Proceedings of the 2003 USENI X Technical Conference

Operating System Support for Virtual Machines

Samuel TKing, Geoge W Dunlap, Peter M. Chen

Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science
University of Michigan
http: //mamw.eecs.umich.edu/CoVirt

Abstract: A virtual-machinemonitor (VMM) is a use-
ful techniquefor adding functionality below existing
operatingsystemandapplicationsoftware.Oneclassof
VMMs (called Type Il VMMs) builds on the abstrac-
tions provided by a host operating system. Type I
VMMs are elegant and corvenient, but their perfor-
manceis currently an order of magnitudeslower than
thatachievedwhenrunningoutsidea virtual machine(a
standalonesystem).In this paper we examinethe rea-
sonsfor this large overheador Typell VMMs. We find
thata few simple extensionsto a hostoperatingsystem
canmalke it amuchfasterplatformfor runninga VMM.
Takingadwantageof theseextensiongeducewirtualiza-
tion overheador a Typell VMM to 14-35%overhead,
even for workloadsthat exercise the virtual machine
intensively.

1. Introduction

A virtual-machinemonitor (VMM) is a layer of
softwarethatemulateghe hardwareof a completecom-
putersystem(Figure 1). The abstractiorcreatedby the

VMM is called a virtual machine.The hardware emu-
latedby the VMM typically is similar or identicalto the
hardware on which the VMM is running.

Virtual machineswverefirst developedandusedin
the 1960s,with the best-knevn example being IBM’s
VM/370 [Goldbeg74]. Several propertiesof virtual
machineshave madethemhelpful for a wide variety of
uses.First, they cancreatethe illusion of multiple vir-
tual machineon a singlephysicalmachine Thesemul-
tiple virtual machinesanbe usedto run applicationson
differentoperatingsystemsto allow studentgo experi-
ment corveniently with building their own operating
systemNieh00],to enableexisting operatingsystemgo
run on shared-memorymultiprocessorgBugnion97],
and to simulatea network of independentomputers.
Secondyirtual machinescan provide a software ervi-
ronmentfor dehugging operatingsystemsthat is more
convenientthanusinga physicalmachineThird, virtual
machinesprovide a corvenient interface for adding
functionality, suchasfaultinjection[Buchacler01], pri-
mary-backupreplication [Bressoud96],and undoable
disks. Finally, a VMM provides strong isolation

guest
application

guest
application

guest
application

guest
application

guest
application

guest
application

guest operating system

guest operating system

virtual-machine monitor (VMM)

virtual-machine monitor (VMM)

host operating system

host hardware

host hardware

Type | VMM

Type Il VMM

Figure 1: Virtual-machine structures. A virtual-machinemonitoris a softwarelayerthatrunson a hostplatformandprovides
an abstractionof a completecomputersystemto higherlevel software. The host platform may be the bare hardware (Type |
VMM) or a hostoperatingsystem(Type Il VMM). The softwarerunningabove the virtual-machineabstractions calledguest

software (operating system and applications).

between virtual-machine instances. This isolation
allows a singlesenerto run multiple, untrustedapplica-
tions safely [Whitaker02, Meushav00] and to provide
securityservicessuchas monitoring systemsfor intru-
sions [Chen01, Dunlap02, Barnett02].

As a layer of software,VMMs build on a lower-
level hardware or software platform and provide an
interface to higherlevel software (Figure 1). In this
paper we are concernedwith the lowerlevel platform
that supportsthe VMM. This platform may be the bare
hardware,or it maybeahostoperatingsystemBuilding
the VMM directly on the hardware lowersoverheadby
reducingthe numberof softwarelayersandenablingthe
VMM to take full advantageof the hardware capabili-
ties. On the other hand, building the VMM on a host
operatingsystemsimplifiesthe VMM by allowing it to
use the host operating systembstractions.

Our goal for this paperis to examineand reduce
the performanceoverheadassociatedwith running a
VMM on ahostoperatingsystem Building it on a stan-
dard Linux hostoperatingsystemleadsto an order of
magnitudeperformancedegradationcomparedto run-
ning outsidea virtual machine(a standalone system).
However, we find that a few simple extensionsto the
hostoperatingsystenreducewirtualizationoverheado
14-35%overheadwhich is comparablgo the speedof
virtual machines that run directly on the hasde:

Thespeedf avirtual machineplaysalarge partin
determininghe domaingfor which virtual machinesan
be used.Using virtual machinedor dehugging, student
projects, and fault-injection experimentscan be done
even if virtualization overheadis quite high (e.g. 10x
slowdown). However, usingvirtual machinein produc-
tion ervironmentsrequiresvirtualizationoverheado be
much lower. Our CoVirt projecton computersecurity
dependson running all applicationsinside a virtual
maching[Chen01].To keepthe systemusablein a pro-
duction ervironment, we would like the speedof our
virtual machineto bewithin afactorof 2 of astandalone
system.

The paper is organized as follows. Section 2
describegwo waysto classifyvirtual machinesfocus-
ing on the higherlevel interfaceprovided by the VMM
and the lower-level platform uponwhich the VMM is
built. Section3 describesJMLinux, whichis the VMM
we usein this paper Section4 describesa seriesof
extensionsto the hostoperatingsystemthat enablevir-
tual machinesbuilt on the host operating systemto
approachthe speedof thosethat run directly on the
hardware. Section5 evaluatesthe performancebenefits

achieredby eachhostOSextension.Section6 describes
related vork, and Section 7 concludes.

2. Virtual machines

Virtual-machinemonitors can be classifiedalong
mary dimensionsThis sectionclassifiesVMMs along
two dimensionsthe higherlevel interfacethey provide
and the laver-level platform theg build upon.

Thefirst way we canclassifyVMMs is according
to how closely the higherlevel interfacethey provide
matcheghe interfaceof the physical hardware.VMMs
suchasVM/370 [Goldbeg74]for IBM mainframesand
VMware ESX Sener [Waldspuger02] and VMware
Workstation[SugermanO1for x86 processorgprovide
an abstractionthat is identical to the hardware under-
neaththe VMM. Simulatorssuchas Bochs[Boc] and
Virtutech Simics [Magnusson95] also provide an
abstraction that is identical to physical hardware,
althoughthe hardwarethey simulatemaydiffer from the
hardware on which theare running.

Severalaspect®f virtualizationmale it difficult or
slow for aVMM to provide aninterfacethatis identical
to the physical hardware. Some architecturesinclude
instructionswhose behaior dependson whetherthe
CPU is runningin privileged or user mode (sensitve
instructions),yet which canexecutein usermodewith-
out causinga trap to the VMM [Robin00]. Virtualizing
these sensitve-kbut-unpriileged instructions generally
requiresbinary instrumentationwhich addssignificant
complity and may add significantoverhead.In addi-
tion, emulatingl/O devices at the low-level hardware
interface(e.g.memory-mappedfO) causesxecutionto
switch frequently betweenthe guestoperatingsystem
accessinghe device andthe VMM codeemulatingthe
device. To avoid the overheadassociateavith emulating
a low-level device interface,mostVMMs encourageor
requirethe userto run a modified versionof the guest
operatingsystemFor example,the VAX VMM security
kernel [Karger91], VMware Workstations guesttools
[Sugerman01]and Disco [Bugnion97] all add special
driversin the guestoperatingsystemto acceleratehe
virtualization of some devices. VMMs built on host
operatingsystemaoftenrequireadditionalmodifications
to the guestoperatingsystem For example,the original
versionof SimOSaddsspecialsignal handlersto sup-
port virtual interruptsand requiresrelinking the guest
operating systeminto a different range of addresses
[Rosenblum95];similar changesare neededby User
Mode Linux [Dike00] and UMLinux [BuchaakO1].

Other virtualization stratgies make the higher
level interface further different from the underlying

hardware. The Denaliisolationkerneldoesnot support
instructionghataresensitve but unprivileged,addsser-
eral virtual instructionsand registers,and changeshe
memory managemenmodel [Whitaker02]. Microker-
nelsprovide higherlevel servicesabore the hardwareto
supportabstractionssuch as threadsand inter-process
communication[Golub90]. The Java virtual machine
definesavirtual architecturahatis completelyindepen-
dent from the underlying harcwe.

A secondway to classify VMMs is accordingto
the platform upon which they are built [Goldbeg73].
Type | VMMs such as IBM’'s VM/370, Disco, and
VMware’s ESX Sener areimplementedirectly on the
physical hardware. Type I| VMMs are built completely
on top of a hostoperatingsystem.SimOS,UserMode
Linux, and UMLinux are all implementedcompletely
on top of a hostoperatingsystem.OtherVMMs area
hybrid betweeriTypel andll: they operatemostlyonthe
physical hardware but usethe hostOS to perform|/O.
For example,VMware Workstation[SugermanO1jnd
Connectix VirtualPC [Con01] use the host operating
system to access some virtual I/Qvides.

A hostoperatingsystemmalkesa very corvenient
platform uponwhich to build a VMM. Host operating
systemprovide a setof abstractionghat mapcloselyto
eachpart of a virtual machine[Rosenblum95]A host
processprovidesa sequentiaktreamof executionsimi-
lar to a CPU; hostsignalsprovide similar functionality
to interrupts;hostfiles anddevicesprovide similar func-
tionality to virtual 1/O devices; host memory mapping
andprotectionprovidessimilar functionality to a virtual
MMU. Thesefeaturesmale it possibleto implementa
VMM as a normal user process witéry little code.

Other reasonscontritute to the attractvenessof
usinga Typell VMM. Becausea Typell VMM runsas
a normal processthe developeror administratorof the
VMM canusethe full power of the hostoperatingsys-
tem to monitor and dehug the virtual machine$ execu-
tion. For example,the developeror administratorcan
examineor copy the contentsof the virtual machines
I/O devicesor memoryor attacha dehuggerto the vir-
tual-machineprocessFinally, the simplicity of Type ll
VMMs andthe availability of severalgoodopen-source
implementationsnake them an excellent platform for
experimenting with virtual-machine services.

A potentialdisadantageof Typell VMMs is per-
formance.Currenthost operatingsystemsdo not pro-
vide sufiiciently powerful interfaces to the bare
hardware to support the intensve usage patterns of
VMMs. For example,compilingtheLinux 2.4.18kernel
inside the UMLinux virtual machinetakes 18 timesas

long ascompiling it directly on a Linux hostoperating
system.VMMs that run directly on the bare hardware
achieve much lower performanceoverhead.For exam-
ple,VMwareWorkstation3.1 compilestheLinux 2.4.18
kernel with only a 30% overheadrelative to running
directly on the host operating system.

Thegoalof this paperis to examineandreducethe
orderof-magnitude performance overhead associated
with runninga VMM on a host operatingsystem.We
find thatafew simpleextensiongo a hostoperatingsys-
tem can malke it a much fasterplatform for runninga
VMM, while preservingthe conceptuakleganceof the
Type Il approach.

3. UMLinux

To conductour study we use a Type Il VMM
called UMLinux [BuchaclerO1]. UMLinux was devel-
opedby researcheratthe University of Erlangen-Nurn-
beg for usein fault-injectionexperiments UMLIinux is
a Type Il VMM: the guestoperatingsystemand all
guestapplicationsrun as a single process(the guest-
machine process) on a host Linux operatingsystem.
UMLinux providesa higherlevel interfaceto the guest
operatingsystemthatis similar but not identicalto the
underlying hardware. As a result, the machine-depen-
dentportion of the guestLinux operatingsystemmust
be modifiedto usethe interfaceprovided by the VMM.
Simpledevice driversmustbe addedto interactwith the
hostabstractionsisedto implementthe devicesfor the
virtual machine;a few assembly-languagmstructions
(e.g.i r et andi n/fout) mustbereplacedwith function
calls to emulationcode; and the guestkernel must be
relinkedinto a differentaddressange[Hoxer02]. About
17,000lines of codewere addedto the guestkernelto
work on the new platform. Applications compiled for
the hostoperatingsystemwork without modificationon
the guest operating system.

UMLinux usesfunctionality from the hostoperat-
ing systemthat mapsnaturallyto virtual hardware.The
guest-machingorocesssenes as a virtual CPU; host
files and devices sene as virtual I/O devices; a host
TUN/TAP device senesasa virtual network; hostsig-
nals sene asvirtual interrupts;and hostmemorymap-
ping andprotectionsene asa virtual MMU. Thevirtual
machines memory is provided by a host file that is
mappedinto different parts of the guest-machingro-
cess$ address space.e/gtore this host file in a memory
file system(ramfs)to avoid needlesslywriting to disk
the virtual machine' transient state.

The addressspaceof the guest-machingrocess
differs from a normal host processbecauseét contains

Oxffffffff
host operating
system
0xc0000000
Oxbfffffff
guest operating
system
0x70000000
Ox6fffffff
guest application
0x0

Figure 2. UMLinux address space. As with al Linux
processes, the host kernel address space occupies
[Oxc0000000, Oxffffffff], and the host user address
space occupies [0x0, 0xc0000000). The guest kernel
occupies the upper portion of the host user space
[Ox70000000, 0xc0000000), and the current guest
application occupies the remainder of the host user space
[0x0, 0x70000000).

both the host and guest operating system address ranges
(Figure 2). In a standard Linux process, the operating
system occupies addresses [Oxc0000000,
Oxffffffff] while the application is given [0xO0,
0xc0000000). Because the UMLinux guest-machine
process must hold both the host and guest operating sys-
tems, the address space for the guest operating system
must be moved to occupy [0x70000000,
0xc0000000), which leaves [0x00000000,
0x70000000) for guest applications. The guest kernel
memory is protected using host mmap and munmap sys-
tem calls. To facilitate this protection, UMLinux main-
tainsavirtual current privilege level, which is analogous
to the x86 current privilege level. Thisis used to differ-
entiate between guest user and guest kernel modes, and
the guest kernel memory will be accessible or protected
according to the virtual privilege level.

Figure 3 shows the basic system structure of
UMLinux. In addition to the guest-machine process,
UMLinux usesaVMM processto implement the VM M.

The VMM process serves two purposes: it redi-
rects to the guest operating system signals and system

VMM process guest-machine process

host operating system
host hardware

Figure 3: UMLinux system structure. UMLinux uses two
host processes. The guest-machine process executes the guest
operating system and all guest applications. The VMM
process uses pt r ace to mediate access between the guest-
machine process and the host operating system.

calls that would otherwise go to the host operating sys-
tem, and it restricts the set of system calls allowed by
the guest operating system. The VMM process uses
pt r ace to mediate access between the guest-machine
process and the host operating system. Figure 4 shows
the sequence of steps taken by UMLinux when a guest
application issues a system call.

The VMM process is also invoked when the guest
kernel returns from its SIGUSR1 handler and when the
guest kernel protects its address space from the guest
application process. A similar sequence of context
switches occurs on each memory, 1/O, and timer excep-
tion received by the guest-machine process.

4. Host OS support for Typell VMMs

A host operating system makes an elegant and con-
venient base upon which to build and run a VMM such
as UMLinux. Each virtual hardware component maps
naturally to an abstraction in the host OS, and the
administrator can interact conveniently with the guest-
machine process just as it does with other host pro-
cesses. However, while a host OS provides sufficient
functionality to support a VMM, it does not provide the
primitives needed to support aVMM efficiently.

In this section, we investigate three bottlenecks
that occur when running a Type Il VMM, and we elimi-
nate these bottlenecks through simple changes to the
host OS.

We find that three bottlenecks are responsible for
the bulk of the virtualization overhead. First,
UMLinux’s system structure with two separate host pro-
cesses causes an inordinate number of context switches
on the host. Second, switching between the guest kernel
and the guest user space generates a large number of

VMM process

guest
application

o ¥

guest operating system

host operating system

1. guest application issues system call; intercepted by VMM processviapt r ace

2. VMM process changes system call to no-op (getpid)

3. getpid returns; intercepted by VMM process

4. VMM process sends SIGUSRL1 signal to guest SIGUSR1 handler
5. guest SIGUSR1 handler calls mrap to alow accessto guest kernel data; intercepted by VMM process

6. VMM process alows nrap to pass through
7. map returns to VMM process

8. VMM process returns to guest SIGUSR1 handler, which handles the guest application’'s system call

Figure 4: Guest application system call. This picture shows the steps UMLinux takes to transfer control to the guest operating
system when a guest application process issues a system call. The nmmap call in the SIGUSR1 handler must reside in guest user
space. For security, the rest of the SIGUSR1 handler should reside in guest kernel space. The current UMLinux implementation
includes an extra section of trampoline code to issue the mmrap; this trampoline code is started by manipulating the guest machine
process’s context and finishes by causing a breakpoint to the VMM process; the VMM process then transfers control back to the

guest-machine process by sending a SIGUSRL1.

memory protection operations. Third, switching
between two guest application processes generates a
large number of memory mapping operations.

4.1. Extra host context switches

The VMM process in UMLinux uses pt r ace to
intercept key events (system calls and signals) executed
by the guest-machine process. pt r ace is a powerful
tool for debugging, but using it to create a virtual
machine causes the host OS to context switch frequently
between the guest-machine process and the VMM pro-
cess (Figure 4).

We can eliminate most of these context switches
by moving the VMM process's functionality into the
host kernel. We encapsulate the bulk of the VMM pro-
cess functionality in a VMM loadable kernel module.
We aso modified afew linesin the host kernel’s system
call and signal handling to transfer control to the VMM

kernel module when the guest-machine process executes
a system call or receives a signa. The VMM kernel
module and other hooks in the host kernel were imple-
mented in 150 lines of code (not including comments).

Moving the VMM process's functiondlity into the
host kernel drastically reduces the number of context
switchesin UMLinux. For example, transferring control
to the guest kernel on a guest system call can be donein
just two context switches (Figure 5). It aso simplifies
the system conceptually, because the VMM kernel mod-
ule has more control over the guest-machine process
than is provided by pt r ace. For example, the VMM
kernel module can change directly the protections of the
guest-machine process's address space, whereas the
ptracing VMM process must cause the guest-machine
process to make multiple system calls to change protec-
tions.

guest
application

guest operating system

VMM kernel module

3¢ 42

host operating system

1. guest application issues system call; intercepted
by VMM kernel module

2. VMM kernel module calls mrap to allow access
to guest kernel data

3. mmap returnsto VMM kernel module

4. VMM kernel module sends SIGUSR1 to guest
SIGUSR1 handler

Figure 5: Guest application system call with VMM kernel
module. This picture shows the steps taken by UMLinux with
a VMM kernel module to transfer control to the guest
operating system when a guest application issues a system
call.

4.2. Protecting guest kernel space from
guest application processes

The guest-machine process switches frequently
between guest user mode and guest kernel mode. The
guest kernel isinvoked to service guest system calls and
other exceptions issued by a guest application process
and to service signals initiated by virtual 1/0O devices.
Each time the guest-machine process switches from
guest kernel mode to guest user mode, it must first pre-
vent access to the guest kernel’s portion of the address
space [0x 70000000, 0xc0000000). Similarly, each
time the guest-machine process switches from guest
user mode to guest kernel mode, it must first enable
access to the guest kernel’s portion of the address space.
The guest-machine process performs these address
space manipulations by making the host system calls
nmap, munnap, and npr ot ect .

Unfortunately, calling nmap, mnunmap, or npr o-
t ect on large address ranges incurs significant over-

head, especially if the guest kernel accesses many pages
in its address space. In contrast, a standalone host
machine incurs very little overhead when switching
between user mode and kernel mode. The page table on
x86 processors need not change when switching
between kernel mode and user mode, because the page
table entry for a page can be set to simultaneously allow
kernel-mode access and prevent user-mode access.

We devel oped two solutions that use the x86 paged
segments and privilege modes to eliminate the overhead
incurred when switching between guest kernel mode
and guest user mode. Linux normally uses paging as its
primary mechanism for trand ation and protection, using
segments only to switch between privilege levels. Linux
uses four segments. kernel code segment, kernel data
segment, user code segment, and user data segment.
Normally, all four segments span the entire address
range. Linux normally runs all host user code in CPU
privilege ring 3 and runs host kernel code in CPU privi-
lege ring 0. Linux uses the supervisor-only bit in the
page table to prevent code running in CPU privilege ring
3 from accessing the host operating system'’s data (Fig-
ure 6).

Our first solution protects the guest kernel space
from guest user code by changing the bound on the user
code and data segments (Figure 7). When the guest-
machine process is running in guest user mode, the
VMM kernel module shrinks the user code and data seg-
ments to span only [0x0, O0x70000000). When the
guest-machine process is running in guest kernel mode,
the VMM kernel module grows the user code and data
segments to its normal range of [Ox0, Oxf fffffff].
This solution added only 20 lines of code to the VMM
kernel module and is the solution we currently use.

One limitation of the first solution is that it
assumes the guest kernel space occupies a contiguous
region directly below the host kernel space. Our second
solution alows the guest kernel space to occupy arbi-
trary ranges of the address space within [0xO,
0xc0000000) by using the page table's supervisor-
only bit to distinguish between guest kernel mode and
guest user mode (Figure 8). In this solution, the VMM
kernel module marks the guest kernel’s pages as accessi-
ble only by supervisor code (ring 0-2), then runs the
guest-machine process in ring 1 while in guest kernel
mode. When running in ring 1, the CPU can access
pages marked as supervisor in the page table, but it can-
not execute privileged instructions (such as changing the
segment descriptor). To prevent the guest-machine pro-
cess from accessing host kernel space, the VMM kernel
module shrinks the user code and data segment to span

pages are
accessible

inring 3
, Oxffffffff

host operating
system

0xc0000000
Oxbf ffffff

guest operating

user system

code/dat

segment 0x70000000

Ox6fffffff

guest applicatio

‘ 0x0

Figure 6: Segment and page protections when running a
normal Linux host processes. A normalLinux hostproces:
runsin CPU privilegering 3 andusesthe usercodeanddata
segment. The sggmentboundsallow accesdo all addresse:
but the supervisotonly bit in the pagetable preventsthe host
processfrom accessinghe host operatingsystems data.In
orderto protectthe guestkernels datawith this setup,the
guest-machine process must munmap or nprotect

[0x70000000, 0xc0000000) before switching to guest
user mode.

=

OooOooooogogoooogodg

only [0x0, 0xc0000000). The guest-machin@rocess
runsin ring 3 while in guestusermode,which prevents
guestusercodefrom accessinghe guestkernel’s data.
Thisallowsthe VMM kernelmoduleto protectarbitrary
pagesin [0x0, O0xc0000000) from guestusermode
by settingthe supervisotonly bit onthosepageslit does
still requirethe hostkerneland useraddressangesto

each be contiguous.

4.3. Switching between guest application
processes

A third bottleneckin a Typell VMM occurswhen
switchingaddresspacedetweerguestapplicationpro-
cessesChangingguestaddresspacesneanschanging
the currentmappingbetweerguestvirtual pagesandthe
pagein the virtual machines “physical” memoryfile.
Changingthis mappingis doneby calling munmap for
the outgoingguestapplicationprocesss virtual address
spacethencalling mmap for eachresidentvirtual page

pages are
accessible
inring 3

Oxffffffff

host operating
system

0xc0000000
Oxbf ffffff

guest operating
system

0x70000000
’ Ox6fffffff

guest applicatio

=

user
code/dat
segment

OooOooooooooogod

‘ 0x0

Figure 7: Segment and page protections when running the
guest-machine process in guest user mode (solution 1).
This solution protectsthe guest kernel spacefrom guest
applicationprocesseby changingthe boundon the usercode
and data sggmentsto [0x0, 0x70000000) when running
guestusercode.Whenthe guest-machin@rocesswitchesto
guestkernelmode,the VMM kernelmodulegrows the user
code and data segments to its normal range of [0xO,
Oxffffffff].

in the incoming guestapplication process.UMLinux
minimizesthe callsto mmap by doingit ondemandj.e.
as the incoming guestapplicationprocessfaultsin its
addressspace.Even with this optimization, however,
UMLIinux generates large numberof calls to nrap,
especiallywhen the working setsof the guestapplica-
tion processes are .

To improve the speedof guestcontet switches,
we enhancethe host OS to allow a single processto
maintainseveraladdresspacedefinitions.Eachaddress
spaces definedby a separateetof pagetables,andthe
guest-machineprocessesswitches between address
spacedefinitionsvia a new hostsystemcall swi t ch-
guest . To switchaddresspacedefinitions,swi t ch-
guest needsonly to changethe pointerto the current
first-level page table. This task is much faster than
mmap’ing each virtual page of the incoming guest
applicationprocessWe modify the guestkernelto use
swi t chguest whencontet switchingfrom oneguest
application processto another We reuse initialized

pages are
accessible
inring 3
Oxffffffff
host operating
system
0xc0000000
f Oxbfffffff
guest operating
system
0x70000000
user .
code/dat Ox6fffffff 5
segment
[l
guest applicatiop 0
O
O
‘ 0x0 0

Figure 8: Segment and page protectionswhen running the
guest-machine process (solution 2). This solution protects
the guestkernel spacefrom guestapplicationprocessedy
markingthe guestkernel’s pagesasaccessiblenly by code
running in CPU privilege ring 0-2 and running the guest-
machineprocessn ring 1 whenexecutingguestkernelcode.
To prevent the guest-machingorocessfrom accessinghost
kernelspacethe VMM kernelmoduleshrinksthe usercode
and data ggment to span only0k0, 0xc0000000).

addressspacedefinitionsto minimize the overheadof

creating guestapplication processesWe take care to

prevent the guest-machine process from alusing

swi t chguest by limiting it to 1024 differentaddress
spacesandcheckingall parametersarefully. This opti-

mization added 340 lines of code to the heshkl.

5. Performance results

This section evaluatesthe performancebenefits
achieved by eachof the optimizationsdescribedn Sec-
tion 4.

We first measurehe performanceof threeimpor-
tant primitives: a null systemcall, switching between
two guestapplication processeqeachwith a 64 KB
working set),andtransferringlO MB of datausingTCP
acrossa100Mb/s Etherneswitch. Thefirst two of these
microbenchmarks come from the Imbench suite
[McVoy96].

We also measure performanceon three mac-
robenchmarksPOv-Ray is a CPU-intenstie ray-tracing
program. We render the benchmarkimage from the
POV-Raydistribution at quality 8. kernel-luild compiles
the complete Linux 2.4.18 kernel (make bzlmage).
SPECweb99measuresveb sener performanceusing
the 2.0.36 Apache web sener. We configure
SPECweb99ith 15 simultaneousconnectionsspread
over two clients connectedto a 100 Mb/s Ethernet
switch. kernel-uild and SPECweb9%xercisethe vir-
tual machineintensiely by makingmary systemcalls.
They are similar to the 1/0-intensve and kernel-inten-
sive workloads used to evaluate Cellular Disco
[Govil00]. All workloadsstart with a warm guestfile
cache.Eachresultsrepresentghe averageof 5 runs.
Variance across runs is less than 3%.

All experimentsare run on an computerwith an
AMD Athlon 1800+CPU, 256 MB of memory anda
SamsungSV4084IDE disk. The guestkernelis Linux
2.4.18 ported to UMLinux, and the host kernels for
UMLinux areall Linux 2.4.18with differentdegreesof
supportfor VMMs. All virtual machinesareconfigured
with 192 MB of “physical” memory The virtual hard
disk for UMLinux is storedon a raw disk partition on
thehostto avoid doublebuffering thevirtual disk datain
the guestandhostfile cachesandto preventthe virtual
machinefrom benefittingunfairly from the hosts file
cache.The host and guestfile systemshave the same
versions of all softare (based on RedHat 6.2).

We measurebaseline performanceby running
directly on the hostoperatingsystem(standalone)The
hostuseshe samehardwareandsoftwareinstallationas
the virtual-machinesystemsand hasaccesgo the full
256 MB of host memory

We useVMw are Workstation3.1 to illustrate the
performancesf VMMs thatarebuilt directly onthe host
hardware. We choseVMware Workstation becauseit
executesmostly on host hardware and becauseit is
regarded widely as providing excellent performance.
However, notethatVMw areWorkstationmay be slower
thana Type | VMM that is ideal for the purposesof
comparingwith UMLinux. First, VMware Workstation
issuesl/O throughthe host OS ratherthan controlling
the hostl/O devicesdirectly. Secondunlike UMLinux,
VMware Workstation can support unmodified guest
operatingsystems,and this capability forces VMware
Workstationto do extra work to provide the sameinter-
faceto theguestOSasthehosthardwaredoes.Thecon-
figurationfor VMware Workstationmatcheghat of the
other virtual-machine systems, except that VMware

Workstation uses the host disk partition's cacheable
block device for its virtual disk.

Figures9 and 10 summarizeresultsfrom all per-
formance gperiments.

Theoriginal UMLinux is hundredsf timesslower
for null systemcallsandcontet switchesandis notable
to saturatethe network. UMLinux is 8x asslow asthe
standalondoston SPECweb99] 8x asslow asthestan-
dalonehost on kernel-wild and 10% slower than the
standalondnoston POV-Ray. Becausd’OV-Rayis com-
pute-boundit doesnotinteractmuchwith theguestker-
nel and thus incurs little virtualization overhead.The
overheaddor SPECweb9%nd kernel-uild are higher
becausethey issue more guest kernel calls, each of
which mustbetrappedby the VMM kernelmoduleand
reflected back to the guestrkel by sending a signal.

VMMs thatarebuilt directly onthe hardwareexe-
cutemuchfasterthana Type Il VMM without hostOS
support.VMware Workstation3.1 executesa null sys-
tem call nearlyasfastasthe standalonénost,cansatu-
rate the network, and is within a factor of 5 of the
contet switch time for a standalonehost. VMware
Workstation 3.1 incurs an overheadof 6-30% on the
intensive macrobenchmark¢SPECweb99%nd kernel-
build).

Our first optimization (Section 4.1) moves the
VMM functionality into the kernel. This improves per-
formanceby a factor of about2-3 on the microbench-
marks, and by a factor of about2 on the intensve
macrobenchmarks.

Our secondoptimization (Section4.2) usessgy-
mentboundsto eliminatethe needto call mmap, nun-
map, and npr ot ect when switching betweenguest
kernelmodeandguestusermode.Adding this optimiza-
tion improvesperformancen null systemcallsandcon-
text switches by another factor of 5 (beyond the
performancevith justthefirst optimization)andenables
UMLinux to saturatethe network. Performanceon the
two intensive macrobenchmarkisnprovesby a factorof
3-4.

Our final optimization (Section 4.3) maintains
multiple addressspacedefinitionsto speedup context
switcheshetweerguestapplicationprocessesT his opti-
mization haslittle effect on benchmarkswith only one
mainapplicationprocesshput it hasa dramaticaffect on
benchmarksvith more than one main applicationpro-
cess.Adding this optimization improves the context
switch microbenchmarlby a factorof 13 andimproves
kernel-tuild by a fictor of 2.

With all three host OS optimizationsto support
VMMs, UMLinux runs all macrobenchmarkawell
within our performanceargetof afactorof 2 relative to
standalonePOV-Ray incurs 1% overheadkernel-uild
incurs 35% overhead;and SPECweb99incurs 14%
overhead. These overheadsare comparableto those
attained by VMvare Workstation 3.1.

The largest remaining source of virtualization
overheadfor kernel-hiild is the costand frequeng of
handling memory faults. kernel-luild createsa large
numberof guestapplicationprocesseseachof which
mapsits executablepageson demand.Each demand-
mappedpragecauses signalto be deliveredto theguest
kernel,which mustthenaskthe hostkernelto mapthe
new page.In addition,UMLinux currentlydoesnot sup-
portthe ability to issuemultiple outstandind/Os onthe
host. We plan to updatethe guestdisk driver to take
adwantageof non-blockingl/O whenit becomesavail-
able on Linux.

6. Related work

UserMode Linux is a Type Il VMM thatis very
similar to UMLinux [Dike00]. Our discussionof User
ModeLinux assumes configurationthat protectsguest
kernel memory from guestapplication processegjail
mode). The major technical difference betweenthe
UserMode Linux and UMLinux is that UserMode
Linux usesa separatdostprocesdor eachguestappli-
cationprocesswhile UMLinux runsall guestcodein a
single host process.Assigning each guestapplication
procesdo a separatéhost procesgechniquespeedaup
context switchesbetweenguestapplicationprocesses,
but it leadsto complicationssuchaskeepingthe shared
portion of the guestaddresspacesonsistentind diffi-
cult synchronizatiorissuesvhenswitchingguestappli-
cation processes [D#02a].

UserMode Linux in jail mode is faster than
UMLinux (without host OS support) on context
switches (157 vs. 2029 microseconds)ut slover on
systemcalls (296 vs. 96 microseconds)yand network
transfers(54 vs. 39 seconds)UserMode Linux in jail
modeis fasteron kernel-luild (1309vs. 2294 seconds)
andslower on SPECweb99200vs. 172 seconds}han
UMLinux without host OS support.

Concurrentlywith our work on host OS support
for VMMs, the author of UserMode Linux proposed
modifyingthehostOSto supportmultiple addresspace
definitionsfor a singlehostprocesgDike02a].Like the
optimization in Section 4.3, this would speed up
switchesbetweerguestapplicationprocesseandallow
UserMode Linux to run all guestcodein a single host

100
B 7 @ 2000
e}
g 80— — g
g ;
P { g
g £ 1500
S 60— — =
E S
g .Emm
& 40— . g
g L i 8
o o
£ S 500
= 20 — z
- - =
0 0
5 2 g & & 5 Z g & &
Eeeggégg% Egﬁﬁgé%ﬁé
= sE gg g'ﬁ S % = sE §’3 g'ﬁ 2 =
> ST +8 58 =8 5 2 3T +8 S5¢ =9 W
>§ Es >= >g Es >2
+ X + 8 + X + 8
null system call context switch

40
_ 35
%)
=]
c
§30
@
225
§20
[]
o)
g 15
I
o 10
=
'_
5
0
x () = c ()
=] = 8 k) c
ik o T
= =£ %3 2¢ 3% %
> =T +8 s5¢ 55 #
>§ Es >=
+ X2 + 8

network transfer

Figure 9: Microbenchmark results. This figure compares the performance of different virtual-machine monitors on three
microbenchmarks: a null guest system call, context switching between two 64 KB guest application processes, and receiving 10
MB of data over the network. Thefirst four bars represent the performance of UMLinux with increasing support from the host OS.
Each optimization level is cumulative, i.e. it includes al optimizations of the bars to the left. The performance of a standalone
host (no VMM) is shown for reference. Without support from the host OS, UMLinux is much slower than a standalone host.
Adding three extensions to the host OS improves the performance of UMLinux dramatically.

2500
150 — —
2000
@ @
g £ 1500
g 100 — — g
A H
= i] £ 1000
> =)
© x
50 — —
500
S 2 g % s g ° X R 8 5 2
> = =
S B Eg of e® 3 S B E8 of oE 3
S S B 8W T £ s = 86 O
= = §’3 = =X = = = §)3 2 R
=) E-ﬁ [} s @ = =) ko _8 = ﬁ = S
SE *° 25 28 ¢ SE *° 25 22 0
72 ol . iR
POV-Ray kernel-build
200

Runtime (seconds)
= =
3 3
I I
I I

a
o
I
I

x (] = 8 c ()
=] = o c
5 B E8 oF g® 3
= sE §5 24 2 B
> 5z -8 5l 2E 3
]
7 2 + 8
SPECweb99

Figure 10: Macrobenchmark results. This figure compares the performance of different virtual-machine monitors on three
macrobenchmarks: the POV-Ray ray tracer, compiling a kernel, and SPECwebh99. The first four bars represent the performance
of UMLinux with increasing support from the host OS. Each optimization level is cumulative, i.e. it includes all optimizations
of the bars to the left. The performance of a standalone host (no VMM) is shown for reference. Without support from the host
OS, UMLinux is much slower than a standalone host. Adding three extensions to the host OS allows UMLinux to approach the
speed of aTypel VMM.

process.Implementationof this optimization is cur-
rently undervay [Dike02b], though UserMode Linux
still usestwo separatéostprocessespnefor the guest
kerneland one for all guestapplicationprocessesWe
currentlyuseUMLinux for our CoVirt researctproject
on virtual machinegChen01]becauseunningall guest
codein asinglehostprocesds simpler usesfewer host
resources,and simplifies the implementationof our
VMM-based replay service (R&Y¥j [Dunlap02].

The SUNY Palladium projectuseda combination
of pageand segmentprotectionson x86 processorso
divide a single addressspaceinto separateprotection
domaingChiueh99].0ur secondsolutionfor protecting
the guestkernelspacefrom guestapplicationprocesses
(Sectior4.2) usesa similar combinationof x86 features.
However, the SUNY Palladiumprojectis morecomple
becausdt needgo supporta moregeneraketof protec-
tion domains than UMLinux.

Reinhardt,et al. implementedextensionsto the
CM-5's operatingsystemthat enableda single process
to createand switch betweenmultiple addressspaces
[Reinhardt93].This capabilitywasaddedto supportthe
WisconsinwWind Tunnel’s parallelsimulationof parallel
computers.

7. Conclusions and future wor k

Virtual-machinemonitorsthat are built on a host
operatingsystemare simple and elegant, but they are
currently an order of magnitudeslower than running
outside a virtual machine, and muchveto than VMMs
thatarebuilt directly onthe hardware.We examinedthe
sourcef overheador aVMM thatrun onahostoper-
ating system.

We foundthatthreebottlenecksareresponsibldor
thebulk of the performanceverheadFirst, thehostOS
requireda separatdostuserprocesgo controlthe main
guest-machin@rocessandthis generatedh large num-
ber of hostcontet switches.We eliminatedthis bottle-
neck by moving the small amount of code that
controlledthe guest-maching@rocessnto the hostker-
nel. Secondswitching betweenguestkerneland guest
userspacegenerated large numberof memoryprotec-
tion operationson the host. We eliminatedthis bottle-
neckin two ways. One solution modified the hostuser
segment bounds;the other solution modified the sey-
mentboundsandranthe guest-machin@rocessn CPU
privilege ring 1. Third, switching betweentwo guest
applicationprocessegenerateé large numberof mem-
ory mappingoperationson the host. We eliminatedthis
bottleneckby allowing a singlehostprocesgdo maintain
several addressspacedefinitions.In total, 510 lines of

codewereaddedo thehostkernelto supporthesethree
optimizations.

With all three optimizations, performanceof a
Typell VMM on macrobenchmarkisnprovedto within
14-35% overheadrelative to running on a standalone
host(no VMM), evenonbenchmarkshatexercisedthe
VMM intensvely. The main remainingsourceof over-
headwas the large numberof guestapplication pro-
cessescreatedin one benchmark(kernel-tuild) and
accompaning pagefaultsfrom demandmappingin the
executable.

In thefuture,we planto reducethe sizeof the host
operatingsystemusedto supporta VMM. Much of the
code in the host OS can be eliminated, becausethe
VMM usesonly a small numberof systemcalls and
abstractionsn the host OS. Reducingthe codesize of
the host OS will help make Type Il VMMs a fastand
trusted base for future virtual-machine services.

8. Acknowledgments

We aregratefulto the researcherat the University
of Erlangen-Nurnbeyfor writing UMLinux andsharing
it with us.In particular KerstinBuchacler andVolkmar
SiehhelpedusunderstandnduseUMLinux. Our shep-
herd Ed Bugnion andthe anorymousreviewers helped
improve thequality of this paper This researctwassup-
portedin part by National ScienceFoundationgrants
CCR-009822%ndCCR-021908%:ndby Intel Corpora-
tion. SamuekKing wassupportedy a NationalDefense
Science and Engineering Graduate Fellowship. Any
opinions, findings, conclusionsor recommendations
expressedn this materialarethoseof theauthorsanddo
not necessarilyeflectthe views of the NationalScience
Foundation.

9. References

[Barnett02] RyanC. Barnett. Monitoring VMware
Honeypots,September2002. http://hon-
eypots.source-
forge.net/monitoring_vmware_honeypots

.html.
[Boc] http://bochs.sourceforge.net/.
[Bressoud96]ThomasC. Bressoud and FredB.

Schneider.Hypervisor-basedault toler-
ance. ACM Transactions on Computer
Systems, 14(1):80-107, February 1996.

[BuchackerO1Kerstin Buchackerand Volkmar Sieh.
Frameworkfor testingthe fault-tolerance
of systemdncluding OS and networkas-
pects.In Proceedings of the 2001 |IEEE
Symposium on High Assurance System

[Bugnion97]

[Chen01]

[Chiueh9g]

[Con01]

[Dike0O0]

[Dike02a]

[Dike02b]

[Dunlap02]

Engineering(HASE) pages95-105,0c-
tober 2001.

EdouardBugnion,ScottDevine,Kinshuk

Govil, and Mendel Rosenblum.Disco:

Running Commodity OperatingSystems
on ScalableMultiprocessorsACM Trans-

actionson ComputerSystemsl5(4):412—
447, November 1997.

PeterM. ChenandBrian D. Noble.When
virtual is betterthanreal. In Proceedings
of the 2001 Workshopon Hot Topicsin
Operating SystemgHotOS) pagesl33—
138, May 2001.

Tzi-cker Chiueh,Ganeshvenkitachalam,
and PrashantPradhan.Integrating Seg-
mentationandPagingProtectiornfor Safe,
Efficient and TransparentSoftware Ex-
tensionsin Proceeding®fthe1999Sym-
posiumon OperatingSystem#rinciples
December 1999.

The Technology of Virtual Machines.
Technicalreport, ConnectixCorp., Sep-
tember 2001.

Jeff Dike. A user-modeport of the Linux
kernel.In Proceedingsf the 2000 Linux
Showcas@and ConferenceOctober2000.

Jeff Dike. Making Linux Safefor Virtual
MachinesIn Proceeding®f the20020t-
tawalLinux SymposiunfOLS) June2002.

Jeff Dike. User-ModeLinux Diary, No-
vember 2002. http://user-mode-
linux.sourceforge.net/diary.html.

GeorgeW. Dunlap,SamuelT. King, Suk-
ru Cinar, Murtaza Basrai, and PeterM.

Chen.ReVirt: EnablingIntrusion Analy-

sisthroughVirtual-MachineLoggingand
Replay.In Proceedingf the 2002 Sym-
posiumon OperatingSystem®esignand
Implementation(OSDI), pages211-224,
December 2002.

[Goldberg73]R. Goldberg.Architectural Principlesfor

Virtual Computer SystemsPhD thesis,
Harvard University, February 1973.

[Goldberg74]RobertP. Goldberg. Survey of Virtual

[Golub90]

MachineResearchlEEE Computey pag-
es 34-45, June 1974.

David Golub, RandallDean,Allessandro
Forin,andRichardRashid Unix asanAp-

plication Program.In Proceedingf the
1990USENIXSummeConferencel990.

[Govil00]

[Hoxer02]

[Karger91]

Kinshuk Govil, Dan Teodosiu, Yong-
giang Huang, and Mendel Rosenblum.
Cellular disco: resourcemanagementis-
ing virtual clusters on shared-memory
multiprocessors. ACM Transactionson
Computer Systems 18(3):226-262,Au-
gust 2000.

H. J. Hoxer, K. Buchacker,and V. Sieh.
Implementinga User-ModeLinux with
Minimal Changesrom Original Kernel.
In Proceedingof the 2002 International
Linux System Technology Conference
pages 72-82, September 2002.

PaulA. Karger, MaryEllen Zurko,
DouglisW. Bonin, AndrewH. Mason,
and Clifford E. Kahn. A retrospectiveon
the VAX VMM security kernel. IEEE
Transactionson Software Engineering
17(11), November 1991.

[Magnusson95PeterMagnussorand B. Werner. Effi-

[McVoy96]

cient Memory Simulationin SimICS.In
Proceedingof the 1995 Annual Simula-
tion Symposiunpage$2-73 April 1995.

Larry McVoy andCarl Staelin.Lmbench:
Portableoolsfor performancanalysisin
Proceedingf the Winter 1996 USENIX
ConferenceJanuary 1996.

[MeushawOORobert Meushaw and Donald Simard.

[Nieh00]

NetTop:CommercialTechnologyin High
Assurance Applications. Tech Trend
Notes: Preview of Tomorrow’s Informa-
tion Technologies9(4), September 2000.

JasonNieh and OzgurCan Leonard.Ex-
amining VMware. Dr. Dobb’s Journal
August 2000.

[Reinhardt93]StevenK. Reinhardt,BabakFalsafi,and

[Robin00]

David A. Wood. Kernel Supportfor the
WisconsinWind Tunnel.In Proceedings
of the 1993UsenixSymposiunon Micro-
kernelsand Other Kernel Architectures
pages 73-89, September 1993.

JohnScott Robin and CynthiaE. Irvine.
Analysisof the Intel Pentium’sAbility to
Supporta SecureVirtual MachineMoni-
tor. In Proceedingsf the 2000 USENIX
Security SymposiunAugust 2000.

[Rosenblum95MendelRosenblumStepherA. Herrod,

EmmettWitchel,andAnoopGupta.Com-
pletecomputersystemsimulation:the Si-
mOS approach. IEEE Parallel &

Distributed Technology: Systems & Ap- Server. In Proceedings of the 2002 Sym-
plications, 3(4):34-43, January 1995. posium on Operating Systems Design and

[Sugerman01] Jeremy Sugerman, Ganesh Venkitacha- Implementation (OSDI), December 2002.
lam, and Beng-Hong Lim. Virtualizing [Whitaker02] Andrew Whitaker, Marianne Shaw, and

I/O Devices on VMware Workstation's Steven D. Gribble. Scale and Performance
Hosted Virtual Machine Monitor. In Pro- in the Denali Isolation Kernel. In Pro-
ceedings of the 2001 USENIX Technical ceedings of the 2002 Symposium on Oper -
Conference, June 2001. ating Systems Design and Implementation

[Waldspurger02] Carl A. Waldspurger. Memory Re- (OSDI), December 2002.

source Management in VMware ESX

