou et al. used Miss Ratio Curve (MRC) [41]
to provision memory to applications in an accurate manner. MRC
is determined by calculating miss ratios of application memory
access for different memory allocation sizes. The miss ratio for any
memory allocation size is given by,

MissRatio = 1 −
#PageHits

#PageAccesses
(1)

Themiss ratio curve can be obtained by plotting the pagemiss ratio
against the physical memory allocation. In Fig. 9, the miss ratio
curve for a webserver is shown. For physical memory allocations
of size more than 250MB, themiss ratio becomes negligible which
implies that the WSS of the application is approximately 250 MB.
Eviction algorithms conforming to the inclusion property may use
Mattson’s stack algorithm [58] to generate MRC curve without
actually varying the physical memory allocation. An eviction algo-
rithms satisfies inclusion property, if for a given memory access
sequence, all cache hits with cache size M will also be cache hits
for cache size greater than M . An accurate estimation of WSS
of virtual machines can be derived from the MRC if guest VM
memory access pattern is stable. Waldspurger et al. [59] proposed
effective sampling basedmethods, as explained earlier to generate

D. Mishra, P. Kulkarni / Computer Science Review 29 (2018) 56–73 67

MRC with low overheads. Zhou et al. [42] have shown that MRC
basedWSS estimation with a sampling based approach incurs CPU
overheads in the range of 7%–10%.

Monitoring at hypervisor: Geiger [43] and hypervisor exclu-
sive caching [44] infer the page cache activities i.e., promotion and
eviction of the pages inside the guest OS by monitoring disk reads
and writes by the hypervisor. Promotion implies that, a page is
added to page cache to store a disk block while eviction implies
a page cache page is evicted to the disk. This information can be
used to calculate the working set size of a VM by observing the
evictions and subsequent reloads by the VM using methods like
ghost buffering [60], a buffer emulation technique to track cache
hits and misses without actually allocating buffers. The hypervisor
monitoring methods assume that the block I/O operations can be
intercepted at the hypervisor level. This assumption holds in most
of the hypervisors due to split driver (Xen [4] and KVM virtio [61])
implementation of block devices. In split driver model, the guest
OS and the hypervisor communicate explicitly (through a shared
memory a.k.a. I/O rings) to provide efficient device virtualization.

Hardware performance counters: Zhao et al. [62] proposed es-
tablishing correlation between different Performance Monitoring
Unit (PMU) counters of CPU (e.g., TLB miss) [20] and the working
set size. Given the existence of a relationship between theWSS and
the hardware event(s), this method proves to be the one with the
least overhead. However, as Zhao et al. [62] have pointed out, there
can be workloads where the direct correlation does not always
exist. Intermittent Memory Tracking (IMT)—a combination of WSS
estimation using hardware events correlation and software trap
method, is used to amortize the cost of WSS estimation. Using this
method, CPU overheads due to WSS estimation can be reduced to
less than 6%.

Hardware extensions: Zhou et al. [41] proposed explicit hard-
ware extensions to accurately estimate the WSS. However, this
idea is not yet incorporated into commercially available hardware.
Themain idea is to design added circuits integrated to thememory
bus access path to profile the accessed physical pages. The oper-
ating system can configure the hardware such that it can query
the page access history, flush the history and handle overflows by
registering a trap handler. In thisway, overhead of any of the above
techniques that rely on software trap method to build knowledge
about WSS can be drastically reduced.

5.2.2. Gray-box balloon controllers
Most OSsmaintain statistics regarding thememory usage to aid

the OS decision making with regard to memory allocation and de-
allocations. A balloon controller can take advantage of thismemory
usage information to estimate the memory need of different guest
VMs at different points of time. Standard OS accounting metrics
considered as parameters for gray box balloon controllers are as
follows,

• OS level memory information—amount of free mem-
ory in the system, anonymous memory usage, memory
used for caching disk blocks (like page cache), active
and inactive memory. Gray box memory controllers like
Xen self-ballooning [45] and true working set (TWS) based
balloon controller by Chiang et al. [46] use these metrics to
make an intelligent guess on the WSS of the VM.

• Swap activity in a given VM implies that the guest OS is
undermemory pressure. A balloon controller can use the ex-
tent of swap activity to estimate the memory requirements
of the guest VM.

• Linux provides a single metric—Committed_AS, which is
the OS estimate of the amount of memory required for the
system to avoid swapping [63]. Xen self-ballooning [45]
and TWS [46] use this metric for balloon based memory
management.

Most of the balloon controllers use Committed_AS or an equiv-
alent metric to dynamically determine the size of the balloon. Chi-
ang et al. [46] proposed a sophisticated control based on multiple
metrics like refault and swap-in along with Committed_AS.
Swap-in and refault events occur when an anonymous page
is accessed after it is evicted to swap and a file block is accessed
after the page is evicted from the page cache, respectively. These
events indicate that more memory can benefit the guest OS by
reducing the number of disk access to serve page faults or file reads.
True Working Set (TWS) [46] based balloon controller uses swap-
in and refault in addition to Committed_AS to estimate the
working set size of the virtual machines. The TWS based controller
results in up to 18% increase in memory savings and reduces the
ballooning overhead by 14% compared to Xen self ballooning [45]
which uses only committed_AS as the decision parameter.

Server applications like databases and application servers man-
agememory in an independentmanner by-passing theOSmemory
management layer. For example, databases maintain and manage
their own cache for faster query processing. The OS page cache
layer is bypassed using synchronous I/O (e.g., O_DIRECT flag in
POSIX systems). Salomie et al. [36] have shown that a balloon
controller based on guest OS memory statistics fail to estimate
the memory requirements of the virtual machine accurately for
these applications. Further, Salomie et al. [36] propose extensions
to such applications to guide the ballooning process by controlling
the balloon size depending their memory requirement and usage.

Summary: Techniques like ballooning and memory
hot-plugging enable the hypervisor to dynamically resize mem-
ory allocation to VMs which is essential to address dynamism
challenges of memorymanagement. The next important challenge
is the accurate estimation of working set size of VMs, which
is central to the effectiveness of techniques exploiting dynamic
memory demands in virtualized systems. Black box techniques
employ sampling and heuristic based approaches to minimize the
CPU overheads due to page faults while maintaining accuracy of
estimation. Black box memory estimation techniques do not de-
pend on the guest OS to derive memory usage related information
and therefore can be applied to virtualization setups hosting VMs
with diverse OSs. However, with changing application memory
footprints and access behaviors, the black box techniques require
renewed evaluation to determine the accuracy and propose new
techniques, if required. On the other hand, gray box techniques
rely on guest OS statistics which can be non-standard and require a
channel of communication between the guest OS and the hypervi-
sor. Further, ever changing OS distributions adds to the challenges
of employing gray box controllers in a universal manner.

6. Exploiting content similarity for memory management

Elimination of duplicate data in memory can increase the free
memory which can be used by other applications or virtual ma-
chines. Barker et al. [64] have empirically shown that sharing
opportunities can exist intra-VM or inter-VM and both forms of
sharing opportunities should be exploited by a deduplication pro-
cess. Deduplication is a two step process, first the duplicates have
to be identified and second, duplicates need to be eliminated in a
manner transparent to the guest OSs.

The granularity at which duplicates are identified is an impor-
tant aspect in design of this optimization. Identification and man-
agement of duplicates at fine granularity (e.g., byte-level), while
potentially identifies large number of duplicates, but incurs high
overheads. Alternatively, searching for duplicates across coarse
granularity objects (e.g., files) incurs relatively lesser overheads,
but miss out on duplicates smaller than the size of objects. In
virtualized systems, deduplication techniques at page granularity
are most commonly used.

68 D. Mishra, P. Kulkarni / Computer Science Review 29 (2018) 56–73

Fig. 10. Same page deduplication via out-of-band periodic scanning. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Offline or out-of-band scanning of memory is a well known
method for identifying duplicates. A scanner process periodically
scans through the physical memory to locate same memory con-
tent and eliminates duplicates. While this method is relatively
simple and finds all possible similarities, additional overhead of
scanning and merging is required. Finding similarities in the I/O
access path, in-band sharing (mostly disk access path) avoids peri-
odic scanning but misses out sharing opportunities in anonymous
memory.

6.1. Page sharing by out-of-band scanning

In most operating systems memory management policies like
ownership, access, mapping etc. are applied at a page level. There-
fore, out-of-band scanning techniques proposed in VMWare [5]
and KSM [47] periodically scan the physical memory to identify
similar content at the page-level. As shown in Fig. 10, an out-
of-band page level content similarity scanner scans through all
the physical pages allocated to virtual machines. For each page
scanned, the process generates a hash value for quick comparison
of potential similar content pages, and then performs a byte-by-
byte comparison for validating similarity. Typically, the scanner
process executes within the hypervisor e.g., VMware ESX or as part
of the host OS e.g., Kernel Same-pageMerging or KSM in LinuxKVM
hypervisor. In Fig. 10, the physical pages shaded with the same
color represent pages with same content.

Once a page is found with exactly same content as another
page, a single copy of the pages is maintained in memory and the
duplicate page is marked free. This requires additional changes
to the guest PFN to MFN mapping maintained by the hypervisor.
The guest PFNs with same content are mapped to a single MFN.
Further,writes to a sharedpageneed explicit handling. Each shared
physical page is marked Read Only and Copy-on-Write (CoW). CoW
is a well known mechanism used in operating systems in different
memory related optimizations. For example, modern OS fork()
implementation to create a child process does not make copy
of the parent process memory pages, instead the OS marks the
parent pages CoW and makes a copy only when a child or parent
process tries tomodify anymemory page. Similarly, when a virtual
machine tries to modify a page that is marked CoW, it causes a

trap that is handled by the hypervisor. The hypervisor allocates
a new page, copies the content, changes the guest PFN to MFN
mapping appropriately and allows write on the new copy. Periodic
scan based deduplication techniques combined with CoW fault
handling at the hypervisor level results in VM transparentmemory
deduplication. Therefore, these techniques can effectively address
the diversity challenges in virtualized setups consisting of VMswith
different OSs and applications.

Periodic scanning of memory pages to find similar pages re-
quires CPU resources. Scanningmemory aggressively ensures find-
ing short term sharing opportunities at the expense of additional
CPU cycles. Alternatively, with a low rate of scanning, short-
term sharing opportunities can be missed. XLH [48] and Share-o-
meter [65] propose techniques to decide an appropriate scan rate
along with adaptive schemes to dynamically determine scan rate
based on temporal memory usage trends of applications.

One basic approach to improve efficiency of out-of-band scan-
ning is to provide hints about the likely pages for sharing and guide
the deduplication process [48,50,66]. Cross Layer I/O-based Hints
(XLH) [48] increases priority of pages used for disk I/O, a heuristic
to scan recently modified pages sooner than other pages. The
approach not only increases chances of early detection of shareable
content but also detects short-term sharing opportunities. XLH
reports up to four times more memory savings compared to KSM
which follows cyclic scan order.

Singleton [50] proposes several optimizations in hardware and
software to make the scanningmore targeted and efficient. Nested
Page Tables (NPT) proposed by AMD [21] provides a mechanism to
notify the software (hypervisor) to track page modifications. This
information can be used to compare and merge only the modi-
fied pages. A para-virtualized hint based approach—using periodic
hints from the guest OS regarding the page modifications (dirty
memory pages), can reduce the overhead of periodic scanning.

Catalyst [66] offloads hash computation and comparison at
a page granularity to general purpose graphics processing unit
(GPGPU). GPU computation can be used to provide hints to
the scanning process to perform targeted deduplication. Catalyst
demonstrates up to 50% savings in CPU utilization for the dedupli-
cation process compared to the baseline KSM.

6.2. Out-of-band sharing at multiple granularity

Memory usage optimizations like compression and delta en-
coding are widely researched. Douglis [67] and Tuduce et al. [68]
propose OS-level memory compression techniques to improve
memory usage efficiency.

Difference Engine [51] combines three techniques—page shar-
ing, delta encoding or patching and memory compression to im-
prove memory efficiency in virtualized systems. The need for
patching is motivated by presence of pages with almost similar con-
tent in a system. For example, ifmemory page P2 differsmarginally
from page P1, then the delta can be stored along with page P1 to
reconstruct P2 when required. There are two important aspects to
implement patching.

• Finding similar pages requires scanning of guest pages and
hash generation at sub-page granularity. This requires sig-
nificant amount of CPU and memory, more than that of a
page level matcher. Once such a page pair is found the delta
is stored in a designatedmemory location and the guest PFN
to MFN mapping is changed.

• Access to a patched page generates a page fault that the
hypervisor handles by applying the patch to the page con-
tent and creating a separate copy. While selecting pages for
patching, idle memory is preferred to reduce the overheads
of patching. However, finding idle pages from thehypervisor
requires guest OS memory access monitoring which may
incur significant overheads.

D. Mishra, P. Kulkarni / Computer Science Review 29 (2018) 56–73 69

Fig. 11. Same page sharing via I/O access interception.

Compression of memory content by dictionary based compres-
sion schemes like LZS [69] or deflate [70] requires careful selection
of pages to compress. If the compression ratio for selected page is
not significant, then the overhead of compression/decompression
will negate the benefits. Similar to patching, the compressed pages
ideally should not be accessed frequently so that the benefit can
last longer. Access to a compressed page by the guest OS results
in a page fault that the hypervisor handles by de-compressing the
page content onto a free page and allocating the page to the virtual
machine.

Difference engine [51] applies page level sharing as the first
preferred method due to efficiency considerations. As an approxi-
mate measure of idle pages, it periodically scans page table entries
for VM allocated memory pages to check accessed and modified
bits. Patching and compression are applied in the order for non-
shareable and less frequently accessed memory pages.

6.3. Deduplicating memory on the I/O access path

Before an operating systemboots, there is nodata inmainmem-
ory. The kernel code, application code, libraries, files etc. are loaded
from secondary storage to memory before they are used. Under
the assumption that memory allocated by processes and operating
system (like stack and heap) are temporary and likely to change,
it is fair to expect maximum sharing possibilities in the content
read from the disk. Sharing pages in-line, on the disk access path,
targets the operating system page cache or buffer cache which
store frequently accessed disk blocks. Page sharing opportunities
in the anonymous memory region of processes cannot be detected
by this method. For example, if a process allocates several zeroed
pages and uses only a few pages, the sharing potential because of
zero pages will not be realized.

Satori [52] proposes in-band page sharing on the disk I/O path
as shown in Fig. 11. The disk driver front end in the virtual ma-
chine and the back end implementation in the hypervisor are
components of a split-driver storage device virtualization frame-
work [4,61]. In a split driver model, the guest and the hypervisor
communicate explicitly (through a sharedmemory a.k.a. I/O rings)

to provide efficient device virtualization. A sharingmodule execut-
ing either as part of the hypervisor or the host OS intercepts all read
requests originating from the virtual machine. The steps involved
in the sharing process are as follows:

(i) The guest OS file-system issues a read request to the virtual
device driver with the block number of the virtual device
and GPFN(s) towhich the disk contentwill be read. This step
is performed after a unsuccessful check for the disk block in
the page cache.

(ii) In the split driver implementations (e.g., Xen [4]), the front-
end driver in the guest OS issues a read request to the
back-end driver providing the guest PFN(s), the virtual disk
identifier and the block numbers.

(iii) The back-end driver maps the virtual disk ID to the physical
disk ID, the virtual device block number to the physical
device block number and the guest PFN to MFN before
forwarding the request to the sharing module.

(iv) The sharing module reads the block from the device, calcu-
lates a hash of the disk block contents to detect similarity
with MFNs. If a similar MFN exists (based on hash compari-
son), a byte-by-byte comparison verifies the similarity. The
current MFN is then marked free, the guest VM mappings
are changed to share the previous (same content) MFN and
the MFN is marked CoW, if it is not already CoW.

(v) If no match is found, a new hash entry is created with the
hash value of the current MFN that contains the disk block.

Note that, a byte level comparison is required for MFN entries
not marked CoW because guest OS modifications to a non-CoW
MFN do not result in an exception.

Summary: Content deduplication is a best effort mechanism to
increase memory efficiency in a virtualized system. Effectiveness
of deduplication depends on the memory content which is deter-
mined by the VMs and applications hosted in a physical machine.
Deduplication at page granularity requires periodic scanning (with
configurable scan rate) to locate duplicate memory pages across
the VMs. Share-o-meter [65] has shown that overheads of scanning
at a higher scan rate can outweigh its benefits. To balance the
cost and benefits, simple scan rate controllers like ksmtuned [49]
consider lower threshold of free memory in the system as the
triggering point to increase the scan rate. Sub-page level tech-
niques like Difference Engine [51] incur additional overheads com-
pared to page level deduplication techniques but result in higher
memory savings. In-band sharing techniques like Satori [52] has
advantage over out-of-band techniques like KSM [47] in terms CPU
overheads as Satori does not require periodic memory scanning.
However, Satori misses out on short term anonymous memory
sharing opportunities and may impact disk access latencies as it
performs additional operations in the disk I/O path. VM placement
schemes like Memory Buddies [71] are built on top of memory
deduplication techniques to use an out-of-band scanner to derive
sharing potential between VMs for tight packing (placement) of
VMs across a given set of physical machines.

7. Memorymanagement throughhypervisor and guest OS sym-
biosis

In a virtualized setup, the hypervisor is in the dark about the
memory usage quality across different virtualmachines. For exam-
ple, a virtualmachinemay be starving formemorywhile other VMs
are usingmemory for best effort content caching (e.g., disk cache or
page cache). To address these issues, the hypervisor can intervene
in the guest OS memory management policies to improvememory
utility in a system-widemanner. For instance, in the above example
scenario of a memory starving VM, the hypervisor may trigger

70 D. Mishra, P. Kulkarni / Computer Science Review 29 (2018) 56–73

disk cache eviction in the other VMs. Depending on the levels of
hypervisor intervention, the symbiotic memory management can
be further classified as follows.

• The hypervisor can employ mechanisms to indirectly force
some of the OS features (like disk block caching) to align
with the global memory demands.

• Moving a step further would be to modify the guest OS to
allow the hypervisor to intervene in the memory manage-
ment decisions of the guest OS.

7.1. System level second chance caching

All modern operating systems use up the free memory to cache
content of secondary device blocks (like page cache in Linux). The
page cache is an optimistic memory store that utilizes unused
memory to take advantage of frequently accessed disk blocks. The
extent of benefit is dependent on the nature of the workload and
the I/O access patterns. When only a few disk blocks are found in
the page cache, most of the memory used for caching can be used
by other VMs. In a virtualized environment, where increasing the
memory utilization is one of the primary objectives, the liberty to
the guest OS to waste memory in prediction based caching can be
detrimental.

Lu et al. [44] propose hypervisor exclusive caching, an initial
direction towardsmaintaining an exclusive hypervisor cache along
with the guest OS level disk caches. Transcendent memory a.k.a.
tmem [53] realizes exclusive hypervisormemory store for the guest
OSs to store content and access them at a latter point of time.
tmem provides two storage semantics—ephemeral and persistent.
In ephemeral mode, the storage service is best effort i.e., memory
content stored is not guaranteed to be present when accessed at a
latter point of time. On the other hand, persistent tmem semantics
guarantees to return the content that was previously stored.

Ephemeral tmem store, can be used as a global second chance
cache for disk blocks of the guest OSs. This can provide betterman-
agement of memory used for disk block caching—the hypervisor
can evict any block (because of ephemeral semantics) based on a
holistic view of thememory requirements of all the VMs and avail-
able system memory. Further, ballooning may be used to squeeze
out memory from the guest OSs which can be used for tmem sec-
ond chance cache store. Further, the tmem pools can implement
optimizations like deduplication and compression [54,55,72] to
increase memory efficiency.

Guest OSs require modifications to use the tmemmemory store
as shown in Fig. 12. tmem provides APIs to create memory pools,
put disk blocks into the tmem pool with a key, access (get) pages
from the tmem pool with a key and purge a disk block (flush) for
a given key. The key for any file system can be combination of an
inode number and the block offset within the file which is unique
for every file system. The block device subsystem of the guest OS
(the disk cache and the block I/O interface) is modified to invoke
get, put and flush depending on the actions performed on the
page cache. The tmem guest interface (Fig. 12) is required to invoke
tmem pool actions to the tmem hypervisor interface (by a VMCALL
or hypercall).

A read call from the Virtual File System (VFS) layer is mapped
to a disk block by the file system. If the file block is not present in
the guest page cache (i.e., page cache lookup fails), a get call to
tmem cache is issued via the tmem guest interface (Fig. 12). If the
block is found in the tmem backend cache, the hypervisor copies
the content of the disk block on to the provided page. In case of a
failure, the guest OS reads from block device and stores it in the
guest page cache.

The guest OS puts an unmodified (clean) disk block into the
tmem cache when a disk block is evicted from the page cache. If the

Fig. 12. Hypervisor caching backend (tmem backend cache) accessed by tmem en-
abled guests for system wide caching.

disk block is modified in memory, the contents of the disk block is
purged from tmem by invocation of a flush call.

The hypervisor maintained page cache (like tmem) provides
exclusive storage semantics with flexibility to apply policies at a
system level. However, Mishra et al. [55] empirically demonstrate
that tmem requires additional CPU cycles (up to 30k cycles) for
the VMCALL and data copy between the guest and the hypervisor.
Note that, this really does not impact the application level disk I/O
performance as disk access speeds are orders of magnitude higher
than the access from a hypervisor memory store.

Assuming that all the guest OSs can be modified, hypervisor
based (page) caching provides a mechanism to push the specula-
tive optimizations of guest OS to the system level. Further, handing
over the page caching to the hypervisor enables application of sys-
tem level constraints for page cache management – partitioning,
eviction and compression – depending on application performance
requirements. Additionally, with disk caching in both the guest
OS and the hypervisor, deterministic control on the size of cache
on a per VM basis may be required. Default page cache design
in Linux systems (which is used by KVM in the disk I/O path)
maintain a unified inclusive cache. A burst I/O load from a VM
can disproportionately fill up the cache or worse compel the host
OS to swap-out pages mapped to a virtual machine. Page cache
partitioning across VMs (Sharma et al. [73], Synergy [72]) address
this issue by providing controls to adjust sizes of the page cache
on a per VM basis and also to implement custom per-VM cache
eviction policies. The approach enables end-to-end system-wide
deterministic memory partitioning across virtual machines.

Mortar [56] extends the basic ephemeral tmem to implement
a distributed caching store that benefits applications by providing
unusedmemory over the network as a second chance cache. Using
the un-utilized memory across a data center, Mortar improves the
performance of web applications up to 35%. Mortar also proposes
the usage of tmem for aggressive disk pre-fetching to improve the
disk access performance of guest OSs. Up to 45% improvement in
video application performance is reported using disk pre-fetching.

The persistent storage model of tmem can be used as a second
chance memory store for anonymous guest memory. A swap cache
is a hypervisor maintained persistent memory pool to overcome
the problems caused bymemory demand bursts of the applications
within a VM. The reaction time for such a demand in presence

D. Mishra, P. Kulkarni / Computer Science Review 29 (2018) 56–73 71

of techniques like ballooning with a controller can be large. This
leads to degraded application performance due to guest OS level
swapping. Also, the guest OS can invoke Out of Memory (OOM)
killers as the last resort in case of excessive swapping that results in
application or OS shutdown. In such a situation, if amemory pool is
created in tmem to store the swapped content temporarily instead
of swapping the page into the swap device, the performance of ap-
plications would improve dramatically. The hypervisor can design
policies to keep aside some amount of free memory to be used
for this kind of burst memory demands that requires guaranteed
storage of pages.

While tmem is a novel approach to push OS features into a
global level of memorymanagement, it requires the guest OS to be
cooperative. A non-confirming VM may fool the hypervisor tmem
implementation by put-ing a lot of content into the global mem-
ory pool to impact the put of other virtual machines. Therefore,
tmem like solutions are incapable of addressing diversity issues in
virtualized systems. Further, to enforce high level application ob-
jectives, tmem should support dynamic partitioning of cache across
virtual machines. Xen and KVM implementations of tmem [54,55]
provide the basic framework to implement a system-wide hyper-
visor caching solution.

7.2. Collaborative memory state maintenance

The guest OS and the hypervisor can maintain and explicitly
share information regarding each page that is allocated to the
virtual machine. A collaborative memory management approach
(Schwidefsky et al. [57]) proposes maintenance and sharing of
per-page state on two axes—page usage state and page residency
state. Page usage state maintained by the guest OS refers to what a
particular page content means to the guest OS. The residency state
associated with each page is assigned by the hypervisor to decide
what is the nature of the page.

The guest page usage state can be one of the following,

• Used: The page is actively used by the guest OS and the
content is not discardable.

• Unused: The page content is irrelevant to the guest OS and
the hypervisor can overwrite without notification to the
guest OS.

• Volatile: The page content can be overwritten, but it may
impact the guest performance. This state is normally as-
signed to page cache pages which if overwritten can be read
back from the disk.

• Potential Volatile: The page content is volatile only if it is
not dirty. This state suggests that disk flush is pending for
the page cache page after it is modified in memory.

The residency state of a page can be one of the following,

• Resident: The guest PFN ismapped to amachine page frame
and can be accessed without causing any page fault.

• Backed up: The guest page content is backed up by a swap
device at the hypervisor level, so no machine frame is as-
sociated. The hypervisor has the responsibility of handling
page fault for such pages.

• Unused or Idle: The guest page is neither associated with
any MFN nor backed up into the disk. These pages are
currently idle or free at the guest level. If they are used, the
hypervisor should handle the page fault by assigning a free
MFN.

For every page in the guest, a combination of usage status and
residency status is maintained and modified when the status of
the page changes. Using this information the hypervisor can—(i)
accurately determine the guest memory usage and requirements,
(ii) take prompt decisions regarding guest PFN to MFN mapping
changes to adjust to dynamicmemory requirements by guest VMs.

Memoryusage and residency statemaintenance by thehypervi-
sor and guest OS in collaborative memory management technique
can be combined with other techniques like content deduplica-
tion and dynamic ballooning. Further, the information sharing
framework can be extended to aid efficient memory management
controller design. However, this framework expects high levels of
symbiosis between the guest OS and the hypervisorwhichmay not
be practical in a public cloud setup.

Summary: Efficient memory management in virtualized systems
can be realized with different levels of guest OS and hypervisor
cooperation. Hypervisor caching is an elegantmethod to efficiently
manage memory used to cache disk content for disk I/O efficiency.
The cooperation required to realize hypervisor caching solutions
requiremodifications in the guest OS disk cache layer (e.g., clean-
cache in Linux). Similarly, page swapping functionality in guest
OSs can be augmented to use hypervisormaintained swap cache to
aid ballooning based dynamicmemorymanagement. Collaborative
memorymanagement using tightly coupled page level information
sharing is another interesting approach to manage memory in a
more effective manner. While symbiotic memorymanagement of-
fers scope for narrowing the semantic gap between the hypervisor
and guest OS, potentially minimizing memory wastage, it comes
at the price of guest OS dependence. Therefore, diversity issues not
only remain unaddressed but also become more pronounced for
the above techniques.

8. Discussion

Memory management in virtualized systems has been a topic
of interest in the research community for the last decade. Several
techniques like ballooning, sharing, hypervisor based caching etc.
have been proposed as methods for optimized memory manage-
ment. Over-commitment of memory is an important provisioning
requirement for increasing memory efficiency. The level of over-
commitment possible in a given setup depends on the memory
management techniques employed and the nature of the work-
loads running inside the VMs. For example, content deduplica-
tion based techniques will be limited by the content similarity
that is present in a given setup. Study of possible levels of over-
commitment and the overheads associated with the technique(s)
employed is required to understand the efficiency and applicability
of the memory management techniques in virtualized systems.

Guest modifications: Some of the techniques discussed in this
paper require guest cooperation. However, not all guest OSs can
be modified because of commercial and legal constraints. For ex-
ample, implementation of tmem like solution for Microsoft Win-
dows VMs is not possible because of the unavailability of source
code for Windows OS. The implication of memory management
technique(s) in presence of amixture of VMs (co-operative and not
co-operative) needs to be studied in greater detail in order to en-
sure fairness in terms of memory allocation. For example, reward
model based mechanisms can be employed to favor conforming
OSs for improved management of resources in presence of non-
conforming VMs.

Combination of techniques: Achieving maximum level of
over-commitment with low overheads may require combination
of techniques. While each individual technique has its complex-
ity and overheads, the combination of techniques may present a
completely different set of challenges. For example, combination
of ballooning and deduplication may not complement each other
in a seamless manner because the balloon process (in the virtual
machine) may balloon out shared pages impacting the deduplica-
tion efficiency. In this scenario, to select the techniques to combine
and design controllers for the same need a clear examination of the
individual methods and implications when used together.

Symbiotic management: Design of new techniques using bet-
ter symbiosis between the guest OS and the hypervisor to target

72 D. Mishra, P. Kulkarni / Computer Science Review 29 (2018) 56–73

the guest features (e.g., disk block caching) that create problems
for efficient memory management at the system level is a new
direction of research. This is possible because of increased use of
open source operating systems like Linux. Another reason that
allows guest OS modification is due to the platform as a service
(PaaS) model of cloud service providers. In case of PaaS, the guest
OS is in control of the cloud provider and thus can be standardized.
However, tmem like techniques require further study to explore—
co-existence with deduplication and ballooning, and cache sizing
to enforce high level application objectives/priorities.

Hardware evolution: Existing memory management tech-
niques in virtualized systemmay assume some features/properties
of underlying memory multiplexing (virtualization) techniques.
Memory virtualization techniques change due to the evolution
of underlying hardware. The memory virtualization changes may
break the assumptions of memory management technique(s). For
example, support for large pages (page sizes greater than 4 kB)
in MMU and TLB hardware (for MMU translation efficiency) is
leveraged by most of the hypervisors. Techniques like page level
content deduplication (designed for 4 kB pages) fail to leverage
sharing benefits because there may be very few 4 kB pages in a
large page enabled system. When free memory in the system is
low, the benefits of large pages can be sacrificed [74] for increased
sharing benefits (to avoid swapping) by breaking large pages to
4 kB pages. A renewed juxtaposition of memory virtualization
and management techniques is required in tune with evolution of
hardware evolution and increased support for virtualization.

9. Conclusion

In this survey, we covered two important aspects related to
memory resource in virtualized systems. First, the problem of
memory multiplexing (virtualization) across multiple VMs was
outlined along with the underlying challenges and techniques to
address the challenges. Second, the problem of efficient memory
management in a multi-VM setting was discussed in detail.

Techniques to multiplex memory across different VMs –
shadow paging, direct paging and hardware assisted paging –
meet the isolation requirements which is mandatory in a multi-
hosting setup. However, direct paging compromises equivalence
requirements (requires guest OSmodifications) to achieve efficient
multiplexing. Hardware assisted paging requires two-dimensional
page walks which can be detrimental in terms of efficiency for ap-
plications with low locality. Shadow paging performs like a native
system albeit with additional overheads for maintaining shadow
page tables for every process across all the VMs. So far as efficiency
is concerned, neither shadow paging nor hardware assisted paging
is a clearwinner (Wang et al. [22]).We discussed recent techniques
like Agile paging [23] which attempts to combine shadow paging
and hardware assisted paging techniques to leverage the best of
both techniques.

Challenges in efficient memorymanagement in virtualized sys-
tem has four different dimensions—darkness, duality, dynamism
and diversity. At the core of the problem lies the following nec-
essary evil: two independent system softwares i.e., the guest OS
and the hypervisor, try to manage resource as per the policies
at their respective levels. In Table 1, a high level classification
of memory management techniques, their effectiveness in ad-
dressing the challenge(s) was outlined. Three broad categories of
techniques – dynamic provisioning enablers, content deduplica-
tion and symbiotic memory management – were proposed and
a high level view of each was provided. Techniques within each
of the high level categories was further elaborated with respect
to their design aspects, implications, applicability and extents of
benefit. Memory management techniques like ballooning along
with policy controls addressing the issues of dynamism were dis-
cussed. Efficiency of deduplication techniques and several opti-
mizations were discussed in this work. Further, techniques like

Transcendent memory based on hypervisor and guest OS coop-
eration were presented along with their effectiveness towards
efficient memory management in virtualized system.

In Section 8, we summarized the future directions and possible
areas of exploration in the scope of memory virtualization and
management. While we know that the directions provided were
not exhaustive, we expect that this document will be useful to un-
derstand existing techniques, explore new directions and further
the research in this scope.

Conflict of interest

Noauthor associatedwith this paper has disclosed anypotential
or pertinent conflicts which may be perceived to have impending
conflict with this work.

References

[1] G.J. Popek, R.P. Goldberg, Formal requirements for virtualizable third gener-
ation architectures, Commun. ACM 17 (7) (1974) 412–421. http://dx.doi.org/
10.1145/361011.361073.

[2] F. Bellard, Qemu, a fast and portable dynamic translator, in: Proceedings of the
USENIX Annual Technical Conference, 2005, pp. 41–46.

[3] A. Kivity, kvm: the linux virtual machine monitor, in: OLS ’07: The Ottawa
Linux Symposium, 2007, pp. 225–230.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.
Pratt, A. Warfield, Xen and the art of virtualization, SIGOPS Oper. Syst. Rev.
37 (5) (2003) 164–177. http://dx.doi.org/10.1145/1165389.945462.

[5] C.A. Waldspurger, Memory resource management in vmware esx server,
SIGOPSOper. Syst. Rev. 36 (SI) (2002) 181–194. http://dx.doi.org/10.1145/
844128.844146.

[6] Oracle. Oracle vm virtualbox [online]. www.virtualbox.org.
[7] Microsoft. Virtualization for your datacenter and hybrid cloud [online]. www.

microsoft.com/en-us/server-cloud/solutions/virtualization.aspx.
[8] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica,M. Zaharia, A viewof cloud computing, Commun.
ACM 53 (4) (2010) 50–58. http://dx.doi.org/10.1145/1721654.1721672.

[9] A. Corradi, M. Fanelli, L. Foschini, Vm consolidation: A real case based on
openstack cloud, Future Gener. Comput. Syst. 32 (2014) 118–127. http://dx.
doi.org/10.1016/j.future.2012.05.012.

[10] T. Wood, P. Shenoy, A. Venkataramani, M. Yousif, Sandpiper: Black-box and
gray-box resource management for virtual machines, Comput. Netw. 53 (17)
(2009) 2923–2938. http://dx.doi.org/10.1016/j.comnet.2009.04.014.

[11] T.C. Ferreto, M.A.S. Netto, R.N. Calheiros, C.A.F. De Rose, Server consolida-
tion with migration control for virtualized data centers, Future Gener. Com-
put. Syst. 27 (8) (2011) 1027–1034. http://dx.doi.org/10.1016/j.future.2011.
04.016.

[12] R. Iyer, R. Illikkal, O. Tickoo, L. Zhao, P. Apparao, D. Newell, Vm3: Measuring,
modeling and managing vm shared resources, Comput. Net. 53 (17) (2009)
2873–2887. http://dx.doi.org/10.1016/j.comnet.2009.04.015.

[13] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, A. Warfield,
Live migration of virtual machines, in: Proceedings of the 2nd Conference on
Symposium on Networked Systems Design & Implementation - Volume 2,
in: NSDI’05, 2005, pp. 273–286.

[14] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, A. Warfield, Remus:
High availability via asynchronous virtualmachine replication, in: Proceedings
of the 5th USENIX Symposium on Networked Systems Design and Implemen-
tation, in: NSDI’08, 2008, pp. 161–174.

[15] S. Santhanam, P. Elango, A. Arpaci-Dusseau, M. Livny, Deploying virtual ma-
chines as sandboxes for the grid, in: Proceedings of the 2nd Conference on
Real, Large Distributed Systems, USENIX Association, Berkeley, CA, USA, 2005,
pp. 7–12.

[16] J.B. Dennis, E.C. VanHorn, Programming semantics formultiprogrammed com-
putations, Commun. ACM 9 (3) (1966) 143–155. http://dx.doi.org/10.1145/
365230.365252.

[17] J.B. Dennis, Segmentation and the design of multiprogrammed computer
systems, J. ACM 12 (4) (1965) 589–602. http://dx.doi.org/10.1145/321296.
321310.

[18] R.C. Daley, J.B. Dennis, Virtual memory, processes, and sharing in multics,
Commun. ACM 11 (5) (1968) 306–312. http://dx.doi.org/10.1145/363095.
363139.

[19] INTEL. Intel 64 and ia-32 architectures developer’s manual: Vol. 3a, [online].
www.intel.com.

[20] INTEL. Intel 64 and Ia-32 architectures developer’s manual: Vol. 3B [online].
www.intel.com.

[21] AMD. Amd64 architecture programmers manual volume 2: System program-
ming, [online]. www.developer.amd.com/wordpress/media/2012/10/24593_
APM_v21.pdf.

http://dx.doi.org/10.1145/361011.361073
http://dx.doi.org/10.1145/361011.361073
http://dx.doi.org/10.1145/361011.361073
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb2
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb2
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb2
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb3
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb3
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb3
http://dx.doi.org/10.1145/1165389.945462
http://dx.doi.org/10.1145/844128.844146
http://dx.doi.org/10.1145/844128.844146
http://dx.doi.org/10.1145/844128.844146
http://www.virtualbox.org
http://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
http://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
http://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1016/j.future.2012.05.012
http://dx.doi.org/10.1016/j.future.2012.05.012
http://dx.doi.org/10.1016/j.future.2012.05.012
http://dx.doi.org/10.1016/j.comnet.2009.04.014
http://dx.doi.org/10.1016/j.future.2011.04.016
http://dx.doi.org/10.1016/j.future.2011.04.016
http://dx.doi.org/10.1016/j.future.2011.04.016
http://dx.doi.org/10.1016/j.comnet.2009.04.015
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb13
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb13
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb13
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb13
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb13
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb13
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb13
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb14
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb14
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb14
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb14
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb14
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb14
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb14
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb15
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb15
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb15
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb15
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb15
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb15
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb15
http://dx.doi.org/10.1145/365230.365252
http://dx.doi.org/10.1145/365230.365252
http://dx.doi.org/10.1145/365230.365252
http://dx.doi.org/10.1145/321296.321310
http://dx.doi.org/10.1145/321296.321310
http://dx.doi.org/10.1145/321296.321310
http://dx.doi.org/10.1145/363095.363139
http://dx.doi.org/10.1145/363095.363139
http://dx.doi.org/10.1145/363095.363139
http://www.intel.com
http://www.intel.com
http://www.developer.amd.com/wordpress/media/2012/10/24593%5FAPM%5Fv21.pdf
http://www.developer.amd.com/wordpress/media/2012/10/24593%5FAPM%5Fv21.pdf
http://www.developer.amd.com/wordpress/media/2012/10/24593%5FAPM%5Fv21.pdf

D. Mishra, P. Kulkarni / Computer Science Review 29 (2018) 56–73 73

[22] X. Wang, J. Zang, Z. Wang, Y. Luo, X. Li, Selective hardware/software memory
virtualization, in: Proceedings of the international conference on Virtual exe-
cution environments, 2011, pp. 217–226. http://dx.doi.org/10.1145/1952682.
1952710.

[23] J. Gandhi, M.D. Hill, M.M. Swift, Agile paging: Exceeding the best of nested
and shadow paging, in: Proceedings of the 43rd International Symposium on
Computer Architecture, in: ISCA ’16, 2016, pp. 707–718.

[24] J.S. Robin, C.E. Irvine, Analysis of the intel pentium’s ability to support a secure
virtual machine monitor, in: Proceedings of the 9th conference on USENIX
Security Symposium - Volume 9, 2000, pp. 129–144.

[25] AMD. Amd-v nested paging [online]. www.developer.amd.com/wordpress/
media/2012/10/NPT-WP-1%201-final-TM.pdf.

[26] K. Adams, O. Agesen, A comparison of software and hardware techniques for
x86 virtualization, SIGOPS Oper. Syst. Rev. 40 (5) (2006) 2–13. http://dx.doi.
org/10.1145/1168917.1168860.

[27] T.W. Barr, A.L. Cox, S. Rixner, Translation caching: Skip, don’t walk (the page
table), in: Proceedings of the 37th Annual International Symposium on Com-
puter Architecture, ACM, 2010, pp. 48–59. http://dx.doi.org/10.1145/1815961.
1815970.

[28] J. Gandhi, A. Basu, M.D. Hill, M.M. Swift, Efficient memory virtualization:
Reducing dimensionality of nested page walks, in: Proceedings of the 47th
Annual IEEE/ACM International Symposium onMicroarchitecture, in: MICRO-
47, 2014, pp. 178–189.

[29] J. Navarro, S. Iyer, P. Druschel, A. Cox, Practical, Transparent operating system
support for superpages, SIGOPS Oper. Syst. Rev. 36 (SI) (2002) 89–104. http:
//dx.doi.org/10.1145/844128.844138.

[30] N. Megiddo, D.S. Modha, Arc: A self-tuning, low overhead replacement cache,
in: Proceedings of the 2nd USENIX Conference on File and Storage Technolo-
gies, 2003, pp. 115–130.

[31] S. Bansal, D.S. Modha, Car: Clock with adaptive replacement, in: Proceedings
of the 3rdUSENIX Conference on File and Storage Technologies, 2004, pp. 187–
200.

[32] P. Cao, E.W. Felten, A.R. Karlin, K. Li, A study of integrated prefetching and
caching strategies, SIGMETRICS Perform. Eval. Rev. 23 (1) (1995) 188–197.
http://dx.doi.org/10.1145/223586.223608.

[33] X. Ding, S. Jiang, F. Chen, K. Davis, X. Zhang, Diskseen: Exploiting disk layout
and access history to enhance i/o prefetch, in: Proceedings of the USENIX
Annual Technical Conference, 2007, pp. 20:1–20:14.

[34] R. Love, Linux Kernel Development (2nd Edition) (Novell Press), Novell Press,
2005.

[35] Kernel documentation [online]. https://www.kernel.org/doc/.
[36] T.-I. Salomie, G. Alonso, T. Roscoe, K. Elphinstone, Application level ballooning

for efficient server consolidation, in: Proceedings of the 8th ACM European
Conference on Computer Systems, 2013, pp. 337–350. http://dx.doi.org/10.
1145/2465351.2465384.

[37] P. Feiner, A.D. Brown, A. Goel, Comprehensive kernel instrumentation via
dynamic binary translation, in: Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems, 2012, pp. 135–146. http://dx.doi.org/10.1145/2150976.2150992.

[38] J. Schopp, K. Fraser, M. Silbermann, Resizing memory with balloons and hot-
plug, in: Proceedings of Linux Symposium, 2006, pp. 313–319.

[39] P.J. Denning, The working set model for program behavior, Commun. ACM
11 (5) (1968) 323–333. http://dx.doi.org/10.1145/363095.363141.

[40] P.J. Denning,Working sets past andpresent, IEEE Trans. Softw. Eng. 6 (1) (1980)
64–84. http://dx.doi.org/10.1109/TSE.1980.230464.

[41] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, S. Kumar, Dynamic
tracking of page miss ratio curve for memory management, in: Proceedings of
the 11th International Conference on Architectural Support for Programming
Languages and Operating Systems, 2004, pp. 177–188. http://dx.doi.org/10.
1145/1024393.1024415.

[42] W. Zhao, Z. Wang, Dynamic memory balancing for virtual machines, in:
Proceedings of the International Conference on Virtual Execution Environ-
ments, 2009, pp. 21–30. http://dx.doi.org/10.1145/1508293.1508297.

[43] S.T. Jones, A.C. Arpaci-Dusseau, R.H. Arpaci-Dusseau, Geiger: Monitoring the
buffer cache in a virtual machine environment, SIGOPS Oper. Syst. Rev. 40 (5)
(2006) 14–24. http://dx.doi.org/10.1145/1168917.1168861.

[44] P. Lu, K. Shen, Virtual machine memory access tracing with hypervisor exclu-
sive cache, in: Proceedings of the USENIX Annual Technical Conference, 2007,
pp. 3:1–3:15.

[45] Memory overcommit... without the commitment [online]. www.xen.org/files/
xensummitboston08/MemoryOvercommitXenSummit2008.pdf.

[46] J.-H. Chiang, H.-L. Li, T.-c. Chiueh, Working set-based physical memory bal-
looning, in: Proceedings of the 10th International Conference on Autonomic
Computing (ICAC 13), 2013, pp. 95–99.

[47] A. Arcangeli, I. Eidus, C. Wright, Increasing memory density by using ksm,
in: OLS ’09: Proceedings of the Linux Symposium, 2009, pp. 19–28.

[48] M. Konrad, F. Fabian, R. Marc, H. Marius, B. Frank, XLH: More effective mem-
ory deduplication scanners through cross-layer hints, in: Proceedings of the
USENIX Annual Technical Conference, 2013, pp. 279–290.

[49] Fedora documentation: KSM on fedora [online]. http://docs.fedoraproject.org/
en-US/Fedora/18/html/Virtualization_Administration_Guide/chap-KSM.html.

[50] P. Sharma, P. Kulkarni, Singleton: system-wide page deduplication in virtual
environments, in: Proceedings of the 21st international symposium on High-
Performance Parallel and Distributed Computing, 2012, pp. 15–26. http://dx.
doi.org/10.1145/2287076.2287081.

[51] D. Gupta, S. Lee, M. Vrable, S. Savage, A.C. Snoeren, G. Varghese, G.M. Voelker,
A. Vahdat, Difference engine: harnessing memory redundancy in virtual
machines, Commun. ACM 53 (10) (2010) 85–93. http://dx.doi.org/10.1145/
1831407.1831429.

[52] G. Miłós, D.G. Murray, S. Hand, M.A. Fetterman, Satori: enlightened page
sharing, in: Proceedings of the USENIX Annual Technical conference, 2009,
pp. 1–14.

[53] D. Magenheimer, C. Mason, D. McCracken, K. Hackel, Transcendent memory
and Linux, in: Proceedings of Linux Symposium, 2009, pp. 191–200.

[54] D. Magenheimer, Update on transcendent memory on Xen [online]. https:/
/oss.oracle.com/projects/tmem/dist/documentation/presentations/Transcend
entMemoryXenSummit2010.pdf.

[55] D. Mishra, P. Kulkarni, Comparative analysis of page cache provisioning in vir-
tualized environments, in: Proceedings of International Symposium on Mod-
elling, Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS ’14), 2014, pp. 213–222. http://dx.doi.org/10.1109/MASCOTS.2014.
35.

[56] J. Hwang, A. Uppal, T. Wood, H. Huang, Mortar: Filling the gaps in data cen-
ter memory, in: Proceedings of the 10th International Conference on Virtual
Execution Environments (VEE), 2014, pp. 53–64. http://dx.doi.org/10.1145/
2576195.2576203.

[57] M. Schwidefsky, H. Franke, R. Mansell, H. Raj, D. Osisek, J. Choi, Collaborative
memory management in hosted linux environments, in: Proceedings of Linux
Symposium, 2006, pp. 123–138.

[58] R.L. Mattson, J. Gecsei, D.R. Slutz, I.L. Traiger, Evaluation techniques for storage
hierarchies, IBM Syst. J. 9 (2) (1970) 78–117. http://dx.doi.org/10.1147/sj.92.
0078.

[59] C.A. Waldspurger, N. Park, A. Garthwaite, I. Ahmad, Efficient mrc construction
with shards, in: Proceedings of the 13th USENIX Conference on File and Stor-
age Technologies, 2015, pp. 95–110.

[60] R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky, J. Zelenka, Informed
prefetching and caching, SIGOPS Operating Systems Review 29 (5) (1995) 79–
95. http://dx.doi.org/10.1145/224057.224064.

[61] R. Russell, Virtio: Towards a de-facto standard for virtual i/o devices, SIGOPS
Oper. Syst. Rev. 42 (5) (2008) 95–103. http://dx.doi.org/10.1145/1400097.
1400108.

[62] W. Zhao, X. Jin, Z. Wang, X. Wang, Y. Luo, X. Li, Low cost working set size
tracking, in: Proceedings of the USENIX annual technical conference, 2011,
pp. 1–6.

[63] Featured article: /proc/meminfo explained [online]. www.redhat.com/advice/
tips/meminfo.html.

[64] S. Barker, T. Wood, P. Shenoy, R. Sitaraman, An empirical study of memory
sharing in virtual machines, in: Proceedings of the USENIX Annual Technical
Conference, 2012, pp. 273–284.

[65] S. Rachamalla, D. Mishra, P. Kulkarni, Share-o-meter: An empirical analysis of
ksm based memory sharing in virtualized systems, in: Proceeding of 20th In-
ternational Conference on High Performance Computing (HiPC), 2013, pp. 59–
68. http://dx.doi.org/10.1109/HiPC.2013.6799096.

[66] A. Garg, D. Mishra, P. Kulkarni, Catalyst: Gpu-assisted rapid memory dedupli-
cation in virtualization environments, in: Proceedings of the 13th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments,
2017, pp. 44–59.

[67] F. Douglis, The compression cache: Using on-line compression to extend
physical memory, in: Proceedings of 1993 Winter USENIX Conference, 1993,
pp. 519–529.

[68] I.C. Tuduce, T. Gross, Adaptive main memory compression, in: Proceedings of
the USENIX Annual Technical Conference, 2005, pp. 1–14.

[69] J. Ziv, A. Lempel, A universal algorithm for sequential data compression, IEEE
Trans. Inform. Theory 23 (3) (2006) 337–343. http://dx.doi.org/10.1109/TIT.
1977.1055714.

[70] P. Deutsch, Deflate compressed data format specification version 1.3, 1996.
[71] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, M.D. Corner,

Memory buddies: exploiting page sharing for smart colocation in virtualized
data centers, in: Proceedings of tHe International Conference on Virtual Exe-
cution Environments, 2009, pp. 31–40.

[72] D.Mishra, P. Kulkarni, R. Rangaswami, Synergy: A hypervisormanaged holistic
caching system, IEEE Trans. Cloud Comput. pre-print (2017) 1–14.

[73] P. Sharma, P. Kulkarni, P. Shenoy, Per-vm page cache partitioning for cloud
computing platforms, in: Proceedings of the 8th International Conference on
Communcation Systems and Networks, 2016.

[74] F. Guo, S. Kim, Y. Baskakov, I. Banerjee, Proactively breaking large pages to im-
provememoryovercommitment performance in vmware esxi, in: Proceedings
of the 11th International Conference onVirtual Execution Environments, 2015,
pp. 39–51. http://dx.doi.org/10.1145/2731186.2731187.

http://dx.doi.org/10.1145/1952682.1952710
http://dx.doi.org/10.1145/1952682.1952710
http://dx.doi.org/10.1145/1952682.1952710
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb23
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb23
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb23
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb23
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb23
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb24
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb24
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb24
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb24
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb24
http://www.developer.amd.com/wordpress/media/2012/10/NPT-WP-1%25201-final-TM.pdf
http://www.developer.amd.com/wordpress/media/2012/10/NPT-WP-1%25201-final-TM.pdf
http://www.developer.amd.com/wordpress/media/2012/10/NPT-WP-1%25201-final-TM.pdf
http://dx.doi.org/10.1145/1168917.1168860
http://dx.doi.org/10.1145/1168917.1168860
http://dx.doi.org/10.1145/1168917.1168860
http://dx.doi.org/10.1145/1815961.1815970
http://dx.doi.org/10.1145/1815961.1815970
http://dx.doi.org/10.1145/1815961.1815970
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb28
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb28
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb28
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb28
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb28
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb28
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb28
http://dx.doi.org/10.1145/844128.844138
http://dx.doi.org/10.1145/844128.844138
http://dx.doi.org/10.1145/844128.844138
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb30
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb30
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb30
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb30
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb30
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb31
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb31
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb31
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb31
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb31
http://dx.doi.org/10.1145/223586.223608
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb33
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb33
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb33
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb33
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb33
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb34
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb34
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb34
https://www.kernel.org/doc/
http://dx.doi.org/10.1145/2465351.2465384
http://dx.doi.org/10.1145/2465351.2465384
http://dx.doi.org/10.1145/2465351.2465384
http://dx.doi.org/10.1145/2150976.2150992
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb38
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb38
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb38
http://dx.doi.org/10.1145/363095.363141
http://dx.doi.org/10.1109/TSE.1980.230464
http://dx.doi.org/10.1145/1024393.1024415
http://dx.doi.org/10.1145/1024393.1024415
http://dx.doi.org/10.1145/1024393.1024415
http://dx.doi.org/10.1145/1508293.1508297
http://dx.doi.org/10.1145/1168917.1168861
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb44
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb44
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb44
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb44
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb44
http://www.xen.org/files/xensummitboston08/MemoryOvercommitXenSummit2008.pdf
http://www.xen.org/files/xensummitboston08/MemoryOvercommitXenSummit2008.pdf
http://www.xen.org/files/xensummitboston08/MemoryOvercommitXenSummit2008.pdf
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb46
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb46
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb46
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb46
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb46
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb47
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb47
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb47
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb48
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb48
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb48
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb48
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb48
http://docs.fedoraproject.org/en-US/Fedora/18/html/Virtualization%5FAdministration%5FGuide/chap-KSM.html
http://docs.fedoraproject.org/en-US/Fedora/18/html/Virtualization%5FAdministration%5FGuide/chap-KSM.html
http://docs.fedoraproject.org/en-US/Fedora/18/html/Virtualization%5FAdministration%5FGuide/chap-KSM.html
http://dx.doi.org/10.1145/2287076.2287081
http://dx.doi.org/10.1145/2287076.2287081
http://dx.doi.org/10.1145/2287076.2287081
http://dx.doi.org/10.1145/1831407.1831429
http://dx.doi.org/10.1145/1831407.1831429
http://dx.doi.org/10.1145/1831407.1831429
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb52
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb52
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb52
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb52
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb52
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb53
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb53
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb53
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
http://dx.doi.org/10.1109/MASCOTS.2014.35
http://dx.doi.org/10.1109/MASCOTS.2014.35
http://dx.doi.org/10.1109/MASCOTS.2014.35
http://dx.doi.org/10.1145/2576195.2576203
http://dx.doi.org/10.1145/2576195.2576203
http://dx.doi.org/10.1145/2576195.2576203
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb57
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb57
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb57
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb57
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb57
http://dx.doi.org/10.1147/sj.92.0078
http://dx.doi.org/10.1147/sj.92.0078
http://dx.doi.org/10.1147/sj.92.0078
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb59
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb59
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb59
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb59
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb59
http://dx.doi.org/10.1145/224057.224064
http://dx.doi.org/10.1145/1400097.1400108
http://dx.doi.org/10.1145/1400097.1400108
http://dx.doi.org/10.1145/1400097.1400108
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb62
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb62
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb62
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb62
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb62
http://www.redhat.com/advice/tips/meminfo.html
http://www.redhat.com/advice/tips/meminfo.html
http://www.redhat.com/advice/tips/meminfo.html
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb64
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb64
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb64
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb64
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb64
http://dx.doi.org/10.1109/HiPC.2013.6799096
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb66
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb66
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb66
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb66
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb66
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb66
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb66
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb67
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb67
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb67
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb67
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb67
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb68
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb68
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb68
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/TIT.1977.1055714
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb71
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb71
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb71
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb71
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb71
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb71
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb71
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb72
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb72
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb72
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb73
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb73
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb73
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb73
http://refhub.elsevier.com/S1574-0137(16)30118-6/sb73
http://dx.doi.org/10.1145/2731186.2731187

	A survey of memory management techniques in virtualized systems
	Introduction
	Scope

	Memory virtualization challenges and techniques
	Hypervisor memory allocation model
	Virtualizing the memory management unit
	Shadow paging—software-based MMU virtualization
	Direct paging—para-virtualized MMU virtualization
	Nested paging—hardware assisted MMU virtualization
	Beyond hardware assisted MMU virtualization

	Memory resource management in virtualized systems
	Memory management complexity of operating systems
	Hypervisor memory management challenges
	Loss of hypervisor control of the allocated memory
	Limited access to guest OS information
	No direct influence on guest OS policies
	Diverse nature of guest OSs

	Memory management approaches
	Exploiting dynamic memory demands
	Content deduplication
	Hypervisor and guest OS symbiosis

	Dynamic memory provisioning techniques
	Dynamic provisioning enablers
	Memory ballooning
	Memory hot-plugging

	Controllers for dynamic memory provisioning
	Black-box approaches of balloon control
	Gray-box balloon controllers

	Exploiting content similarity for memory management
	Page sharing by out-of-band scanning
	Out-of-band sharing at multiple granularity
	Deduplicating memory on the I/O access path

	Memory management through hypervisor and guest OS symbiosis
	System level second chance caching
	Collaborative memory state maintenance

	Discussion
	Conclusion
	Conflict of interest
	References

