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Abstract available server resources all of the time. Co-locating ap-
N - rPlications, perhaps in individual virtual machines, thus
Server consolidation has emerged as a promising tech-,

: allows for a reduction in the total number of physical
nigue to reduce the energy costs of a data center. In Phy

) . . X servers, minimizeserver sprawhs well as the total data
this work, we present the first detailed analysis of an P

. ; .~ center space requirements.
enterprise server workload from the perspective of find- o
Consolidation reduces the total power consumed by

ing characteristics for consolidation. We observe sig- h licati b o
nificant potential for power savings if consolidation is the app |cat||o_ns eca_us_ef_emstlng server? are noF energy-
performed using off-peak values for application demangProportional, i.e., a significant amount of power Is con-

However, these savings come up with associated riskgumedfeven atlllli)wllevels g}f utilization [ZF]‘ Tg_?UQh
due to consolidation, particularly when the correlation S€TVer features likeoltageandirequency scalingrodity

between applications is not considered. We also investiS cUrve, there is still substantial power drawifie or

tigate the stability in utilization trends for low-risk cen IOW_ utilization Consolidation thus provides an oppor-
solidation. Using the insights from the workload anal- f[unlty to reduce_the overall power consumed Py operat-
ysis, two new consolidation methods are designed thaf'9 the servers in a range V\,"th a more_attractlve perfor-
achieve significant power savings, while containing themfa.nf:e/Watt. For example, if two identical SEIVvers each
performance risk of consolidation. We present an imple-tilizing, say40% of the resources and drawig’ of
mentation of the methodologies in a consolidation planlP€ak Power were consolidated onto a single server, the

ning tool and provide a comprehensive evaluation Stud};onsolidated ser_ver_ yvould be able to deliver identical
of the proposed methodologies. performance at significantly less than &% (80 + 80)

of the peak power. However, the key to effective consoli-

dation is to estimate the (time-varying) resource require-
1 Introduction ments of individual applications (virtual machines) and

to utilize these estimates along with the power profile of
According to an estimate [2] based on trends fromthe physical servers to determine the consolidation strat-
American Society of Heating, Refrigerating and Air- egy that can provide the best space-power benefits.
Conditioning Engineers (ASHRAE)[1], by 2014, Infras-  Server consolidation can be loosely broken into static,
tructure and Energy (I&E) costs would contribute aboutsemi-static and dynamic consolidation. In static con-
75% while IT would contribute a significantly smaller solidation, applications (or virtual machines) are placed
25% towards the overall total cost of operating a dataon physical servers for a long time period (e.g. months,
center. While there may be a difference in opinion onyears), and not migrated continuously in reaction to
the relative proportion of I&E and IT costs, there is little load changes. Semi-static refers to the mode of con-
disagreement that I&E costs would comfortably be thesolidating these applications on a daily or weekly ba-
largest contributor to the cost of operating a data centesis. On the other hand, dynamic consolidation spans a
Reducing the I&E costs is, or will soon be, a major ini- couple of hours and requires a runtime placement man-
tiative of most data centers. One promising approachager to migrate virtual machines automatically in re-
prompted by virtualization and hardware-assisted isolasponse to workload variations. Many virtualization ven-
tion, for reducing the I&E costs is server consolidation. dors provide some tooling support for static consolida-

Server consolidation is based on the observation thation [10, 15] with third party providers providing add-

many enterprise servers do not maximally utilize theon features [9, 8] for inferring hardware constraints etc.



However, these tools essentially provide a policy-basedpective of medium (semi-static) or long term (static)
framework with user defined policies and the placementonsolidation. We study the distribution of the utiliza-
intelligence is fairly simplistic. While multiple dynamic tion and occurrence of the peak utilization on servers rel-
placement frameworks have been researched, in practisative to various percentiles and average metrics. We find
administrators are often reluctant to migrate virtual ma-that the tail of the distribution does not decay quickly for
chines automatically. Instead they prefer an offline ormost servers implying that sizing applications based on
semi-offline framework, to evaluate the proposed placeaverage utilization has high degree of risk. We also ob-
ment and manually approve it. Hence, static and semiserve significant correlation between applications hosted
static consolidation, where consolidation is performedon different servers. We make the important observa-
daily or weekly is a much more appealing technique fortion that certain metrics like th@)-percentile as well as
administrators in real data centers. Though consolidatiomross correlation between applications are fairly stable
for minimizing server sprawl or power is not new, we are over time.

not aware of any prior study that utilizes correlation be- We use the insights obtained from our workload char-
tween workloads in a systematic way for determining theacterization to design two new consolidation methodolo-
most effective static consolidation configuration. gies, namelyCorrelation Based Placement (CBRnd
Peak Clustering based Placement (PC®RJ implement
the methodologies in a consolidation planning tool and
evaluate the methodologies using traces from a live pro-
While dynamic workload placement has been a wellduction data center. Our evaluation clearly establishes
studied problem, it assumes that there is minimal changéhe superiority of the proposed algorithms. We also bring
in the resource requirement of the application during theout the various scenarios in which each methodology is
(typically short) consolidation interval and hence a sin-€ffective and show how to tune various parameters for
gle resource size suffices. In the past, it has been aglifferent workloads.

sumed that the same assumption holds for static consoli- The rest of the paper is organized in the following
dation. However, for longer term consolidation there aremanner. We provide a background of server consolida-
significant reasons why this assumption fails. First, ovettion and the need for a system-level workload charac-
a longer period of time, one is likely to see periods ofterization in Sec. 2. A detailed workload characteriza-
peak as well as reduced application demand. Should thion of a large data center is presented in Sec. 3. We use
application size be taken to be the maximum, average oihe insights from the workload characterization to design
some other statistic? Second, placement decisions madi€W placement methodologies in Sec. 4. We present an
based on historical data may not be accurate due to Enplementation and a careful evaluation of the proposed
systematic drift in the load. Third, there is an oppor- methodologies in Sec. 5. We conclude the paper with a
tunity to utilize correlation between resource utilizatio summary of our key findings in Sec. 6.

on different virtual servers to influence the consolidation

.dec.ision._ Finally, long term placemeqt has additional ob-p Background

jectives like workload balance on active servers.

In summary, a static consolidation framework needsin this section, we first present a generalized formulation
to deal with stochastic variables instead of fixed variablesor server consolidation. The consolidation exercise can
and the behavior of these variables need to be completelye formally stated as follows. Let there Bé applica-
understood. We need to identify the right parametersjons A, that we need to place al physical servers;
to size workloads for medium or long intervals and as-for the periodZ’. For each applicationt;, let C(A;,t)
sess their impact. It is also important to understand hovgenote the resource required in order in order to meet its
correlation between applications can be employed for & A at timet. This paper does not deal with the prob-
more effective consolidation. The stability of various |em of translating an application SLA to a resource value
workload parameters need to be studied thoroughly tind assumes thét(4;, t) are available from monitored
identify the risks involved in consolidation. Finally, ex- resource data. Let the capacity of a physical sefydye
isting placement methodologies need to be seen in lighflenoted byC'(S;) and X denote a specific consolidation
of the results of the workload characterization and ShOU'd:Onﬁguration to Specify the p|acement of app"ca’[ions on

1.1 Static Consolidation: What isnew?

be modified, as needed. physical servers, i.e., an elementof sayz;; = 1 if ap-
plication 4; is placed on serve§; and0 otherwise. Con-
1.2 Contribution solidation requires finding a configuration that optimizes

a given cost function. For example, if the objective of
We present in this paper the first systematic server workeonsolidation is to optimize power, then we want to find
load characterization of a large data center from the pera configurationX that minimizesP(X), where P(X)



is a real valued function that provides the power con-establish that the average CPU utilization for typical web
sumed for a specific placement of applications. Furtherservers is fairly low. Similar observations on the peak-
the placement should ensure that the resource requirérough nature of enterprise workloads have been made in
ments are all applications are met for the entire duratiorj16]. In [4], Bobroff et alperform trace analysis on com-
T,ie,vVt € T, vazl zi;C(A;,t) < C(S;). Further, mercial web servers and outline a method to identify the
we need to ensure that all applications are placed, i.eservers that are good candidates for dynamic placement.
Z;‘il xi; = 1. However, none of these studies provide a characteriza-
Dynamic consolidation assumes thaiis very short, tion of the inter-relationship between various workloads,
leading to a single time-independent capacity demanes required for static consolidation.
C(A;) for each application. Hence, the capacity con- There is also a large body of work on energy manage-
straintis no longer stoachastic in nature. In dynamic conment in web clusters. Most of the cluster energy man-
solidation, for the estimation @f(4;) andC(S,), apop- agement literature addresses the problem of distributing
ular metric in use is the RPE2 metric from IDEAS and requests in aweb server cluster in such a way that the per-
almost all the commonly used servers are bench markefbrmance goals are met and the energy consumption is
with a fixed RPE2 value [24]. Th& PE2 value of the  minimized [6, 21, 25, 17]. There are a number of papers
server is used fo€(S;) whereas the resource require- that describe server or cluster level energy management
ments of the application are estimated from the CPU uti-using independent [22, 13] or cooperative DVS tech-
lization of the server. More specifically, if virtualizatio niques [12, 18]. There are other efforts in reducing peak
is not in use then the RPE2 of the host server multipliedoower requirements at server and rack level by doing
by the maximum CPU utilization of the server in the pe- dynamic budget allocation among sub-systems [14] or
riod is used as an estimate of the resource requirementdades [23]. The work closest to the semi-static or static
(size) of the application. If virtualization is in use, then consolidation problem addressed in this paper are the dy-
the size is computed based on the entitlement of each vinamic consolidation methods proposed in [7, 26, 27, 4].
tual server on its host physical server, the CPU utilizationHowever, the relatively long duration for static consoli-
of the virtual server, and the RPE2 of the host server.  dation introduces a stochastic nature to individual appli-
Dynamic consolidation, due to its automated nature cations that is not captured in any of these frameworks.
is not preferred by data center administrators. Instead,
they opt for static or semi-static consolidation strategie .
whgrepthey can manually verify and approve the ?1ew3 Server Workload Analysis
configuration. However, for static or semi-static consol-
idation, the crux of the problem is to identify a size pa-
rameter that is useful for longer periods. Typically, an
administrator may migrate virtual machines at the end of .
the day or on an identified day of the week. For such3'1 Trace Workload Details

long durations, it is imperative to use a size that is ablerpe workload analyzed in this paper was collected from
to save a lot of power (by consolidating on few power-the production data center of a multi-national Fortune
efficient machines) as well as ensure that no SLA capacg|gbal 500 company. The data center runs the core
ity violations would happen during periods of high load. pysiness applications of the enterprise as well as a ser-
Hence, the two important objectives in static consolida-ice delivery portal. Each separate application suite was
tion are (iverall Power Consumptioand(ii) SLA Vi-  ryn from its own server cluster with a dedicated appli-
olation, defined as number of time instances, when the&:ation team. Every application component in a suite ran
capacity of server is less than the demand of all applicagom a dedicated virtual server, with many virtual servers

We first present the details of the workload analyzed in
this paper.

tions placed on iEiJ\il 2;;C(Ai, 1) > C(S;). hosted on a (typically) high end physical server. The
traces were collected by the MDMS monitoring frame-
21 Redated Work work [20] deployed in the data center. The framework

used its own sensors to collect CPU utilization for all the
Existing research in workload modeling can be classi-virtual servers with one entry evefyminutes. We use
fied into (a) aggregate workload characterization and (bjraces collected over® day period in the ye&a2007 for
individual server utilization modeling. Aggregate work- our analysis. We use the terms server and application in-
load characterization of a web server by lyengeal.  terchangeably as each trace data corresponds to exactly
[19] and workload models of a large scale server farm byone virtual server and application component.
Bentet al [3] fall in the first category. Individual server ~ The tracing methodology depends on sensors de-
utilization has been studied in [5, 16, 4]. In [5], Bohetr  ployed in actual production servers over a long period.
al use peak-trough analysis of commercial web servers tdélence, the data was noisy in parts due to routine system



Suite-Name| # of Servers| # of Days .
AppSuite-1 10 19 L oot
AppSuite-2 18 13 % o8t
AppSuite-3 13 25 8 o7}
AppSuite-4 16 37 2 o8}

Table 1: Workload Details for each cluster 2 zj

go

maintenance (server reboots, performance troubleshoa 2 °3
ing that terminated all daemons including the sensors) 3 zi
Thus, the traces had missing or incorrect data for man R

L L
60 80 100

time intervals during the trace period. We used a sim- CPU Utilization

ple interval graph technique to identify the longest con-gq e 2: cumulative Distribution Function of CPU Uti-

t|guqus interval, whgre all the servers in one cluster hagi, ation for AppSuite-1

monitored data available. Hence, for each server cluster _ o

we identified a smaller period which had accurate mon- Fi9- 1 shows the CPU utilization of each server

itored data available and used these smaller periods fdf APPSuite-1', serverl(top) through server10(bottom).

our analysis. The important observation to make here is that all servers
The data center had a large number of clusters and Wga_rnng gerver8 _reach a CPU, utilizationlof0% at SOme

have selected representative clusters (Table. 1) for this pomt in tm_1e d‘%””g the duratlon_of the trace. Th's has an

analysis. 'AppSuite-1', 'AppSuite-2’ and 'AppSuite-4" important implication for consolidatioObservation 1:

had a2 tiered application with application server com- If consolidation is performed by reserving the maximum

ponents and DB server components. 'AppSuite-3’ was 6ytil_ization fo_r each applicatipn, thg application may re-
3-tiered application suite with a few web servers, a fewdUire capacity equal to the size of its current entitlement.

application servers, and a few DB servers. In most caseérh's observation is reinforced by taking a look at the Cu-

multiple application servers used a common DB server.rhmative Probability Distribution (CDF) of CPU utiliza-

However, for 'AppSuite-2', few application servers had 10N (Fig. 2) for each server of 'AppSuite-1. An inter-
a dedicated DB servers assigned to them. There were rigoting observation in the CDF plot however is the large
restrictions on co-locating two or more components Ofskew in the distribution. For most of the applications,

an application suite on the same physical server. The ddhe CPU utilization a90—percenti|e_o_f th_e distribution is
tailed information about the applications running in the €SS than half of the peak CPU utilization. Such a skew

data center and the virtual server to physical server mapQan be utilized for a tighter consolidation by provisioning

ping are withheld for privacy and business reasons. (€SS than peak resource consumed by each application.
We drill down further into the skew of the CPU utiliza-

3.2 MacroWorkload Analysis tion distribution function in Fig. 3(a). We observe that
the 99-percentile CPU utilization value is significantly
We begin our workload characterization study with |ess than the maximum CPU utilization in many cases.
server utilization of individual servers. Due to space lim- This is also in line with observations on other enterprise
itations, we primarily report our observations on only workloads made in [16]. Interestingly, t198-percentile
one server cluster 'AppSuite-1’, broadening our obserCpu utilization is about half or less of the maximum
vations to other clusters only for important findings. ~ Cpu utilization for9 out of 10 servers. Interestingly,
321 CPU Utilization Distribution the gap between th&) and90-percentile values is less
than10% CPU utilization in all cases and less tha?
in many cases. We also look at the other server clusters
in Fig. 3 and find the observations to hold there as well.
However, in the 'AppSuite-2’ cluster, a few servers have

i i St~ e~ s S~ i high utilization (Servers 15 to 18) for most of the inter-
tw&bgw@w@m@w val. Hence, in these cases, both 8feand90-percentile
MMMMMMMM%M«MMMMM values are reasonably close to the peak CPU utilization.
Lt At s bl i ol Al N The above findings lead us to our second important ob-

A A A A AN s D, LN servation.Observation 2: If we could size an applica-
T e S e tion based orp0-percentile CPU utilization instead of
N AT maximum CPU utilization, it could lead to significant
savings.

We next observe the variability of the CPU utilization
for different servers. To measure the variability, we com-
puted the coefficient of variation (COV) for all the ap-

Figure 1: CPU Utilization for AppSuite-1 with Time
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Figure 3: Comparison of Peak, Mode and Percentile CPU dtibn

plications in a cluster. The coefficient of variation is a tailed distribution COV >1) to another independent (or
normalized measure of dispersion of a probability distri-positively correlated) distribution with an exponentyall

bution and is defined aSOV = o/u, whereo is the  decaying tail COV=1) leads to an aggregate distribu-
standard deviation and is the mean of the distribution. tion, which is heavy-tailed. This leads to our third impor-

I I tant observationObservation 3: If a statistical measure

that ignores the tail of the distribution is used for sizing

°

an application, the consolidated server may observe a
large number of SLA capacity violations.

o o

Coefficient of Variation (COV)
s

Coefficient of Variation (COV)

o

) &0 e Do s 3.22 Correlation
(2) AppSuite-1 (b) AppSuite-2 Our first few observations bring out the potential sav-

|| ings if applications were sized based on percentile val-

ues as opposed to peak values. However, sizing based on

a non-peak value may lead to significant SLA violations
if co-located applications peak together. Hence, we next
study the correlation between applications belonging to

Coefficient of Variation (COV)

Coefficient of Variation (COV)

°

o

2 4 6 8 10 12 14 16

(c) AppSuite-3 (d) AppSuite-4 the same application suite. The correlation between
a pair of applications with timeserigs:, x2, ..., 2N}
Figure 4: Coefficient of Variation for all clusters. Servers and{y, v, ..., yn} is represented by theearson cor-

in each cluster are sorted by COV for easy comparison.relation coefficient

COV is a useful statistic for comparing the degree of . NY zyi — S > i 1)
variation and equals for exponential distribution. Dis- Ty =
tributions with COV>1 (such as a hyper-exponential VANt = (o) VN~ ()
distribution) are considered high-variance, while those Fig. 5 shows the pair-wise correlation between the ap-
with COV <1 are considered low-variance. The coeffi- plications of 'App-Suitel’. One may observe that there
cient of variations for all the clusters are shown in Fig. 4.are many applications that have significant positive cor-
We observe that all clusters have at least a few applirelation. On the other hand, there are also a few applica-
cations with high-variance distributions and 'AppSuite- tions (e.g., on Server 3,8, and 10) that have minimal cor-
3’ has the largest number of applications witi®V >1. relation with other applications. The observations high-
There are also applications with low-variance distribu-light that (a) there is a risk of SLA violation if consolida-
tions. However, it is well known that combining a heavy tion methods are not aware of correlation and (b) there is




tions at all levels (both peak and off peak). Capacity vi-

09 olations, though, occur when two applications sized by
08 an off-peak value peak together. Hence, we look at the
07 correlation between only the peaks for various applica-
08 tions in Fig. 6. We observe that there are apps with low

correlation, but whose peaks may be correlated. Further,
there also exists correlated apps whose peaks typically
do not occur at the same time (e.g., Seivand7). This
leads to our next important observati@bservation 5:
Correlated Applications may not always peak together.
s . . s m : Similarly, non-correlated applications may also peak to-

) Server Id , ) gether in some cases

Figure 5: Inter-Server Correlation for AppSuite-1 cluster o )

potential for placing non-correlated applications to mit- 3.3 Stability Analysis

igate this risk. The other clusters have less correlatiorstatic and semi-static placement decisions are made for
between servers but there are still a significant numbegxtended periods of time. Hence, there is a need to ana-
of servers (more thaR5%) that exhibit correlation with  |yze the stability of workload statistical properties te en
one or more other servers. One may observe that virsure the reliability of the placement decisions. In this
tual servers that are part of a multi-component applicasection, we study the workload periodicity, variation in
tion have a high likelihood of being correlated. How- statistical properties like meafi)-percentile and corre-

ever, since in most cases, multipke ¢r 8) application  |ation co-efficient over the observation period.
servers were sharing a common DB server, the correla-

tion was not strong. 'App-Suite2’ however had 4 (appli- 3-3.1 Periodicity analysisof utilization data

cation server, db server) pairs that were dedicated. A ' L
a result, even though the workload to this suite had Iow%e first analyze the periodicity of the collected data. It

o . . . will help to find the repeating patterns, such as the pres-
intrinsic correlation, the two-tier nature of the applica- S ; :

. o . o ence of a periodic signal which has been buried under
tion suite introduced correlation. Hence, multi-tier ap-

o . . . noise. The usual method for deciding if a signal is peri-
plications with a one-to-one mapping between servers in

different tiers are likely to exhibit correlation even for odic z_;md then estim.ating Its period !S the auto-correlation
workloads with no intrinsic correlation. This leads to our [Unction- For a discrete timeserigsy, z2, ..., 2}

: . o with meany and variancer?, the auto-correlation func-
next important observationObservation 4: There are .. L o

. - .. _tion for any non-negative integér< N is given by

both positively correlated and uncorrelated applications
in a typical server cluster. Hence, correlation needs to 1 iy
be considered during placement to avoid SLA capacity R(k) = (N —k)o? Z [0 = 1 [enk —u], (2
violations n=t
3.2.3 Temporal Distribution of Peaks Essentially, the sign&{x,,} is being convolved with a
time-lagged version of itself and the peaks in the auto-
correlation indicate lag times at which the signal is rel-
atively highly correlated with itself; these can be inter-
preted as periods at which the signal repeats. To en-
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Figure 6. Duration of Peak CPU utilization>(90-  spectrum of the utilization data for all the applications
percentile) for AppSuite-1 cluster. Dark lines indicate and find that some servers exhibit nice periodic behav-
sustained peaks. ior, whereas some servers do not follow any particular
We have used the correlation coefficient as an indipattern. Fig. 7 shows a periodic pattern with a time pe-
cator of the temporal similarity between two applica- riod of one day as the lag between two consecutive peaks
tions. However, correlation is a comprehensive metricin the auto-correlation function is one day and there is
that captures temporal similarity between two applica-a peak in the magnitude spectrum corresponding to it.
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spectrum of this workload shows a periodicity of 1 day

Utilization

! MR lh (o

6
Time (Days)
T

o

AutoCorrelation
)
Lhoa
T

6 10
Lag (Days)
T T

a7
=]
1]
3

/™ A AN
AN /‘ /\‘/\/\‘ . u‘ A\/‘\VA/\‘/ /\ s \/\/v‘\/\‘ A

6

Magnitude

L
0.5 1 15 45 5 55

2 25 3 35 4
Frequency (HZ/(24*3600))
T T T T T

I mean
[ 90-percentile|

HhHHE

10 11 12 13

90-p Avg

S
T

Utilization
Noow
S

T

Meal

=
1)

)

1 2 3 4 5 6 7

Time

8 9

Figure 8: The timeseries, auto-correlation and frequency

spectrum plot of the workload do not show any periodic-

ity, but the mean and 90-percentile values show stability.
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This kind of workloads can be predicted with significant
reliability. Many applications do not show any periodic
pattern in the observed period, however, the statistical
properties remain consistent over a long period. To an-
alyze the consistency, we computed the mean and 90-
percentile statistics over several windows of length 1 day.
Fig. 8 shows that although the workload has no periodic
pattern, the mean and 90-percentile statistics remains sta
ble over most part of the observed period. Hence, for
such workloads, the statistics can be estimated reliably.
A third category of applications neither show any peri-
odic behavior, nor any statistical consistency over a long
period. However, for these applications, the moving av-
erages follows the actual mean and 90-percentiles closely
over the observed period (Fig. 9) and can be used for esti-
ation. These observations lead to the following conclu-
sion. Observation 6: Some servers exhibit periodic be-
havior and the future pattern can be reliably forecasted
with a day or a week of data. For many non-periodic
servers, the statistical properties are fairly stable over
time. For highly variable servers, an adaptive prediction
method like MovingAverage should be used to estimate
the statistical properties.

3.3.2 Stability in Correlation
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Figure 10: Stability of Correlation for App-Suitel (Half
the values have been deleted for visual clarity)

We have observed that correlation between applica-
tions should be used while making placement decisions.
We next study the stability in correlation for AppSuite-1,
which has the highest correlation amongst all the clus-
ters. For this purpose, we compute the correlation be-
tween all pairs of applications for every day separately
during the whole duration of the trace and compute the

mean and 90-percentile statistics also vary significantlfta”dard deviation across these daily correlation values.

over the time period, but the moving averages track t
statistic well.

halVe observe in Fig. 10 that the standard deviation is fairly

low, indicating the stability of correlation across time.
Observation 7: The correlation between the CPU uti-
lization of various servers is fairly stable across time.



4 Placement Methodologies times (e.qg., size at 90% cdf). (Fig. 2, 3)

We now present various placement methodologies. e If we size applications by an off-peak metric and
place correlated applications together, there is a
4.1 Workload-unaware Placement high risk of SLA capacity violation.

We presented theMapper power-aware application o If two uncorrelated applications are placed together
placement methodology and system in [26] in the context  and sized individually for a violation probability of
of a runtime placement controllgsM apper minimizes X %, the probability that both of them would violate
fragmentation using an enhancementFafst Fit De- their sizes at the same time(ix 2)%.

creasing (FFD)bin-packing algorithm and uses a novel ) o

Order Preservationproperty to select the right server 10 take an example, consider two applicatichsand

for any application being migrated in order to mini- A2 Assume that boti, and A, have a maximum size
mize power. The algorithm optimizes the use of one®f 1000 RPE2 units with &0 percentile value o500
resource (typically CPU utilization) during packing and RPE2 units. Further, assume thaf and A, are un-
treats other resources (e.g., memory, 1/0) as constraint§orrelated with each other. Itis now easy to see that if
Hence, it always comes up with a feasible packing for allé Place4; and A, on a single server and allocaig0
resources but allocates only one resource in an optimizeBPE2 units each to both the applications, the probabil-
manner. The methodology used py/apper does not 1Y that_both_ of them would exceed_ thel_r allocation at the
focus on resource sizing of each VM for the next place-Same time is onlyi%. Hence, provisioning based o0
ment interval, which is predicted byRerformance Man- ~ Percentile and placing uncorrelated applications togethe
ager. Animportant thing to note here is thal/apperis ~ €an lead to a potential savings 50% over the peak-
designed for short consolidation intervals. There are twd®@sed sizing method'BP uses exactly these ideas to
importantimplications of such an approach. Firstly, eachsize individual applications based on a tail bound instead
application is sized independently and a single number i§f the maximum size of the application. Further, it adds
used to size an application. Secondly, as placement d&0-location constraints between positively correlated ap
cisions need to be aware of application migration COstsphcatlons so that two such applications are not placed on
few applications are migrated and the relocation decisiodn€ same server. Th? number of actual constraints added
takes an existing (old) placement into account. Howevercan be controlled using a tunaltlerrelation Cutof f.
such an approach can still be applied étatic consoli- ~Hence,CBP proceeds in very similar manner to the
dation with much longer consolidation intervals. In such? apper algorithm with few key differences: (i) We

a static placement scenario as the one considered in thd co-location constraints between any two positively
paper, thepM apper methodology is naturally adapted correlated application pairsd;, 4;) that exhibit a cor-

by sizing an application based on the peak resource ugélation coefficient above therrelationthreshold (ii)

age of the application in the (longer) placement period Ve size applications b_f':_lsed on r_:\tall bound instead of the
Note further that in the case of SLA governed data cenfMaximum value and (iii) In the inner loop @i\ apper
ters, one can use less strict sizing functions. For exampldvhere we find the most power-efficient sengithat has

if the SLA requires that resource requirements are mefesources for an applicatiof;, we also make a check if
for at least99% of the time, one could use @) size ~ none of the already placed applications$rhave a co-
that ensures a tail violation probability o%. Similarly, ~location constraint withd;. If indeed there is such an
one may also choose to size all applications based on @PPplication, we mark the server ineligible and consider
metric like mode or median, if short-term violations are the next server for placing the application. _
acceptable. We term this family of placement method- It i €asy to see thal’ BP incurs an overhead in the
ologies using peak, percentile, mode etc. based sizing g&omputation of correlation for all application pairs.

Existingplacement methodologies. Theorem 1 GivenN applications and a timeseries with

4.2 Corrdation Based Placement d points,C B P takesO(N?d) time to find the new place-
' ment.

We now present our first methodology that leverages the
observations made from our workload analysis to place e have proposed th€ B P methodology that takes

applications in a more effective manner. This method-2" existing dynamic consolidation algorithm and adapts
ology aptly named as th€orrelation Based Placement it to work in a static or semi-static consolidation sce-

(CBP)is based on the following important observations, Nario. CBP adds co-location constraints between cor-
related applications to ensure that an application can be

e The peak resource usage of an application is signifsized based on an off-peak value. However, it adds a hard
icantly higher than the resource usage at most otheconstraint between correlated applications.
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We now take a closer look at the problem to under- M Allocation
stand the nature of the optimal solution. Consider a [5-VM Placement for Se""%@ for server
set of 6 applications that need to be placed on a set of

servers, each with a capacity4if. There are two poten-
tially fractional optimal solutions, as shown in Fig. 11.
A balanced solution would pack half of the timeseries in  PC P uses these ideas to first identify clusters of ap-
the first server and the other (balanced) half in the otheplications with correlated peaks. One may observe that
server. A skewed solution would pack the first serverthe number of such clusters may become very large if
to the maximum capacity and pack the remaining appliwe use the original timeseries with the complete range
cations in the second servef!BP and other dynamic of values. HencePCP uses a novel two-level envelop
consolidation algorithms aim to approach the skewed opef the original time-series of each application for cluster
timal solution. However, from an administrative point ing. The envelop has a single value to represent all CPU
of view it may be preferred to have balanced workloadutilization for the body of the distribution and another
across all active servers. value for all points in the tail of the distribution. On each
A second problem withC’ BP may arise when there active server, it then reserves space for each cluster in
are many correlated applications. In the above exampleyroportion to the size (lower level of envelop) of the ap-
if there are3 applications that are positively correlated, plications in that cluster and keeps a buffer space equalto
we would need a minimum d&f servers to satisfy the co- the maximum peak across all clusters. Each application
location constraints. Finally, computing the correlationcluster shortlists a set of applications for its reservatio
between all pairs of applications is expensive (quadratiand PC' P does a final selection of applications for the
in nature) and may not be applicable for large number okerver. The overall flow oPCP is described in Fig. 12.
applications and trace periods. We address these issues
in another methodology next. ¢ . o

Figure 12: Overall Placement Flow
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4.3 Peak Clustering Based Placement

We address the issues withBP in a new consolida- / - Lo
tion method calledPeak Clustering based Placement Capacity Useli Time

i i - a . b

(PCP)_ PCP is based on the following fundament.al qb Figure 13: Eag Calculation of step(éB(, &maz for En-
servations 1) Correlation between peaks of applications )
. . . velop and (b) Envelop Creation
is more important than correlation across the complete
timeseries of the applications. 2) A set of applications In step 1,PC P starts by using anwvelop function
that peak together are distributed evenly across all activéhat transforms the original time series for each applica-
servers in the optimal solution. However, two applica-tion to a two-level envelop. Given any tail bourit;
tions with correlated peaks may still be co-located. 3)(e.g., 10%), th&&nvelop computes a valu€'g such that
Co-located applications that do peak together can use the probability that application’s CPU usage exce@ds

common buffer for their peaks and each have a reservds bounded byPg. It also identifies the maximum capac-

st Original Time Series 1
ENVelop at Pg = 0.67 -------
i i




ity used by the application &S,,.. (Fig. 13). We then Analysis Period 120 hrs
transform the original timeseries by a two-level time se- Evaluation Period 24 hrs
ries in the following manner. If at a given time, the capac- Pg for PCP 0.9
ity used by the application is greater th@g, we replace Correlation Cutoff for CBP| 0.5

it with C,,,... Otherwise, replace it witli'’s. Hence, the

body of the distribution is replaced I8y and is referred Table 2: Baseline Parameters

to as size. The tail is replaced 6¥,,,... The timeseries
for the transformed VM is stored as a set of ranges dur-Of its applications andPeak;, as the sum of the peak

ing which the sizeCp is exceeded. The next step in buffers(Cnax — C) of its applications. We also calcu-

F;C’f Is to SUSter wo_rrlﬂoaolls based on the correlgt|F|)n|ate MaxBuf fer as the maximum of the peak buffers
oftheir peak ranges. The clustering step uses a simiiary s gl clusters. Once these metrics are computed,

ity function to identify workloads with correlated peaks. ., clusten,, selects a set of applications such that the

For each applicationl;, the similarity function is used overall sizeCandSize;, and peak buffe€andBu f fery,
to identify if the envelop of the application is covered by of the cluster is given by

any existing cluster center. If no such cluster center ex-

ists, then a new cluster is started with as the cluster CandSizey, : Sizey, (4)
center. TotalSize + MaxBuf fer
Step 3 in the overall flow oPCP is to sort servers ~ CandBuffer, < MaxBuffer (5)

based on their power efficiency. We define marginal
power efficiency for a server with capaciup; running
at capacityp; as the slope of the capacity vs power curve
at p; capacity and overall power efficiency of the server
as the ratio of the capacity of the serv@up; to the

An example server reservation is described in Fig. 14.
In this example, there are three clusters and a propor-
tional reservation is made for each cluster that equals
CandSizer. Further, capacity is kept spare for peaks

tion method in our earlier work [26] used marginal power;[er_s' Since ;hel consolidation can o?ly pll<_3k |r_1tegralhso-
efficiency as the metric to sort servers. Dynamic consol utions, each cluster returns a set of applications whose

idation requires us to make changes in an incrementaPiZ€S @dd up to its proportion or the last added appli-

online manner from an existing configuration and hencet@tion may exceed its proportion. Hence, as a final se-

marginal power efficiency is a good metric for server se-IeCtlon step,_ fo"r eaclh cluhstef_r that returm‘%ggdldatesc,j
lection. On the other hand, static consolidation may in-We automatically S€ ect the firgk — _1) candic ate_s an

volve multiple global changes and hence, we use overaﬁdd the last candidate to a tentative application pool.
power efficiency to rank servers iAC P We then globally select the candidates from the tentative

Server Capacity pool such that the capacity bounds of the server is not
% T Pkt Larged] poak violated. In order to reduce fragmentation, at all levels
5 | Peak2 m of selection we break ties between applications by pre-
= e — ferring the larger applications first. This allowC' P
5 CLUSTER 3 | to strike a balance between reducing fragmentation costs

; and proportionally selecting applications across diffiere
RESERVATION FOR
CLUSTER 2 | clusters.

RESERVATION FOR
CLUSTER 1

5 Experimental Evaluation

Time
Figure 14: Server Reservation: Each cluster gets a pro#e have performed extensive experiments to evaluate the
portional reservation. There is a buffer for the maximumproposed methodologies. We first detail out our evalua-
peak across all clusters. tion setup and then present some of our key findings.

The final steps inPC' P pack all the applications on
the minima_l number of servers, while packi_ng the mores 1 Evaluation Setup
power efficient servers first. The method picks the next
highest ranked server and selects a set of applicationshe methodologies have been implemented as part of an
from each cluster in a proportional manner. Given aConsolidation Planning Tool from IBM called Emerald
server with capacity’ap; to pack and a set of applica- [11]. Emerald has built-in adapters to input trace data in
tions yet to be placed, we calculate the sum of the sizesarious formats, a module to collect the current server in-
(Cp) of all remaining applications afotalSize. For  ventory and a knowledge base that includes a catalog of
each clustensy,, we calculate the sum of the siz€%z¢y, various server platforms, their RPE2 values and power
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or more of these virtual servers in the data center. In our 300 : : —
. . . — e I Peak_Existing
baseline setting, the physical servers were kept to be the seol _ [ Mode._Exisiing
. CBP
same as in the data center. Further, Emerald allows an -

administrator to specify an analysis period for the traces
followed by an evaluation period, where the effectiveness
of the proposed placement is evaluated byRbwer Es-

Violations / Day
=
3

timationmodule. PC P uses a tail bound parametBp
. 50
to create the envelop where@s3 P uses a correlation H
cutoff parameter to identify if two applications are corre- O appstite1 Apps‘u.‘;(b) AppSuite3  AppSited

lated. The baseline settings of all experimental parame- o
ters are listed in Table. 2. Figure 15: (a) Power Consumed and (b) SLA violations

We evaluate the performance of the proposed method8 all Clusters for various placement methodologies. Ab-
in comparison wittExistingmethods based on dynamic S€nce of bars indicate zero violation.
consolidation. We run thExistingmethod with two dif-
ferent sizing functions: (iPeakExistingsizes all appli- the power consumed in all clusters as a result of
cations based on their peak values and\idde Existing  placement recommendations made BgakExisting,
sizes all applications based on the mode of the distribuMode Existing, CBPand PCP and the corresponding
tion. There are three different objectives of consolida-SLA violations. A striking observation is that the
tion: a)minimize power b) minimize risk of consolida- PeakExistingmethodology saves no power in AppSuite-
tion (c) balance workload across active servers. We use¢. Closer look at Fig. 3 reveals that barring one appli-
the number of capacity violations as the metric for risk. cation, all other applications in this cluster have a peak
To investigate load imbalance, we estimate the averag€PU utilization 0f80% or more. Hence, a methodology
CPU utilization for all active servers during the evalu- that sizes applications based on peaks is of no use in this
ation period and identify the server with the maximum cluster. The overall power consumed lpde Existing
average CPU utilization. The difference between theis typically the lowest as it sizes aggressively, while the
CPU utilization of the highest loaded server and the avPeakExisting uses the maximum power. On the other
erage utilization across all servers is taken as the metrinand,PeakExistinghas the lowest violations (typically
for load imbalance. We compare all the methodologiesero) wherea#lodeExistinghas the highest violations.
along all these objectives. We also measured the runningoth CBP and PCP lie mid-way between these extremes,
time of various methodologies to assess their scalabilitywith PCP attaining abou®0 — 40)% lower power con-

In order to generalize our results and look at varioussumption than CBP and significantly lower violations.
settings, we also experimented with changes in our base- ap, o iher observation is that BP saves significant
line setting. Since these methodologies need to deal Wmﬁower in comparison tdPeakExisting in all clusters
fragmentation, we also simulate a placement where the,or than AppSuite-1, while it faces very high viola-
?nitial number of virtual servers on a physical Server are;qo < for AppSuite-2. To understand this, we recall from
increased or decreased. Towards this purpose, we agec 3 that the AppSuite-1 cluster has high correlation,
sume that the virtual servers are placed on a different CaAppSuite—Z has medium correlation and the remaining
pacity server of the same platform, ie., _with more or less,, 5 clusters have a low correlation. As a resqtB P
processors as required for the simulation. Further, sedsqqq many co-location constraints in AppSuite-1 leading
sonal variations were observed in many workloads and, , large number of active servers and not saving any
hence, we increase and decrease the training period fro'ﬂbwer. In contrast, the medium correlation in AppSuite-
the baseline setting. Finally, we vary t.he tuning parame» oq.its in CBP not making recommendations to sepa-
ters of C 5P and PC'P and study their impact. rate these workloads. However, even though the work-
loads are not correlated, their peaks show up in the same
time interval, leading to high violations by BP. This
Power Consumed and SLA Violations: Fig. 15 shows peak correlation behavior is exploited only in the PCP

5.2 Performance Comparison
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algorithm which decides to judiciously separate offend- N ) &SSE;EQ;CEEE ":" |
ing workloads if their simultaneous peaks can risk over- I Pcpamm :
shooting the server capacity, thereby causing violations.
Thus PCP sees a hominal number of violations per hour
in all clusters. Ma M

A surprising result observed is th&CP consumes 02 Ave,a;}Avefag@vef e { ._
less power tharModeExisting for AppSuite-3. Re- P e o

call that the server selection methodologyHmisting  Figure 17: Average and Maximum Utilization of Servers
methodology explores locally to reduce migration cost.

Avetage

06 -

04 Mak

Server Utilization

On the other hand, server selection RC'P can ex- Cluster Existing | PCP | CBP
, . (No. of Apps) (ms) (ms) | (ms)
plorg new placements j[hat enta|l_a large number of mi- AppSUite-1 (10)| 101 | 47.7| 24
grations. Since AppSuite-3 was lightly loaded, consoli- AppSuite-3 (13)| 135 | 55.2| 55
dation would require large number of migrations. Hence, AppSuite-4 (16)| 30.1 | 39.8 | 81
PC'P came up with a different server selection than other AppSuite-2 (18)| 21.2 | 47.7 | 107

methodology for this particular cluster, leading to addi-  Table 3: Running Time for various methodologies

tional power savings. o . .
P g and the average utilization of the cluster. This is a direct

S By — consequence of the design of algorithms, whe&pr
Largest Violation £= favors balancing and the other algorithms favor creating
a skew.

Running Time: We study the running time of vari-
ous methods in Table 3. The CBP algorithm very clearly
says a super-linear relationship with the number of ap-
plications (V) because of thé&/? correlation co-efficient

25

2 F

15|

1}

05

Violation Size (Fraction of Server)

O psuiel  Appsuite Appsuited App-suited computation between all pairs of applications. e
Figure 16: Violations fotM ode_Existing on all active  istingmethod in general scales linearly with the increase
servers in number of applicationsPC P has a dependence on

(a) the number of applications, (b) the number of peak
ranges in a cluster and (c) the number of clusters it cre-
ates. Recapitulate that AppSuite-3 has the higbest
(Fig. 4), which manifests in a large number of peak
ranges. As a result, AppSuite-3 has the highest running
time, even though the number of applicatiakiss only

13. Overall, PC P has a running time that is double of
FExisting and fairly stable. The running time af BP

Yon the other hand increases super-linearly with the num-
ber of applicationsV.

We observed in Fig. 15 thaflode Existing has the
potential to save a lot of power but may incur a large
number of violations. The correlation in the first two
clusters of AppSuite-1 and AppSuite-2 especially im-
pactsMode Existing leading to very high violations. Re-
sults show that among the active servers in all clus-
ters,5 of them faced SLA capacity violations. We study
the size of the violations in the placement computed b
ModeExistingin Fig. 16. In practise, administrators al-
low a buffer capacity (typically 10% of the server) and
hope that any peaks can be served from this buffer ca
pacity. We observe that even a buffer capacity2o
is not able to handle the burstiness of the workload.
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of the server capacity id servers and the peak viola- T umber of Pusicat Semere. % amber of Psical Somvers.

tion exceeds the size of the server itself in all the servers. (a) Power (b) Violations

Hence, a workload-unaware strategy that uses a buffer, o )
capacity to handle peaks is not feasible in practise. Figure 18: Impact of change in virtual servers per physi-

Workload Balancing: We next investigate the load cal server in AppSuite-2

balance across the active servers achieved by var- Fragmentation: We next investigate the ability of
ious methodologies in Fig. 17. We observe thatCBP and PCP to deal with fragmentation (ratio of
ModeExistingand CBP have servers that are always application capacityC'(A;) to server capacity’(.S;)).
overloaded (average utilization of highest loaded serveVe change the original servers in the data center and
is 100%) for AppSuite-1 and AppSuite-2. Such a place- simulate placement on a larger number of lower ca-
ment is not suitable in practise. Further, for all method-pacity servers. Fig 18 shows the behavior@BP
ologies other thaPC P, there is a large imbalance be- and PC P with increase in number of physical servers
tween the average utilization of the highest loaded servefor AppSuite-2, which has the largest number of virtual
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servers.C BP adds a fixed number of co-location con-

straints and needs at least as many servers as the max Le\

imum number of constraints added to any application. N\

Hence, it suffers when few high capacity servers are 80 10 s 20 2 0 5 10 15 2 2
. . . Learning Period (Hours) Learning Period (Hours)

available. On the other han®C P tries to proportion- () (b)

a_llly allqcate applications from each cluster (of appl'ca'Figure 20: Performance of PCP with change in train-
tions with correlated peaks) and hence should perform

better when many applications can be packed on fe Ig?Apegzi(:'e_ :\Z?ngjlu Iteiio\évigirl weekly periodicity
high capacity servers. Both these intuitions are validate bp yp y
in Fig. 18 ag” B P performs better with increase in num-
ber of servers and’C'P fares worse. However, in both oy aijaple history (length of training period) on the per-
the casesC’B P suffers more violations thaRC'P. In formance of PCP. Fig. 20 shows SLA violations of
summary,CBP is more su_|ted when_large applications AppSuite-2 and AppSuite-4 d?C'P with change in the
are placed on low or medium capacity servers, whereagpa|ysis period. We observe that without adequate his-
pPCP Is more suitable fpr consolidating a large numbertory of workload repeatability?C'P can have very high
of applications on few high-end servers. number of violations. However, once adequate history is
: available, the number of violations fall tofor both the
53 Tuning CBP clusters. We have included AppSuite-2 and AppSuite-4
because the first cluster has a daily pattern whereas the
second cluster has a weekly pattern. We observe that
PCP is able to infer the characteristics of the work-
load in about half of the length of the period. Hence,
b2 be om 05 0 s 02 o3 om 05 0 oo for AppSuite-2, it takes about half a day of training data
o to reduce violations, whereas for AppSuite-4, we require
i (a) Violations (b) Poyver about4 days of training data. We also observe that the
Figure 19: Power drawn and SLA Violations for CBP jhact of historical trends happens in a discrete manner.
with changing correlation cutoff in AppSuite-4 Hence, for AppSuite-4, the availability @ffull days of
The performance of’ BP depends on the correlation data leads to a significant decrease in violations as di-
cutoff parameter that is used to decide if correlation con-urnal trends are available. However, any further data is
straints need to be added between a pair of applicationsot useful until we reach days, when weekly trends be-
Fig. 19 shows CBP performance with different thresh-come available. A key strength 8fC P is that a user can
olds, with the corresponding PCP metric shown as a refeasily determine the length of training period for a server
erence line for AppSuite-4. Using a very low correlation cluster using a few sample runs and then store only the
threshold (0.2) creates constraints even between weaklglevant history for future analysis. We next investigate
correlated workloads thereby reducing the SLA viola-
tions (to even below that of PCP). However this comes
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at a cost of increasing the number of active servers, »22 \ Zos

thereby consuming0% more power than PCP. On the gls \\ §0.4 /
other hand, using a high correlation threshdlc) cre- §1: —_ o /

ates constraints only when workloads exhibit very high > | ~. |2,

degree of correlation. As a result, the power consumed ~  ““eceraigond’ " 0 “ecpraigomd
can be lowered beloWC P at the cost of higher viola- @) (b)

tions. We recommend an operating rangs5 — 5) for Figure 21: Performance of PCP with change in tail
significant power savings with reasonable number of vi-bound: (a) Hourly Violations (b) Power Consumed
olations. However one may set the threshold tfor
critical applications ané.8 for best-effort applications.
We do observe that even thougtB P can achieve either
significant power savings or low violations, it is not able
to achieve the trade-off as well &C'P.

the impact of the tail bound on the performanceédf P

in Fig. 21. A high tail bound inPC'P leads to a conser-

vative size and smaller durations of peak activity. Hence,

a high tail bound may lead to lesser violations but may

5.4 Tuning PCP lead to a higher power consumption. We observe this in-

tuition holds in the experiments, as the violations fall to

0 for a tail bound 00.95 but at the cost of higher power.
ence, the administrator can choose a bound based on

he criticality of the applications in the cluster.

The important configuration parameters fBC'P are
the length of the training period and the tail bouRd
used for creating envelopes. We first show the impact o



6 Conclusion

(10]

In this work, we have presented the server workloadi]
analysis of a large data center. We have investigated
a large number of characteristics relevant for medium
(semi-static) to long term (static) consolidation in or- [12]
der to save power. The workload study shows that there
is a large potential for power savings by using off-peak
metrics for sizing applications. However, correlation be-[13]
tween applications can lead to significant capacity vio-
lations if consolidation methodologies do not take them
into account. We design two new consolidation method{14]
ologiesC BP and PCP that use an off-peak metric for
sizing and another metric to ensure that peaks do not
lead to violations. Our experimental evaluation shows
that PC' P achieves superior power savings, low viola- [15]
tions and good load balance across active servers. Our
work opens up further research in re-design of placemeritl6]
methods in light of the workload characteristics observed
in our work.
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