Xen and Co.: Communication-aware CPU Scheduling for
Consolidated Xen-based Hosting Platfor ms

Sriram Govindan Arjun R. Nath Amitayu Das
Bhuvan Urgaonkar Anand Sivasubramaniam

{sgovinda, anath, adas, bhuvan, an@dse.psu.edu
The Pennsylvania State University, University Park, PA, 16802.

Abstract Keywords Virtual machine monitor, Xen, multi-tier appli-

Recent advances in software and architectural support fdation, CPU scheduler
server virtualization have created interest in using teis-) o
nology in the design of consolidated hosting platformsl. Introduction and Motivation

Since virtualization enables easier and faster appliaatio Thg recently resurgent research in server virtualizatias h
migration as well as secure co-location of antagonistiGgeq interest in using this technology to design consol-
applications, higher degrees of server consolidation argy,ieq hosting platforms. In this emerging hosting model,
likely to result in sgch \{irtualization—based.hos'ting pla}t each physical server in the cluster runs a software layer
forms (VHPs). We identify a key shortcoming in existingieq the Virtual Machine Monitor (VMM) that virtualizes
virtual machine monitors (VMMSs) that proves to be anpe resources of the server and supports the execution of
obstacle in operating hosting platforms, such as '”temeﬁqultiple\ﬁrtual Machines (VMs). Each VM runs a separate
data centers, under conditions of such high consolidatior‘bperating system within it and the VMM provides safety
CPU schedulers that are agnostic to the communicatiog isolation to the overlying operating systems. The devel
behavior of mogierr), multi-tier appllcatlons.' We devglog)pment of highly efficient VMMs [50, 7, 47] as well as the

a new communication-aware CPU scheduling algorithmy,|ution of architectural support for them [24] is helping
to alleviate this problem. We implement our algorithm i qy,ce the overheads associated with virtualization. &s a r
the Xen VMM and build a prototype VHP on a cluster ofj these overheads may be far outweighed by the benefits
servers. Our experimental evaluation with realistic IRter j¢eareq by VMMs such as the ease of application migration
net server applications and benchmarks demonstrates theq secure co-location of un-trusting services [37, 33, 15]
performance/cost benefits and the wide applicability of our - ¢jyser-based hosting platforms have received extensive
algorithms. For example, the TPC-W benchmark exhibitegtention in several research communities such as those
improvements in average response times of up to 35% f%aling with operating systems [6, 13, 46, 30, 38], paral-
a variety of consolidation scenarios. A streaming medigy|/gistributed computing [5, 42, 32, 43, 53], and schedul-
server h'osted on our prototype VHP was able to satisfa}ctqﬁg theory [1]. With the burgeoning of various kinds of
rily service up t03.5 times as many clients as one running|ntemet server applications that cater to domains such as
on the default Xen. e-commerce, education, and entertainment, recent résearc
efforts have focused on the design of Internet data centers
that host and manage them in return for revenue. These
applications are typically communication and disk-1/O in-
tensive, adhere to highly modular software architectures
with multiple communicatingiers, * and require resource
guarantees from the hosting platform to provide satisfac-
tory performance to clients who access them over the In-
ternet. The use of virtualization for cost reduction and-eas
ier management is being actively explored in such Internet
data centers as well as in those used internally by organiza-
tions to consolidate the IT infrastructure of their variales

Categories and Subject DescriptorsD.4.1 [Process Man-
agemerit Scheduling; D.4.4 Communications Manage-
men}: Network communication; D.4.8 Herformancg
Measurements

General Terms Algorithms, Design, Experimentation,
Performance

Permission to make digital or hard copies of all or part of this work ferspnal or

classroom use is granted without fee provided that copies are not madgrdouded 7 T . .
for profit or commercial advantage and that copies bear this notice and thedtibnit ~ NOte that the terntier is generally used to collectively denote multiple

on the first page. To copy otherwise, to republish, to post on serveesredistribute ~ functionally identical components of an application. Foamyple, the Web
to lists, requires prior specific permission and/or a fee. tier in an e-commerce application may consist of multiple repéd Web
VEE'07, June 13-15, 2007, San Diego, California, USA. servers. We do not make such a distinction in this work andexhrtiques
Copyright© 2007 ACM 978-1-59593-630-1/07/0006. . . $5.00 apply equally well to applications with multi-component sier

25 1

20

—_ = ==-VMM-serverl —_

§ —JBoss [X

_S 20 o \él\BIIM—serv:rZ 0.8 _S is o oUMM

§ Non-consolidated ‘ﬁ ——JBoss

S5 0.6 host = DB

>

5 Lé 53 10 — One offfive CPU-jintensivé apps

o e)

© host Py I\

=4 = I A

s A o [\

g5 /\ 0\ X 02 e Il NN A\ N e

< A “H\‘/‘\/ A A vt~ < [\ I\ \‘H‘u““‘/ ~ A
RN VASTAPAVARI ARATAY) RERNESATAWRCAVIVASRIATEN
0 100 200 300 400 500 % 5 10 15 20 25 30 0 100 200 300 400 500

Time (sec) Response time (sec) for requests Time (sec)
(a) CPU usage: isolated servers (b) Client response times) CRU usage: consolidated server

Figure 1. Performance degradation of a communication-intensivdieimn placed on a consolidated server despite
allocating sufficient resources.

partments. The design of such Virtualization-based HgstinCPU allocation as in Figure 1(a) - Figure 1(c) confirms this.
Platforms (VHPs) to host modern applications raises sonfgame memory was ensured by statically providing each tier
novel design considerations. This paper presents therdesigf TPC-W the same virtual RAM size. Finally, the network
and evaluation of mechanisms to address such issues in #ral disk bandwidths received were the same in both cases,
Xen VMM. We choose&Xenbecause it is open source and issince the5 new applications did not perform any I/O ac-
increasingly popular among data center providers [2, 51]. tivity. Figure 1(b) compares the performance experienced
by the clients of this application under the two scenarios.
The need for communication-aware CPU scheduling: we find a significant degradation in the response time of
Server virtualization opens up the possibility of achiev-rpc-w under the consolidated scenaliehy did the per-
ing higher server consolidatioandmore agile dynamic re- formance degrade despite providing the same resource al-
source provisioninghan is possible in traditional platforms. |gcations?The reason for this is that for applications with
Ensuring that the applications experience satisfactory pecommunicating components, providing enough CPU alone
formance even under such consolidation requires the hog- hot enough - an equally important consideration is to
ing platform to perform (iyesource requirement estimation provide CPU at theight time Due to the presence of the
for the hosted applications, done either by applicatior pro; cpu-intensive applications on the consolidated server,
filing [39, 3, 46] or using analytical models [36, 17, 9, 45]the TPC-W tiers spend large amounts of time waiting for
and (ii) application placementhat involves ensuring that 5 chance to communicate, resulting in degraded response
the requirements of co-located application tiers do not eXimes. Since these delays depend on the order in which the
ceed the capacity of the server used to host them, usuathpy scheduler chooses competing co-located application
based on a simple aggregation of resource requiremenfgys we call such delays asheduling-induced delay#/e
(deterministic or statistical) [14, 46, 38]. While these apreglize that similar delays could occur in traditional oper
proaches have been shown to work satisfactorily under logting systems. However, virtualization enables secure co-
or moderate server utilization, they may not suffice in congcation of applications written for heterogeneous opegat
ditions of high resource utilization that will accompangth systems, something that was more difficult to realize in tra-
high degrees of consolidation likely in VHPs. Specificallyditional hosting platforms. Hence, virtualized enviromte
over and beyond ensuring that we provide each applicatifte more likely to experience higher degrees of consolida-
tier with its CPU needs, an equally important consideratiofion, and consequently are more likely to face this problem.
is whenthis CPU capacity is provided to it. Problem:Can a server in a VHP schedule hosted VMs in
To illustrate this, we depict the performance experienceg communication-aware manner to enable satisfactory ap-
by an implementation of the TPC-W benchmark [41] fromjication performance even under conditions of high con-

New York University consisting of two tiers - a JBoss tiersplidation, while still adhering to the high-level resoarc
that implements the application logic and interacts with thprovisioning goals in a fair manner?

clients and a Mysql-based database tier that stores infor-

mation about items for sale and client information - under o

conditions of high consolidation. Figure 1(a) presents th&1 Research contributions

CPU usage of the two tiers when the application was ruwe develop a CPU scheduling algorithm for a VMM that
with each tier on a separate dedicated physical server ruimcorporates the 1/0 behavior of the overlying VMs into its
ning the Xen VMM [7]. We then ran this application with all decision-making. The key idea behind our algorithm is to
its tiers consolidated on a single server running Xen alonigtroduce short-term unfairness in CPU allocations bypref
with 5 CPU-intensive applications, while ensuring that theerentially scheduling communication-oriented applizasi

two tiers received the same resource allocations. We useder their CPU-intensive counterparts. Our algorithm veork
a reservation-based scheduler in Xen to achieve the samaely based on communication events local to the server.

Furthermore, it maintains an administrator-specified uppe Single tier streaming 3-tiered TPC-W
bound on the time-granularity over which deviations from server (Web,Java,Database)
fair CPU allocations are allowed.

We identify efficient ways of implementing this algo-
rithm in the state-of-the-art Xen VMM. We use the Xen

. . : Applicati A
VMM, enhanced with our algorithm, to build a proto- pg-;:?slon -
type VHP of a collection of physical servers. We explore
|
VMM

Privileged Guest

; - . Operating "
the pros and cons of our implementation by experiment- Systems 2
ing with realistic and representative Internet sever ajapli VMM
tions/benchmarks. Our evaluation demonstrates the bgnefit Hardware Hardware
of our approach in improving the management of highly / \
consolidated hosting platforms. For example, the TPC-W
benchmark exhibited improvements in average response High-speed LAN

times of up to 35% for a variety of consolidation scenarios.

A streaming media server hosted on our prototype VHP £iqre 2 |llustration of hosting in a Xen-based VHP.
was able to satisfactorily service up 3¢ times as many

clients as one running on the default Xen.

1.2 Outline

The rest of this paper is organized as follows. We pres
background material on Server virtualization, the Xe
VMM and VHPs in Section 2. We discuss the design an
implementation of our communication-aware CPU schedu
ing in Section 3. We describe our experimental setup and
evaluation in Section 4. We present related work in SedNetwork I/O virtualization in Xen: Each guest domain
tion 5. Finally, we present concluding remarks in Section Gmplements a driver for its virtual NIC that is called itst-
2. Background and System Overview front driver: Domainpimplements anetbackd_river which

acts as an intermediary between netfront drivers and the de-
In this section, we provide an overview of Server virtualizayice driver for the physical NIC. The device driver, also
tion, the Xen VMM and VHPs. part of DomainQ can access the physical NIC but inter-

. N rupts from the NIC are first handled by the hypervisor

21 Server Virtualization which in turn sends virtual interrupts vievent-channels
Virtualization refers to the creation of a virtual (ratheah to DomainQ Event-channels are an asynchronous notifi-
actual) version of a resource/entity, such as an operatirgition mechanism used for communication between do-
system, a server, a storage device, network resource etcmains. While these event-channels are strictly for notifica-
our research, we use this term to denotevinialization of tion, Xen uses a shared-page mechanism calkstsvork-
a server at the operating system levEhis is achieved by a 1/0-rings (one each for reception and transmission per do-
software layer called the Virtual Machine Monitor (VMM) main) for inter-domain message passing. To enable fast I/O,
that runs directly on server hardware. A VMM virtualizesXen employs a zero-copy, page-flipping mechanism to ex-
the resources of a physical server and supports the exeahange pages of data between the guests’ netfront drivers
tion of multiple virtual machines (VMs) [19, 7, 40, 50]. andDomainGs netback driver.
Each VM runs a separate operating system within it and Now we describe the key steps in network transmission
the VMM provides safety and isolation to the overlying op-and reception in the context of Xen. When a network packet
erating systems. The VMM manages the sharing of CPUWyrives at the physical NIC for any domain, an interrupt is
memory, and I/O devices among the VMs. Each VM is prodelivered to the hypervisor which in turn notifiEeomain0
vided a set of virtual 1/0O devices for which its operatingof packet arrival as described above. Subsequently, when
system implements drivers. VMMs have been a topic of e@omain0is scheduled, netback checks the destination of
tensive research for over four decades due to their numerotke packets that have arriveBomainOnotifies the recip-
uses including secure co-location of operating systems {gnt guest domains and updates the reception-1/0-rings to
applications, facilitating migration, enabling the egiste copy the packets into their address spaces. When the target
of legacy applications on newer platforms, etc [19, 20, 37%guest domain is scheduled next, it sees packets that have ar-
8,40, 7, 15, 33, 35]. rived for it and processes them as any standard OS would

do. Similarly, when packets are sent by a guest domain, it
22 TheXen VMM notifiesDomainOof the packets to be transmitted, again via
We use the Xen VMM in our research [7] and conduct théts event-channel. Upon its next schedulipmainOde-
remaining discussion in its context. Figure 2 shows twdivers the packets to the NIC. Figure 3 presents these steps
VMMs supporting three VMs (calleguest domains or sim- in detail.

emy Domainsin Xen) each. One of the VMs, calledo-
r{nainQ implements the real device drivers, communicates
&vith the actual hardware and does the translation between
}{irtual and real I/O activity.

Guest Domain Reception-1/0O-ring Domain0 Guest Domain Transmission-l/O-ring pymaino

Application
5

=N 1
1

Netfront

l Netback

Packets arrive Interrupt 3
on the NIC Hypervisor Deliver Packet Sent Packet sent
DL signal over the network 7 iollIC
(a) Reception (b) Transmission
Figure 3. Network I/O virtualization in Xen.
2.3 A virtualized hosting platform mainQ in a round-robin fashion. We now develop a CPU

Our hosting model assumes a large cluster of high_erﬁpheduling algorithm that incorporates the communication

servers (with dual processors and a few GB of memory) irgctivities of the hosted domains into its decision-making.

terconnected by a high bandwidth network for communicalV/é build our algorithmon top of SEDF in the sense of

tion. In addition, many of these servers are also conneoted€t@iNing SEDF's basic feature of guaranteeing the speci-
a consolidated high capacity storage device/utility tigtou /1€ Sliceto a domain over everperiod Our algorithm at- -
a Storage Area Network which facilitates data sharing antfMPts to preferentially schedule communication-sereiti
migration of applications between servers without explicidomains over others while ensuring that the resulting un-
movement of data. These servers are connected via sofgifness in CPU allocations is bounded; the latter is ersure

gateway to the Intemet to service end-user requests frofy €xploiting the guarantees offered by SEDF. _
clients of the application service providers. The Xen hypervisor also implements a proportional

Each server in our VHP runs a Xen hypervisor on top ofhare schedul_er calleBorrowed Virtual Timeg(BVT) [18] _
the native hardware. Each application tier and its assedtiatScheduler. This scheduler has a set of parameters which
OS run within a Xen guest domain. Figure 2 provides affa" Pe configured to provide low latency dispatch for the
illustrative example. Our enhanced hypervisor implement'éo intensive domains. However, the effectiveness of this

amodified CPU scheduler to achieve communication-awafPProach significantly depends on the careful selection of
scheduling of domains. these parameters. Furthermore, these parameters may also

need to be dynamically adjusted to suit the varying applica-

3. Communication-aware Schedulingin Xen tion /O demands. These are non-trivial activities and may

. require frequent administrator intervention. On the other
We assume that the VMM provides a CPU scheduler that gl- a a

lows applications to specify guarantees on the CPU a”oc?/%ni(:ﬁg:srif;geduler tunes itself to the applications’ curre
tions that they desire for their tiers from the platform. Sev The Latest .version of Xen includes a proportional share
eral such schedulers ex?st, most notably proportionalesha cheduler called th€redit-based16] Scheduler. It does
schedulers and reservauon-pa_sed schedulers [18‘.496’12’ etter load balancing on multi-processor systems than ear-
34). The problem of determining the CPU aIIocat_|on§ aPlier schedulers and also provides mechanisms for low la-
propriate for the performance needs of an application lLs’ency dispatch for I/O intensive domains. T@eedit sched-
orthoggngl to this'resgarch. We point the reader to exter&'lerwas not available during the time o.f our implementa-
sive existing work in t_h|s area [4.6' 38]. The_ Xen hype_rwsoc[ionl In future, we intend to analyze how to incorporate our
mplements an algorithm calle@mple Earl_lest-Deadllne- communication-aware scheduling technique in this sched-
First (SEDF) that allows domains to specify lower bound%Ier as well

on the CPU reservations that they desirSpecifically, each We begiﬁ our discussion by defining the goal of our
domain specifies a paislice, period asking forslice units scheduler and identifying ways in which it might achieve
ofthe CPU ev_e_r;periodtime_ units. The hype_rvisor ensures;, Following this, we describe various components of our
that the spem_fled reservatl_on can be_ provided 1o a NeWetheduler in detail along with the considerations thatearis
created domain (or a domain that desires to change its C for their implementation in the Xen hypervisor

reservation). We assume that a domain is not admitted | '

its reservation cannot be satisfied. The residual CPU capac-

ity is shared among the contending domains (includig 3.1 Classifying scheduling-induced delays

2We use the termdomainto denote a guest domain as well as tiee In a consolidated server, a domain can experience schegdulin

hosted within it henceforth; we will use the term tier onlyavha distinc- induced delays (as was discussed in Section 1) in its com-
tion is necessary. munication activities due to the CPU contention with other

—— 3.2 Preferential scheduling of recipient

Java tier Domain0
Machine Scheduling a domain close to the reception of a packet is
easy to achieve in theory, since this is purely reactive. How
v <% ever, we would like to devise a general approach that can
achines choose between multiple recipient domaithich domain
time line Domaing ~ TPCW Domamo should be chosen out of multiple recipien@@r scheduler
. Da‘ab“‘“’;'j' implements a naturally appealing heuristic that picks the
T 4B T domain that is likely to experience the most overall reduc-

tion in scheduling-induced delay, that is, the domain that
Figure4. Sources of scheduling-induced delays. ~ has received the most number of packets.
It should be pointed out that our approach does not cause
a domain receiving high-intensity traffic to starve other do
mains. Since we ensure that our algorithm continues to pro-
co-located domains, includinomainQ The goal of our yjde the reservations guaranteed by the default SEDF, such
CPU scheduler is taeduce the aggregate scheduling-a domain will only be preferentially chosen so long as it has
induced delay for the hosted domains while still providingeceived less than itslice for the ongoingperiod The ex-
guarantees on CPU allocations. pected outcome of this approach is to delay the scheduling
With the background presented in Section 2.2 and Figf non-recipient domains in favor of the recipients. The re-
ure 3, we identify three sources of scheduling-induced degylting unfairness in CPU allocations is limited to duratio
lays. smaller than geriod

1. Delay associated with the scheduling of DomainG: .Impl)l?jr.nenéatlon- (z)onsuj_eratmns: In t>r<1e?"t eﬁCh dorqz'?ﬁ
This is either (i) the duration between a packet rece ncluding bomaint 1s given a page that it shares wi €
ypervisor. We use these pages to maintain various 1/O re-

tion at the physical NIC and wheBomainOis sched- L
uled next to set up an event channel notification foltated statistics needed by our scheduler and call theek-

the recipient guest domain or (ii) the duration betwee eeping _pagesFor "e_eP'”g t_raqk of the numb_er of pack-
when a transmitting domain copies a packet into thgts received and waiting withibomainQ we introduce
transmission-l/O-ring oDomain0and whenDomain0 network-reception-intensityariables, one for each domain,

: stored in the book-keeping page DbmainQ These vari-
gets scheduled next to actually send it over the phy;%bles are initialized to zero upon domain start up by the hy-
e

cal NIC. These delays can be reduced by (i) schedulin))
DomainOsoon after a packet is received by the physic rvisor. Subsequently, these variables are updated -as fol

NIC and (ii) soon after a domain does a send operatioh WS. WheneveDomlaanrr]uns (vt\)/e Vl\("g c_zlescfr_lbe when th'hs. h
over its virtual network interface, respectively. appens mome”taf' y), the net ack driver figures Ou.tW Ic
domains have received packets since the last Bom@ain0

2. Delay at the recipient: This is the duration between \yas de-scheduled and uses the page-flip mechanism to copy
when DomainO sets up an event channel notificationpages containing them to the appropriate domains. It then
for the recipient domain (on packet arrival) and when,ses the number of pages flipped with each domain as an
the recipient domain gets scheduled next to receive thgdicator of the number of packebsreceived by that do-
packet. This delay can be reduced by scheduling th@ain and increments theetwork-reception-intensityari-
recipient domain soon after the reception of a packet fogple of the corresponding recipient domain in the book-
itin DomainQ keeping page oDomainQ Whenever a recipient domain

3. Delay at the sender: This is the extra delay, before runs next, its netfront driver processes some (or all) of the
a domain sends a network packet (on its virtual NIC)packets received by it (as described in Section 2), main-
induced by the hypervisor scheduling other domains itgining a count of the number of packets processed in its
between, compared to running this domain in isolatiorown book-keeping page. Finally, when this domain is de-
Notice that unlike reception, sending a packet is an eveigcheduled, the hypervisor reads this count and decrements
that can only be anticipated. This delay can be reducdtie network-reception-intensityariable for the domain to
by anticipating when a domain would be ready to send gflect its pending value (this is in the book-keeping page of
packet and scheduling it close to that time. DomainQ. See Figure 5 for a concise illustration of this.

3.3 Anticipatory scheduling of sender
With this intuition, we now consider ways to reduce each patary g

of these three types of delay in detail. Figure 4 presenfsS noted earlier, reducing the delay at a sender domain re-
examples of these delays for a two-tiered TPCW applicatiofiiires us taanticipatewhen this domain would have data
with a Java tier and a database tier hosted on a separfesend next. Consequently, the efficacy of this approach is
physical machine. Here, delaysl, d2, d4, andd5 are of 3This works accurately for default Xen where each packet gEtét

type 1, while f_je|a}’5d3 andd6 are of type2. There are NO frame) gets an entire page [7] regardless of its size. Thisrnes an esti-
type3 delays in this example. mate in some optimized versions of Xen [29].

3.4 Scheduling of DomainO

Domain 1 Someinn As depicted in Figures 3(a),(b) and FigureDhmainOhas
a crucial role in ensuring the timely delivery of received
o AN, . packets to domains as well as transmitting the packets sent
Duma.mm Damamnsm by them (over their virtual network interfaces) on the phys-
. RS s ical interface. By default, the Xen scheduler employs a high
™ ””m""”“,i’?‘;‘éhﬁf’u‘ﬁﬂg‘”"e vt || reservation of [5 msec20 msec) forDomainOto ensure its
Hyperviant prompt scheduling. Additionally, we would like to preferen
GBS SR tially scheduleDomainOat times when it is likely to be on
_ - S et st iarstyts f[he critical path as far as our goal of minimizing sc_heduhng
intermupt - induced delays is concerned. We extend our basic approach
Ne of scheduling the domain likely to reduce the delays for
i most packets, to includBomainOas well. To achieve this,

we identify two kinds of packets that would be processed
whenDomainOgets scheduled: (i) packets written by guest
domains to their virtual NICs and (ii) packets received for
delivery to domains and waiting in their reception-l/Ogin
within DomainQ Note that only foDomainQ transmission
intimately dependent on how well the scheduler can predielvent is deterministic whereas for the guest VMs, it could
such an event for a domain. While it is certainly temptingnly be anticipated.
to try sophisticated prediction techniques, we take a sim-
ple low-overhead approach in this paper. We use a simplsplementation considerations: When a packet arrives
last-value-likeprediction in which the number of packetsat the NIC card for any domain, an interrupt is delivered
sent by a domain during its last transmission is used asta the hypervisor which increments thetwork-reception-
predictor of the number of packets that it would transmitntensity variable of DomainOby 1 in the book-keeping
the next time it is ready to send. We use the duratlgp page ofDomainQ Notice the difference in how theetwork-
between the last two transmission operations (note that argception-intensitfor DomainQis incremented compared
such event may involve the transmission of multiple packto those for the guest domains. Additionally, whenever a
ets) by a domain (call these time instafitg andT;,_; guest domain is de-scheduled, the hypervisor increments
respectivelyzx is the number of transmission events sincghe network-transmission-intensitjor DomainO by that
some milestone, such as a domain start up) as a predictdr this domain (we already described how this quantity
of the duration over which the domain is likely to indulgeis updated). It should be clear by now that this update
in a transmission again (i.e ., T;. + As.]). Similar to occurs in the book-keeping page BlomainQ As with
our approach for reducing the scheduling-induced delay ather variables network-reception-intensitand network-
a sender, when multiple domains are anticipated to trantransmission-intensityjor DomainOare initialized to zero
mit, we could choose to schedule the one that is expect&den it starts.
to transmit the most packets. Also, the fairness embedded Having explained these book-keeping activities, we now
in our algorithm will limit the negative impact of any short- describe how the scheduler uses them in its decision-
term unfairness caused by anticipatory scheduling of sendeaking. Whenever the scheduler is invoked, it simply ex-
domains to durations less thamariod amines the book-keeping page BbmainQ Notice how

all the I/O statistics needed by our scheduler, maintained
Implementation considerations: We introduce an addi- in various book-keeping pages, eventually get propagated
tional variable callecactual-network-transmit-intensityn ~ to this page due to the mechanisms described above. Our
the book-keeping page of each guest domain. These vaseheduler picks the domain with the highastwork inten-
ables are initialized to zero at domain start up and upsity, which is the sum of: (i)network-reception-intensity
dated as follows. When a guest domain transmits a netnd anticipated-network-transmission-intensifgr guest
work packet, the netfront driver of the domain copies idomains and (iilnetwork-reception-intensitgnd network-
to its transmit-1/0-ring, which is shares witbomainQ transmission-intensityor DomainQ Figure 5 presents an
and increments theactual-network-transmit-intensityn ~ example to help understand the overall implementation of
its book-keeping page by one. Additionally, we introducehe scheduler. Note that, after scheduling a domain based on
a anticipated-network-transmit-intensityariable for each its book-keeping variables, these variables are latesaetju
guest domain in the book-keeping pageDiimainQ also to reflect the completed network activities. This ensuras th
initialized to zero at domain start up. Whenever a guestte do not accumulate history and our scheduling is based
domain is de-scheduled, the hypervisor adds the value ofly on recent network activities.
its actual-network-transmit-intensityariable to the corre- We are now ready to answer the general question that
spondinganticipated-network-transmit-intensipariable in - our scheduler must address, hamelfich domain among
Domain0s book-keeping page. possibly multiple runnable domains - Domain0, recipient

Figure5. Implementation of our scheduler.

domains, and (anticipated) sender domains - should bé. Experimental Evaluation
scheduled?Ve propose a “greedy” approach which picks, | Experimental setup

the domairD that satisfies the following two conditions.)])
Our experimental testbed consists of a pair of Xen hosted

servers. Each server has dual Xeon 3.4 GHz CPUs with
2 MB of L1 cache, 800 MHz Front Side Bus, and 2 GB
o)) RAM. For our experiments, we pinned all domains to a sin-
» Minimize Delays:SchedulingD will help reduce the gle CPU. Extending our communication-aware scheduler to
scheduling-induced delay for theostpackets. This is 1 jti-processors is part of future work. The machines were
the greedy aspect of our algorithm that was mentionegg s to use Xen 3.0.2 and are connected via Gigabit Ether-
above. net. Each of our experimental machines hosts 6-8 VMs with
each VM assigned between 120 MB to 300 MB of RAM de-
pending on its requirement. Note that although real-world
applications are likely to require larger amounts of RAM,
We now present some salient features of our algorithm arttley would also be hosted on servers with correspondingly
discuss some alternate design choices. larger memory than is available on the servers in our re-
search lab. Our servers are representative of those used
.)] in many hosting platforms except possibly having smaller
Co-ordinated scheduling and other benefitsThe goal of RaAM. We deliberately choose applications whose memory
our algorithm is reminiscent of that of the gang schedultotprints are small enough to allow us to consolidate 6-8
ing and co-scheduling algorithms developed in the pagt them on a single machine while meeting their CPU, disk,
allel/distributed systems literature. In particular,elikm- hetwork, and memory needs. Finally, the applications that
plicit co-scheduling algorithms, itis expected to achiewe ;¢ experiment with have CPU and 1/0 needs that are large
ordinated scheduling of various communicating tiers of anough to make it prohibitive to host hundreds of them on
multi-tier application. We compare our work with this body seryers employed in data centers as explored in some recent
of research in more detail in Section 5. Being completelyesearch [50]. Based on these observations, we deem it rea-
distributed imparts our algorithm the usual merits assoCisonaple to expect degrees of consolidation of at most a few
ated with such a design, including the lack of high-overheag s of applicationsDomainOQis given 320 MB of RAM.
and complex global synchronization mechanisms, the ale gomains and the physical hosts have unique IPs and

sence of a single point of failures, and the potential to bg,e qomains communicate via bridge networking.
highly scalable.

A side-effect of our design is the preferential scheduling\PPlications and workloads: In order to measure im-
of 1/O-intensive domains near the beginning operiod ~ Provements in performance a_nd server consol@auon we
This had the beneficial effect of significantly reducing thé/Se two applications: (i) a two-tiered implementation & th
number of domain context-switches in a consolidated servdPC-W benchmark [41] representing an online bookstore
with the corresponding improvement in efficiency due tgleveloped at New York University [44], and (i) a streaming

fewer address space changes (and associated cache pdiigdia server. These simulate the kind of real world appli-
tion and TLB flushes). cations that are likely to be hosted in VHPs. Additionally,

we use some domains running CPU-intensive applications

for illustrative purposes in some of our experiments.
Alternative design choices: A possible pitfall of our ap- Our chosen implementation of TPC-W is a fully J2EE
proach arises from the fact that it acts based soleljnon compliant application, designed using the “Session Fdcade
mediatereception/transmission intensity. For instance, ipattern. Session handling is provided by the Apache/ Tom-
preferentially schedules a domain receiving high-intgnsi cat servlet container. We configure the application using
traffic even if another domain had received packets eadBoss 3.2.8SP1 [25] for the application logic tier and MySq|
lier. Alternative approaches that incorporate the timd that.1 [31] for the database tier. We use the workload gener-
the packets intended for a domain have been waiting in theor provided with TPC-W to simulate multiple concurrent
reception-1/0-ring of a domain also into scheduling decibrowser clients accessing the application.
sions are certainly possible. We treat these as outside theWe implement a simple, multi-threaded streaming me-
scope of our current investigation and intend to evaluatdia server and accompanying client in Java. Our stream-
them in our future work. A key issue to appreciate here itng media server spawns a thread to stream data to each
that our algorithm continues to provide the CPU reserveaclient. The client program implements a buffer and starts
tion guarantees offered by SEDF which ensures that a doensuming data only when the buffer is filled. If, during a
main performing high-intensity network activity would not run, the buffer becomes empty (buffer under-run), the tlien
induce an unbounded delay in the scheduling of the otheraits till it fills before continuing consumption. Each beiff
domains, since they are guaranteed their slice time unit;der-run event is seen as a playback discontinuity and its
within their period, only that it could be delayed to the encperformance can be measured as a function of how many
of their period. of these the client experiences while reading streaming dat

» Respect ReservationSchedulingD would not violate
the CPU reservations of any of the domains.

3.5 Salient featuresand alternatives

intensive domains. Data is streamed to 45 clients at a con-
['_' stant rate of 3.0 Mbps each over a period of 20 minutes. 45
Hodfed SEOF is the maximum number of clients that the server running on
the modified hypervisor can support with minimal perfor-
mance degradation experienced by the clients (one buffer
Default SEDF
(Goestptosecons) | under-run in 20 minutes). We determine this by repeating
the experiment with a varying number of clients (reducing
the number in each repetition) till the server can support
o0 them all to the degree mentioned above. We measure the
number of buffer under-runs at each client. We plot this in
Figure 6(a) for the default and modified schedulers as noted
. at a representative client. Whereas with default Xen, atlien
:mg? experiences 11 buffer under-runs on average, our scheduler
reduces this number to 1 on average.

Figure 6(c) shows the cumulative data received by the
selected client and depicts the number of times the client
experienced discontinuities. Clearly, our scheduler joles
much better end-user experience when compared to the de-

‘ " fault scheduler. Figure 6(b) plots the CDFs for the trans-

U Tmeniies B & & T mission times of data units (3MB) under the two schedul-

(c) Client: Cumulative ’ ? ing policies, allowing us to appreciate the reduction in
data scheduling-induced delays caused by our scheduler. This

Figure 6. Performance and scalability improvement forgraph ShOVZS that the enha_nced schedulerena_lbles the server

streaming media server, to send 95% of_lts data units und&y msec, while th_e de-

fault scheduler is able to send 95% of its data units under

about2300 msec, a significant difference in data delivery
from the server. The server streams data at a constant rgi€formance.

of 3.0 Mbps per client. By default, each client is assumed Finally, we vary the number of clients and measure their
to use a buffer of size 8 MB. For all experiments, we repofperformance to determine any impact our scheduler might
statistics collected over 20 minute runs. have on the scalability of the streaming server. The client
buffer size was kept at 6 MB for this set of experiments.

Figure 6(d) compares the number of clients for which the
To measure the performance benefits due to our SCheﬁreaming server could support an SLO of at most one
uler, we run several experiments with TPC-W under VariOUplayback discontinuity during the delivery of a movie. As

degrees of consolidation and compare the client responsgown, the communication-aware scheduling improves the
times with those on default Xen. Recall that in Figure leffective capacity of the streaming server from 18 clients

we showed how consolidating the tiers of a TPC-W applitwhen hosted on default Xen) to 60 clients (when hosted on
cation along with several CPU-intensive guest domains asur modified hypervisor).

one physical host causes the response times to deteriorate

= = Modiied SEDF ‘
~ Default SEDF

o

S

Client Buffer Size (MB
=

~

o 3 7 10 13 17 2 9 5 0 1
Time in Minutes Transmission time(ms)for unit data(3mg)

(a) Client: Buffer Size (b) Server: Transmission time

o
=]
=1

= Modified SEDF
+ Defaul SEDF

IS
3
3

ntative Client

5-

@
=]
S

Consumed Data at the Client in MB
8
8

=)
8

No. of Glitches a a
o

o

o

(d) Server: No. Clients supported

4.2 Performance improvements

significantly. We present the results of repeating this ex- | __feaureenared___| Time o experience a discontinulty (min
. . X X nly Domain0Optimization 14.5

periment with our scheduler in Table 1. We find that our Only anticipation 4

scheduler is able to co-ordinate the communication events__Combination of above two 17

between the tiers of TPC-W, helping redu}(L:e the responsgp e 2. Examination of performance with different com-
times of requests. We report the averag®!" percentile, hinations of our optimizations enabled

and maximum values of the observed response times. Simi-
lar benefits were found when multiple instances of the TPC- \ext. we conduct experiments to ascertain the relative
W application are co-located in a single physical server. contributions of the various components of our overall

Scheduier Avg.(mseq) | 957" (msed) | Max. (msed) schedullng_ algonthm. Table 2 prgsents our observations fo
Modified SEDF 869 5720 12778 the streaming media server serving 45 clients. We repeat the
Default SEDF 1319 7149 26158 experiment thrice, each time with a different combinatién o

[Percentage Improvemenft 3411 | 19.98 [5115 |

our optimizations enabled: (i) only preferential schedgli
Table1. Performance of the TPC-W application. ~ of Domain0, (i) only anticipatory scheduling, and (jii) both
of the above. We use the average time for a client buffer to
Next, we investigate the benefits of communicationunder-run as the metric and find that preferential schedulin
aware scheduling for our streaming media server. We di®f Domain0Qis crucial to reduce scheduling-induced delays.
cuss a representative set of experiments. In this disaussidnticipatory scheduling, while useful, is ineffective ek
the domain hosting the media server competes with 7 CPWomain0is scheduled to complement it. We would like to

[] Default SEDF
[Modified SEDF

1.5F
SLO (1 second)]

— Default SEDF

CPU domain - Avg. CPU Utilization (%)

Modified SEDF

0.5

Mean response time (sec)
T
L]
1
1
1
1
1
1
1
L]
1
1
L]
1
1
L]
1
1
1
1
1
1
1
L]
1
1
L]
1

a [1N ‘ . ‘ Time (min)
0 4 5 8 . .
Number of competing CPU-intensive domains (a) CPU-intensive
Figure 7. Improved consolidation for TPC-W. 27 — Dafaut SEDF

Modified SEDF

re-emphasize that merely providing a high CPU reserve
tion of (15, 20) toDomain0does not ensure that it gets
scheduled at the right times. Our optimization, describe:
in Section 3.4, indeed plays a crucial role in reducing the
delays associated with the schedulindb@imainQ

Average Server CPU Utilization (%)

4.3 Improved consolidation s

We use the same workload for TPC-W as in the last sec Time (min)

tion. We vary the number of CPU-intensive domains con-

solidated with the tiers of TPC-W from 0 onwards. We pick

an SLO of the average response time being 1 sec. Figuré:‘pgure 8. Fairness in CPU allocation for CPU-intensive

shows the results of our experiments. domains consolidated with the streaming media server.
We find that while with default Xen, we were able to

consolidate 4 CPU-intensive domains, with our modified

hypervisor, we were able to add an extra CPU-intensive dgyith 5 CPU-intensive domains and subjected to the stan-
main, an improvement of 25% in the resulting consolidagard TPC-W workload as in Section 4.2. We see that our
tion. We have observed similar improvements in consolidascheduler is able to match the fairness guarantees provided
tion for: (i) TPC-W subjected to different workloads ang (ii by default SEDF while improving the performance seen by
the streaming media server. the clients of TPC-W as described earlier. This is an effec-
tive demonstration of the benefit of communication-aware
scheduling - our scheduler is providing essentially theesam
Next, we present another facet of the experiment conduct&PU allocation to TPC-W, but by changing the order in
in Section 4.2 with the streaming media server handling 4&hich CPU is assigned, significant performance and con-
clients.Do the performance improvements for the streamingolidation gains are being realized. The last column in the
media server upon using our scheduling come at the cost @ble presents the aggregate CPU utilization on the server
reduced CPU allocations for the competing CPU-intensivénearly identical for both cases).
domains?The results presented in Figure 8 address this
fairness issue. As seen in Figure 8(a), the CPU-intensive

. CPU Usage DomO | Jboss| DB CPU. | Agg.
domains continue to receive CPU allocations close to their Def(mean) | 0.65 | 1.96 | 4.43 | 1758 | 94.94
consumptions on default Xen. There is a decrease of less [Def{variance) | 0.I3 | 11.57 | 40.07 | 3.30
than 1% in their allocations and our algorithm ensures that [_Mod.(mean) T 065 [168 [453 | 17.89 | 96.31 |

. . . . | Mod.(variance) | 0.17 [10.35 | 48.31 | 3.38 | |
they continue to receive CPU more than their reservations.
The accumulated 4-5% CPU stolen from these domairkable 3. Average CPU utilization (%) for different do-
is utilized by the streaming media server dddmain0to mains running TPC-W with the default and the modified
achieve the substantial improvement in performance arsthedulersLegend:Def.=Default SEDF; Mod.=Modified
scalability as described earlier (see Figure 8(b)). SEDF; CPU.=One among the 5 CPU-intensive VMs;
We conduct similar experiments for evaluating the fairAgg.=Aggregate CPU usage of the Server.

ness of CPU allocations with the TPC-W application. We
present these results in Table 3. The TPC-W is consolidated

(b) Streaming server

4.4 Evaluation of fairness guarantees

45 Reduced context switching 6. Conclusions

In Section 3.5, we had hypothesized that our schedulévances in virtualization technologies have created a lot
may have the beneficial side-effect of reducing the overatlf interest among Internet data center providers to exploit
domain context switches by coalescing the scheduling dé¢atures of VMMs for cost-cutting via improved consolida-
communication-intensive domains towards the beginning dion. We identified one major shortcoming in the Xen VMM
a period We conduct measurements to validate this usinthat proves to be an obstacle in its efficient operation when
XenMon [23]. For a server hosting our streaming serveemployed in a VHP: The VM scheduler in Xen is agnostic
with 7 CPU-intensive domains, we found that the number aff the communication behavior of modern, multi-tier appli-
domain context switches were reduced by almost 33% wheyations and also the scheduling of the privileged domain is
using our modified hypervisor compared to default Xen. Wén the critical path of every network operation.
postulate that with more consolidated communicating tiers We developed a new communication-aware CPU schedul-
we might see a further reduction in the number of contexhg algorithm for the Xen VMM. Using experiments with
switches. realistic Internet server applications and benchmarks, we
demonstrated the performance/cost benefits and the wide
applicability of our algorithms. For example, the TPC-W
5 Related Work penchmark exhibited impr(_)vements in average response
times of up to 35% for a variety of consolidation scenarios.
Earlier , we pointed out aspects of existing research on nop: streaming media server hosted on our prototype VHP
virtualized hosting platforms relevant to the design of gyas able to satisfactorily service up 3c5 times as many
VHP. In this section, we discuss additional existing resear clients as one running on the default Xen. The source code
on virtualization and scheduling that is closely related t@or our implementation is publicly available.
this paper.
Acknowledgements

Efficient virtualization techniques As mentioned earlier, We would like to thank the anonymous reviewers for their

virtualization is being actively researched and employed f detailed comments which helped us improve the quality
designing consolidated hosting environments [15, 51, 109f the presentation. This research was funded in part by
Consequently, there have been several prior studies propd$SF grants 0103583, 0509234, 0325056 and 0429500.
ing and evaluating novel enhancements to virtualizatioRr.Bhuvan Urgaonkar would also like to acknowledge a

platforms such as Xen and VMware [48, 28]. Another relstart-up grant provided by the CSE Department, Pennsylva-
evant body of work is concerned with reducing the overnia State University to support his research.

heads of virtualization [29] and accounting them accuyatel

to hosted VMs to ensure fair CPU allocations [22, 23, 21].R€ferences
[1] M. Adler, Y. Gong, , and A. Rosenberg. Optimal Sharing of Bags of Fask
in Heterogeneous Clusters. Rroceedings of the Fifteenth Annual ACM
: : : Symposium on Parallel Algorithms and Architectures (SPAA), Sanediyl
Schedul_lng in parallel s_yste_ms Th_e_need for co-ordlnate_d pages 1-10. ACM Press, 2003,
scheduling of communicating entities has been extenswel}é]
Ipoked at in the cont_ext of parallel applicatic_)ns running ONj3 3 Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S. Lueng,
tightly coupled multi-processors (whether it be message- M. vandervoorde, C. Waldspurger, and W. Weihl. Continuous Profiling
: _ _ Where Have All the Cycles Gone? Rroceedings of the 16th ACM Symposium
passing F’r shar.ed memory SyStemS [11]) as W_el_l as clus on Operating Systems Princip|gsages 1-14, October 1997.
terS'_Whlle _earller work at_temptEd this by epr|C|tIy per- [4] A. Arpaci-Dusseau. Implicit Coscheduling: Coordinated Schedulingp wi
forming periodic synchronization [27, 52], subsequent re- implicit Information in Distributed SystemsACM Transactions on Computer
laxations explored the possibility of local scheduling at SYstemsi9(3):283-331, 2001. _ _
each node based on communication events to achieve sirftl 4 3R at L oe 2o s Ioroceedings of Parallel and Diswibuied
ilar goals [4, 42, 32, 43, 53]. While the goals of our work Processing Techniques and Applications (PDPTA'97), Las Vegas,bhe
are similar, to the best of our knowledge, this is the first %7
; ; f [6] G. Banga, P. Druschel, and J. Mogul. Resource Containers: A New Facilit
StUdy tO_ e_xplore thes_e ideas in the domaln of the Xen V_MM for Resource Management in Server SystemsPioceedings of the Third
for multi-tier applications. These applications have weiq Symposium on Operating System Design and Implementation (OSDI'39), Ne
characteristics including being more loosely coupled than ©reans pages 45-58, February 1999. '
the ones previously studied and tiers with heterogeneous ré’l f_’ﬁz::a;‘;ﬁ_%@%?g;gj K Fraser. S Hand, 1. Harrs, A. ;‘r%cséyiﬁ;g‘fﬁ“
source needs. Additionally, VHPs are likely to support sub- the Nineteenth Symposium on Operating Systems Principles (SE¥SB)
stantially higher levels of consolidation/multi-programimg (8] R. Bar, Z. J. Haas, and R. van Renesse. JiST: An Efficient Approach to
at each node than the platforms studied in earlier work. g's'?g;'gg%"_%sé”%ag'g“a' Machines: Research ArticleSoftw. Pract. Exper.
Fma“y’ over an.d b?yond metrics S.U_Ch as throthDUt an?ﬂ?] M. Benani and D. Menasce. Resource Allocation for Autonomic Data Centers
overall completion time that the traditional parallel gt Using Analytic Performance Models. Proceedings of IEEE International
try to optimize, VHPs are expected to provide responsive- Conferencg on Autonomic Computing, Se-attle (ICA-\C—OS),\J\.IJNe 2005.
ness and fairness guarantees as well. Our scheduling meEﬂl M. Bennani and D. Menacse. Autonomic Virtualized Environments. In

. i Proceedings of the IEEE International Conference on Autonomic and
anisms attempt to address these multiple goals. Autonomous Systems (ICAS 2006), Santa Clara,J0# 2006.

Amazon Elastic Compute Cloudhttp://www.nature.com/

[11] B. Buck and P. Keleher. Locality and Performance of Page- and Object-Bas€@4]
DSMs. InProc. of the First Merged Symp. IPPS/SPDP 1998ges 687-693,
1998.

A. Chandra, M. Adler, P. Goyal, and P. Shenoy. Surplus Fair Schegu
Proportional-Share CPU Scheduling Algorithm for Symmetric Muéigessors.

In Proceedings of the Fourth Symposium on Operating System Design and
Implementation (OSDI 2000), San Diego, @#ctober 2000.

Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam.
Managing Server Energy and Operational Costs in Hosting Centers. In

Proceedings of the ACM International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS 2005), Banff, Canada, Ju

2005 June 2005.

Y. Chen, A. Das, Q. Wang, A. Sivasubramaniam, R. Harper, and M. Bland.
Consolidating Clients on Back-end Servers with Co-location and Frequency
Control. InPosthe ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS 2006), June, 2066 2006.

C. Clark, K. Fraser, Steven Hand, J. Hansen, E. Jul, C. Limpachatt, @and
A. Warfield. Live Migration of Virtual Machines. IProceedings of the Second
Symposium on Networked Systems Design and Implementation (NSDI&5)
2005.

Credit Based Scheduleihttp://wiki.xensource.com/xenwiki/
CreditScheduler

[17] R. Doyle, J. Chase, O. Asad, W. Jin, and Amin Vahdat. Model-Based Resour
Provisioning in a Web Service Utility. I®roceedings of the Fourth USITS
March 2003.

K. J. Duda and D. R. Cheriton. Borrowed-virtual-time (BVT) Schauyl
Supporting Latency-sensitive Threads in a General-purpose Scheduler. In
Proceedings of the Seventeenth ACM Symposium on Operating Systems
Principles pages 261-276, New York, NY, USA, 1999. ACM Press.

R. Goldberg. Survey of Virtual Machine ReseardEEE Computerpages
34-45, June 1974.

K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum. Cellular DigResource
Management using Virtual Clusters on Shared-memory Multiprocessors.
In Proceedings of the ACM Symposium on Operating Systems Principles [44]
(SOSP’99)pages 154-169, December 1999.

S. Govindan, A. Nath, A. Das, B. Urgaonkar, and A. Sivasubramaniam. [45]
Communication-aware CPU Management in Consolidated Virtualization-based
Hosting Platforms. Technical report, Department of Computer Science and
Engineering, The Pennsylvania State University, October 2006.

(35]
[12]

(36]
[13]

(37]

[14]
(38]

[15]
(39]

[16]
(40]

[41]

[18] [42]

[19] [43]

[20]

[21]

[22] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. Enforcing Performanc
Isolation Across Virtual Machines in Xen. IRroceedings of the Seventh
International Middleware Conference, Melbourne, Australovember-

December 2006.

D. Gupta, R. Gardner, and L. Cherkasova. XenMon: QoS Monitoring and
Performance Profiling Tool. Technical Report HPL-2005-187, HP Labs,.2005

[24] Intel VT. http://www.intel.com/technology/itj/2006/
v10i3/foreword.htm

fa6]

[23] [47]

(48]

[25] The JBoss Application Servehttp://www.jboss.org

[26] M. B. Jones, D. Rosu, and M. Rosu. CPU Reservations and Time r@ist
Efficient, Predictable Scheduling of Independent ActivitiesPtaceedings of
the Sixteenth ACM Symposium on Operating Systems Principles (SOSP'97,
Saint-Malo, Francepages 198-211, December 1997.

(49]

fs01
[27] S. T. Leutenegger and M. K. Vernon. The Performance of Multiprograchm
Multiprocessor Scheduling Algorithms. BIGMETRICS '90: Proceedings of 51]
the 1990 ACM SIGMETRICS Conference on Measurement and Modeling oi{
Computer Systempages 226—236, 1990.

J. Liu, W. Huang, B. Abali, and D. K. Panda. High Performance VMM-Bgpas
I/O in Virtual Machines. InProceedings of the USENIX Annual Technical
Conference (USENIX'06), Boston, Miay-June 2006.

[29] A. Menon, A. Cox, and W. Zwaenepoel. Optimizing Network Virtualizati
in Xen. In Proceedings of the USENIX Annual Technical Conference
(USENIX'06), Boston, MAMay 2006.

[30] J. Moore, D. Irwin, L. Grit, S. Sprenkle, and J. Chase. Managingeldiise
Clusters with Cluster-on-Demand. Technical report, Department of Computer
Science, Duke University, November 2002.

28] [52]

(53]

[31] MySQL. http://www.mysqgl.com

[32] S. Nagar, A. Banerjee, A. Sivasubramaniam, and C. R. Das. A Closer Look
at Co-scheduling Approaches for a Network of Workstations SRAA '99:
Proceedings of the eleventh annual ACM symposium on Parallel digasit
and architecturespages 96—-105, 1999.

[33] M. Nelson, B. Lim, and G. Hutchins. Fast Transparent Migration fiorud!
Machines. InProceedings of the 2005 USENIX Annual Technical Confefence
pages 391-394, April, 2005.

J. Nieh and M. Lam. A SMART Scheduler for Multimedia ApplicatiodsCM
Transactions on Computer Syster2$(2):117-163, 2003.

S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design and Impiatioen
of Zap: A System for Migrating Computing Environments. Rroceedings of
Fifth USENIX Symposium on Operating Systems Design and Implefantat
pages 361-376, 2002.

P. Pradhan, R. Tewari, S. Sahu, A. Chandra, and P. Shenoy. An Oliservat
based Approach Towards Self-Managing Web Serverdrticeedings of the
Tenth International Workshop on Quality of Service (IWQoS 20d2y 2002.

C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M. Rasenb
Optimizing the Migration of Virtual Computers. IRroceedings of the 5th
Symposium on Operating Systems Design and Implement&&sember
2002.

K. Shen, H. Tang, T. Yang, and L. Chu. Integrated Resource Management
for Cluster-based Internet Services. Mmoceedings of the Fifth USENIX
Symposium on Operating Systems Design and Implementation (OSDHnBos
MA, December 2002.

S. Shende, A. Malony, J. Cuny, K. Lindlan, P. Beckman, and S. Karmesin
Portable Profiling and Tracing for Parallel Scientific Applications using-.

In Proceedings of ACM SIGMETRICS Symposium on Parallel and Disédbu
Tools (SPDT)pages 134-145, August 1998.

J. E. Smith and R. NaiVirtual Machines: Architectures, Implementations and
Applications Morgan Kauffmann, New York, 2004.

W. Smith. TPC-W: Benchmarking An Ecommerce Solutiomitp:
Ilwww.tpc.org/information/other/techarticles.asp .

P. Sobalvarro and W. E. Weihl. Demand-Based Coscheduling of Paralebdob
Multiprogrammed Multiprocessors. IRPPS '95: Proceedings of the Workshop
on Job Scheduling Strategies for Parallel Processpapes 106—126, 1995.

M. S. Squillante, Y. Zhang, A. Sivasubramaniam, N. Gautam, H. Fraane,

J. Moreira. Modeling and Analysis of Dynamic Co-scheduling in Parallel
and Distributed Environments. BIGMETRICS '02: Proceedings of the 2002
ACM SIGMETRICS International Conference on Measurement and Mgdelin
of Computer Systempages 43-54, 2002.

NYU TPC-W. http://www.cs.nyu.edu/pdsg/

B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. An
Analytical Model for Multi-tier Internet Services and its Applications. In
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS 2005), Banff, Cadada
2005.

B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource Overbooking and
Application Profiling in Shared Hosting Platforms. Rroceedings of the
Fifth USENIX Symposium on Operating Systems Design and Impleinantat
(OSDI 2002), Boston, MAecember 2002.

VMware. http://www.vmware.com/

C. Waldspurger. Memory Resource Management in VMWare ESX Server.
In Proceedings of the Fifth Symposium on Operating System Design and
Implementation (OSDI'02)December 2002.

C. A. Waldspurger and W. E. Weihl. Lottery Scheduling: Flexibtegdrtional-
share Resource Management. Aroceedings of the USENIX Symposium on
Operating System Design and Implementation (OSD)'Bidyember 1994.

A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Performance in thalDen
Isolation Kernel. InProceedings of the Fifth Symposium on Operating System
Design and Implementation (OSDI'QZ)ecember 2002.

XenSource Press Releaséhttp://www.xensource.com/news/
pressreleases.html

Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam. Improvarglrl

Job Scheduling by Combining Gang Scheduling and Backfilling Techniques.
In IPDPS ’'00: Proceedings of the 14th International Symposium onlRdra
and Distributed Processingages 133-142, 2000.

Y. Zhang, A. Sivasubramaniam, J. E. Moreira, and H. Franke. A Sinaulati
based Study of Scheduling Mechanisms for a Dynamic Cluster Environment.
In Proceedings of the 11th ACM International Conference on Supercangputi
(ICS), pages 100-109, 2000.

