
Xen and Co.: Communication-aware CPU Scheduling for
Consolidated Xen-based Hosting Platforms

Sriram Govindan Arjun R. Nath Amitayu Das
Bhuvan Urgaonkar Anand Sivasubramaniam

{sgovinda, anath, adas, bhuvan, anand}@cse.psu.edu
The Pennsylvania State University, University Park, PA, 16802.

Abstract
Recent advances in software and architectural support for
server virtualization have created interest in using this tech-
nology in the design of consolidated hosting platforms.
Since virtualization enables easier and faster application
migration as well as secure co-location of antagonistic
applications, higher degrees of server consolidation are
likely to result in such virtualization-based hosting plat-
forms (VHPs). We identify a key shortcoming in existing
virtual machine monitors (VMMs) that proves to be an
obstacle in operating hosting platforms, such as Internet
data centers, under conditions of such high consolidation:
CPU schedulers that are agnostic to the communication
behavior of modern, multi-tier applications. We develop
a new communication-aware CPU scheduling algorithm
to alleviate this problem. We implement our algorithm in
the Xen VMM and build a prototype VHP on a cluster of
servers. Our experimental evaluation with realistic Inter-
net server applications and benchmarks demonstrates the
performance/cost benefits and the wide applicability of our
algorithms. For example, the TPC-W benchmark exhibited
improvements in average response times of up to 35% for
a variety of consolidation scenarios. A streaming media
server hosted on our prototype VHP was able to satisfacto-
rily service up to3.5 times as many clients as one running
on the default Xen.

Categories and Subject DescriptorsD.4.1 [Process Man-
agement]: Scheduling; D.4.4 [Communications Manage-
ment]: Network communication; D.4.8 [Performance]:
Measurements

General Terms Algorithms, Design, Experimentation,
Performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers orto redistribute
to lists, requires prior specific permission and/or a fee.

VEE’07, June 13–15, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-630-1/07/0006. . . $5.00

Keywords Virtual machine monitor, Xen, multi-tier appli-
cation, CPU scheduler

1. Introduction and Motivation
The recently resurgent research in server virtualization has
fueled interest in using this technology to design consol-
idated hosting platforms. In this emerging hosting model,
each physical server in the cluster runs a software layer
called the Virtual Machine Monitor (VMM) that virtualizes
the resources of the server and supports the execution of
multiple Virtual Machines (VMs). Each VM runs a separate
operating system within it and the VMM provides safety
and isolation to the overlying operating systems. The devel-
opment of highly efficient VMMs [50, 7, 47] as well as the
evolution of architectural support for them [24] is helping
reduce the overheads associated with virtualization. As a re-
sult, these overheads may be far outweighed by the benefits
offered by VMMs such as the ease of application migration
and secure co-location of un-trusting services [37, 33, 15].

Cluster-based hosting platforms have received extensive
attention in several research communities such as those
dealing with operating systems [6, 13, 46, 30, 38], paral-
lel/distributed computing [5, 42, 32, 43, 53], and schedul-
ing theory [1]. With the burgeoning of various kinds of
Internet server applications that cater to domains such as
e-commerce, education, and entertainment, recent research
efforts have focused on the design of Internet data centers
that host and manage them in return for revenue. These
applications are typically communication and disk-I/O in-
tensive, adhere to highly modular software architectures
with multiple communicatingtiers, 1 and require resource
guarantees from the hosting platform to provide satisfac-
tory performance to clients who access them over the In-
ternet. The use of virtualization for cost reduction and eas-
ier management is being actively explored in such Internet
data centers as well as in those used internally by organiza-
tions to consolidate the IT infrastructure of their variousde-

1 Note that the termtier is generally used to collectively denote multiple
functionally identical components of an application. For example, the Web
tier in an e-commerce application may consist of multiple replicated Web
servers. We do not make such a distinction in this work and our techniques
apply equally well to applications with multi-component tiers.

0 100 200 300 400 500
0

5

10

15

20

25

Time (sec)

A
ve

ra
ge

 C
P

U
−

ut
ili

za
tio

n
(%

) VMM−server1
JBoss
VMM−server2
DB

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Response time (sec) for requests

C
D

F

Consolidated
host

Non−consolidated
host

0 100 200 300 400 500
0

5

10

15

20

Time (sec)

A
ve

ra
ge

 C
P

U
−

ut
ili

za
tio

n
(%

)

VMM

JBoss

DB

One of five CPU−intensive apps

(a) CPU usage: isolated servers (b) Client response times (c) CPU usage: consolidated server

Figure 1. Performance degradation of a communication-intensive application placed on a consolidated server despite
allocating sufficient resources.

partments. The design of such Virtualization-based Hosting
Platforms (VHPs) to host modern applications raises some
novel design considerations. This paper presents the design
and evaluation of mechanisms to address such issues in the
Xen VMM. We chooseXenbecause it is open source and is
increasingly popular among data center providers [2, 51].

The need for communication-aware CPU scheduling:
Server virtualization opens up the possibility of achiev-
ing higher server consolidationandmore agile dynamic re-
source provisioningthan is possible in traditional platforms.
Ensuring that the applications experience satisfactory per-
formance even under such consolidation requires the host-
ing platform to perform (i)resource requirement estimation
for the hosted applications, done either by application pro-
filing [39, 3, 46] or using analytical models [36, 17, 9, 45]
and (ii) application placementthat involves ensuring that
the requirements of co-located application tiers do not ex-
ceed the capacity of the server used to host them, usually
based on a simple aggregation of resource requirements
(deterministic or statistical) [14, 46, 38]. While these ap-
proaches have been shown to work satisfactorily under low
or moderate server utilization, they may not suffice in con-
ditions of high resource utilization that will accompany the
high degrees of consolidation likely in VHPs. Specifically,
over and beyond ensuring that we provide each application
tier with its CPU needs, an equally important consideration
is whenthis CPU capacity is provided to it.

To illustrate this, we depict the performance experienced
by an implementation of the TPC-W benchmark [41] from
New York University consisting of two tiers - a JBoss tier
that implements the application logic and interacts with the
clients and a Mysql-based database tier that stores infor-
mation about items for sale and client information - under
conditions of high consolidation. Figure 1(a) presents the
CPU usage of the two tiers when the application was run
with each tier on a separate dedicated physical server run-
ning the Xen VMM [7]. We then ran this application with all
its tiers consolidated on a single server running Xen along
with 5 CPU-intensive applications, while ensuring that the
two tiers received the same resource allocations. We used
a reservation-based scheduler in Xen to achieve the same

CPU allocation as in Figure 1(a) - Figure 1(c) confirms this.
Same memory was ensured by statically providing each tier
of TPC-W the same virtual RAM size. Finally, the network
and disk bandwidths received were the same in both cases,
since the5 new applications did not perform any I/O ac-
tivity. Figure 1(b) compares the performance experienced
by the clients of this application under the two scenarios.
We find a significant degradation in the response time of
TPC-W under the consolidated scenario.Why did the per-
formance degrade despite providing the same resource al-
locations?The reason for this is that for applications with
communicating components, providing enough CPU alone
is not enough - an equally important consideration is to
provide CPU at theright time. Due to the presence of the
5 CPU-intensive applications on the consolidated server,
the TPC-W tiers spend large amounts of time waiting for
a chance to communicate, resulting in degraded response
times. Since these delays depend on the order in which the
CPU scheduler chooses competing co-located application
tiers, we call such delays asscheduling-induced delays. We
realize that similar delays could occur in traditional oper-
ating systems. However, virtualization enables secure co-
location of applications written for heterogeneous operating
systems, something that was more difficult to realize in tra-
ditional hosting platforms. Hence, virtualized environments
are more likely to experience higher degrees of consolida-
tion, and consequently are more likely to face this problem.

Problem:Can a server in a VHP schedule hosted VMs in
a communication-aware manner to enable satisfactory ap-
plication performance even under conditions of high con-
solidation, while still adhering to the high-level resource
provisioning goals in a fair manner?

1.1 Research contributions

We develop a CPU scheduling algorithm for a VMM that
incorporates the I/O behavior of the overlying VMs into its
decision-making. The key idea behind our algorithm is to
introduce short-term unfairness in CPU allocations by pref-
erentially scheduling communication-oriented applications
over their CPU-intensive counterparts. Our algorithm works
solely based on communication events local to the server.

Furthermore, it maintains an administrator-specified upper
bound on the time-granularity over which deviations from
fair CPU allocations are allowed.

We identify efficient ways of implementing this algo-
rithm in the state-of-the-art Xen VMM. We use the Xen
VMM, enhanced with our algorithm, to build a proto-
type VHP of a collection of physical servers. We explore
the pros and cons of our implementation by experiment-
ing with realistic and representative Internet sever applica-
tions/benchmarks. Our evaluation demonstrates the benefits
of our approach in improving the management of highly
consolidated hosting platforms. For example, the TPC-W
benchmark exhibited improvements in average response
times of up to 35% for a variety of consolidation scenarios.
A streaming media server hosted on our prototype VHP
was able to satisfactorily service up to3.5 times as many
clients as one running on the default Xen.

1.2 Outline

The rest of this paper is organized as follows. We present
background material on Server virtualization, the Xen
VMM and VHPs in Section 2. We discuss the design and
implementation of our communication-aware CPU schedul-
ing in Section 3. We describe our experimental setup and
evaluation in Section 4. We present related work in Sec-
tion 5. Finally, we present concluding remarks in Section 6.

2. Background and System Overview
In this section, we provide an overview of Server virtualiza-
tion, the Xen VMM and VHPs.

2.1 Server Virtualization

Virtualization refers to the creation of a virtual (rather than
actual) version of a resource/entity, such as an operating
system, a server, a storage device, network resources, etc.In
our research, we use this term to denote thevirtualization of
a server at the operating system level. This is achieved by a
software layer called the Virtual Machine Monitor (VMM)
that runs directly on server hardware. A VMM virtualizes
the resources of a physical server and supports the execu-
tion of multiple virtual machines (VMs) [19, 7, 40, 50].
Each VM runs a separate operating system within it and
the VMM provides safety and isolation to the overlying op-
erating systems. The VMM manages the sharing of CPU,
memory, and I/O devices among the VMs. Each VM is pro-
vided a set of virtual I/O devices for which its operating
system implements drivers. VMMs have been a topic of ex-
tensive research for over four decades due to their numerous
uses including secure co-location of operating systems or
applications, facilitating migration, enabling the existence
of legacy applications on newer platforms, etc [19, 20, 37,
8, 40, 7, 15, 33, 35].

2.2 The Xen VMM

We use the Xen VMM in our research [7] and conduct the
remaining discussion in its context. Figure 2 shows two
VMMs supporting three VMs (calledguest domains or sim-

Figure 2. Illustration of hosting in a Xen-based VHP.

ply Domainsin Xen) each. One of the VMs, calledDo-
main0, implements the real device drivers, communicates
with the actual hardware and does the translation between
virtual and real I/O activity.

Network I/O virtualization in Xen: Each guest domain
implements a driver for its virtual NIC that is called itsnet-
front driver. Domain0 implements anetbackdriver which
acts as an intermediary between netfront drivers and the de-
vice driver for the physical NIC. The device driver, also
part of Domain0, can access the physical NIC but inter-
rupts from the NIC are first handled by the hypervisor
which in turn sends virtual interrupts viaevent-channels
to Domain0. Event-channels are an asynchronous notifi-
cation mechanism used for communication between do-
mains. While these event-channels are strictly for notifica-
tion, Xen uses a shared-page mechanism callednetwork-
I/O-rings (one each for reception and transmission per do-
main) for inter-domain message passing. To enable fast I/O,
Xen employs a zero-copy, page-flipping mechanism to ex-
change pages of data between the guests’ netfront drivers
andDomain0’s netback driver.

Now we describe the key steps in network transmission
and reception in the context of Xen. When a network packet
arrives at the physical NIC for any domain, an interrupt is
delivered to the hypervisor which in turn notifiesDomain0
of packet arrival as described above. Subsequently, when
Domain0 is scheduled, netback checks the destination of
the packets that have arrived.Domain0notifies the recip-
ient guest domains and updates the reception-I/O-rings to
copy the packets into their address spaces. When the target
guest domain is scheduled next, it sees packets that have ar-
rived for it and processes them as any standard OS would
do. Similarly, when packets are sent by a guest domain, it
notifiesDomain0of the packets to be transmitted, again via
its event-channel. Upon its next scheduling,Domain0de-
livers the packets to the NIC. Figure 3 presents these steps
in detail.

N I C N e t b a c kN e t f r o n tA p p l i c a t i o nG u e s t D o m a i n D o m a i n 0R e c e p t i o n � I / O � r i n gE v e n t C h a n n e l s
H y p e r v i s o rP a c k e t s a r r i v eo n t h e N I C I n t e r r u p t D e l i v e rs i g n a l1 2 3

45678
N I C N e t b a c kN e t f r o n tA p p l i c a t i o nG u e s t D o m a i n D o m a i n 0T r a n s m i s s i o n B I / O B r i n gE v e n t C h a n n e l sP a c k e t S e n to v e r t h e n e t w o r k P a c k e t s e n tt o N I C

1 2 3 45
67

(a) Reception (b) Transmission

Figure 3. Network I/O virtualization in Xen.

2.3 A virtualized hosting platform

Our hosting model assumes a large cluster of high-end
servers (with dual processors and a few GB of memory) in-
terconnected by a high bandwidth network for communica-
tion. In addition, many of these servers are also connected to
a consolidated high capacity storage device/utility through
a Storage Area Network which facilitates data sharing and
migration of applications between servers without explicit
movement of data. These servers are connected via some
gateway to the Internet to service end-user requests from
clients of the application service providers.

Each server in our VHP runs a Xen hypervisor on top of
the native hardware. Each application tier and its associated
OS run within a Xen guest domain. Figure 2 provides an
illustrative example. Our enhanced hypervisor implements
a modified CPU scheduler to achieve communication-aware
scheduling of domains.

3. Communication-aware Scheduling in Xen
We assume that the VMM provides a CPU scheduler that al-
lows applications to specify guarantees on the CPU alloca-
tions that they desire for their tiers from the platform. Sev-
eral such schedulers exist, most notably proportional-share
schedulers and reservation-based schedulers [18, 49, 12, 26,
34]. The problem of determining the CPU allocations ap-
propriate for the performance needs of an application is
orthogonal to this research. We point the reader to exten-
sive existing work in this area [46, 38]. The Xen hypervisor
implements an algorithm calledSimple Earliest-Deadline-
First (SEDF) that allows domains to specify lower bounds
on the CPU reservations that they desire2. Specifically, each
domain specifies a pair (slice, period) asking forsliceunits
of the CPU everyperiodtime units. The hypervisor ensures
that the specified reservation can be provided to a newly
created domain (or a domain that desires to change its CPU
reservation). We assume that a domain is not admitted if
its reservation cannot be satisfied. The residual CPU capac-
ity is shared among the contending domains (includingDo-

2 We use the termdomain to denote a guest domain as well as thetier
hosted within it henceforth; we will use the term tier only when a distinc-
tion is necessary.

main0) in a round-robin fashion. We now develop a CPU
scheduling algorithm that incorporates the communication
activities of the hosted domains into its decision-making.
We build our algorithmon top ofSEDF in the sense of
retaining SEDF’s basic feature of guaranteeing the speci-
fied slice to a domain over everyperiod. Our algorithm at-
tempts to preferentially schedule communication-sensitive
domains over others while ensuring that the resulting un-
fairness in CPU allocations is bounded; the latter is ensured
by exploiting the guarantees offered by SEDF.

The Xen hypervisor also implements a proportional
share scheduler calledBorrowed Virtual Time(BVT) [18]
scheduler. This scheduler has a set of parameters which
can be configured to provide low latency dispatch for the
I/O intensive domains. However, the effectiveness of this
approach significantly depends on the careful selection of
these parameters. Furthermore, these parameters may also
need to be dynamically adjusted to suit the varying applica-
tion I/O demands. These are non-trivial activities and may
require frequent administrator intervention. On the other
hand, our scheduler tunes itself to the applications’ current
I/O intensities.

The Latest version of Xen includes a proportional share
scheduler called theCredit-based[16] Scheduler. It does
better load balancing on multi-processor systems than ear-
lier schedulers and also provides mechanisms for low la-
tency dispatch for I/O intensive domains. TheCredit sched-
uler was not available during the time of our implementa-
tion. In future, we intend to analyze how to incorporate our
communication-aware scheduling technique in this sched-
uler as well.

We begin our discussion by defining the goal of our
scheduler and identifying ways in which it might achieve
it. Following this, we describe various components of our
scheduler in detail along with the considerations that arise
for their implementation in the Xen hypervisor.

3.1 Classifying scheduling-induced delays

In a consolidated server, a domain can experience scheduling-
induced delays (as was discussed in Section 1) in its com-
munication activities due to the CPU contention with other

T P C WJ a v a t i e r D o m a i n 0
T P C WD a t a b a s e t i e r D o m a i n 0

M a c h i n e 1t i m e l i n e
d 3 d 4 d 5 d 6d 2d 1 D o m a i n 0M a c h i n e 2t i m e l i n e

Figure 4. Sources of scheduling-induced delays.

co-located domains, includingDomain0. The goal of our
CPU scheduler is toreduce the aggregate scheduling-
induced delay for the hosted domains while still providing
guarantees on CPU allocations.

With the background presented in Section 2.2 and Fig-
ure 3, we identify three sources of scheduling-induced de-
lays.

1. Delay associated with the scheduling of Domain0:
This is either (i) the duration between a packet recep-
tion at the physical NIC and whenDomain0 is sched-
uled next to set up an event channel notification for
the recipient guest domain or (ii) the duration between
when a transmitting domain copies a packet into the
transmission-I/O-ring ofDomain0and whenDomain0
gets scheduled next to actually send it over the physi-
cal NIC. These delays can be reduced by (i) scheduling
Domain0soon after a packet is received by the physical
NIC and (ii) soon after a domain does a send operation
over its virtual network interface, respectively.

2. Delay at the recipient: This is the duration between
when Domain0 sets up an event channel notification
for the recipient domain (on packet arrival) and when
the recipient domain gets scheduled next to receive the
packet. This delay can be reduced by scheduling the
recipient domain soon after the reception of a packet for
it in Domain0.

3. Delay at the sender: This is the extra delay, before
a domain sends a network packet (on its virtual NIC),
induced by the hypervisor scheduling other domains in
between, compared to running this domain in isolation.
Notice that unlike reception, sending a packet is an event
that can only be anticipated. This delay can be reduced
by anticipating when a domain would be ready to send a
packet and scheduling it close to that time.

With this intuition, we now consider ways to reduce each
of these three types of delay in detail. Figure 4 presents
examples of these delays for a two-tiered TPCW application
with a Java tier and a database tier hosted on a separate
physical machine. Here, delaysd1, d2, d4, and d5 are of
type 1, while delaysd3 andd6 are of type2. There are no
type3 delays in this example.

3.2 Preferential scheduling of recipient

Scheduling a domain close to the reception of a packet is
easy to achieve in theory, since this is purely reactive. How-
ever, we would like to devise a general approach that can
choose between multiple recipient domains.Which domain
should be chosen out of multiple recipients?Our scheduler
implements a naturally appealing heuristic that picks the
domain that is likely to experience the most overall reduc-
tion in scheduling-induced delay, that is, the domain that
has received the most number of packets.

It should be pointed out that our approach does not cause
a domain receiving high-intensity traffic to starve other do-
mains. Since we ensure that our algorithm continues to pro-
vide the reservations guaranteed by the default SEDF, such
a domain will only be preferentially chosen so long as it has
received less than itsslice for the ongoingperiod. The ex-
pected outcome of this approach is to delay the scheduling
of non-recipient domains in favor of the recipients. The re-
sulting unfairness in CPU allocations is limited to durations
smaller than aperiod.

Implementation considerations: In Xen, each domain,
including Domain0, is given a page that it shares with the
hypervisor. We use these pages to maintain various I/O re-
lated statistics needed by our scheduler and call thesebook-
keeping pages. For keeping track of the number of pack-
ets received and waiting withinDomain0, we introduce
network-reception-intensityvariables, one for each domain,
stored in the book-keeping page ofDomain0. These vari-
ables are initialized to zero upon domain start up by the hy-
pervisor. Subsequently, these variables are updated as fol-
lows. WheneverDomain0runs (we will describe when this
happens momentarily), the netback driver figures out which
domains have received packets since the last timeDomain0
was de-scheduled and uses the page-flip mechanism to copy
pages containing them to the appropriate domains. It then
uses the number of pages flipped with each domain as an
indicator of the number of packets3 received by that do-
main and increments thenetwork-reception-intensityvari-
able of the corresponding recipient domain in the book-
keeping page ofDomain0. Whenever a recipient domain
runs next, its netfront driver processes some (or all) of the
packets received by it (as described in Section 2), main-
taining a count of the number of packets processed in its
own book-keeping page. Finally, when this domain is de-
scheduled, the hypervisor reads this count and decrements
the network-reception-intensityvariable for the domain to
reflect its pending value (this is in the book-keeping page of
Domain0). See Figure 5 for a concise illustration of this.

3.3 Anticipatory scheduling of sender

As noted earlier, reducing the delay at a sender domain re-
quires us toanticipatewhen this domain would have data
to send next. Consequently, the efficacy of this approach is

3 This works accurately for default Xen where each packet (Ethernet
frame) gets an entire page [7] regardless of its size. This becomes an esti-
mate in some optimized versions of Xen [29].

Figure 5. Implementation of our scheduler.

intimately dependent on how well the scheduler can predict
such an event for a domain. While it is certainly tempting
to try sophisticated prediction techniques, we take a sim-
ple low-overhead approach in this paper. We use a simple
last-value-likeprediction in which the number of packets
sent by a domain during its last transmission is used as a
predictor of the number of packets that it would transmit
the next time it is ready to send. We use the duration∆tx

between the last two transmission operations (note that any
such event may involve the transmission of multiple pack-
ets) by a domain (call these time instantsTtx and Ttx−1

respectively,tx is the number of transmission events since
some milestone, such as a domain start up) as a predictor
of the duration over which the domain is likely to indulge
in a transmission again (i.e., [Ttx, Ttx + ∆tx]). Similar to
our approach for reducing the scheduling-induced delay at
a sender, when multiple domains are anticipated to trans-
mit, we could choose to schedule the one that is expected
to transmit the most packets. Also, the fairness embedded
in our algorithm will limit the negative impact of any short-
term unfairness caused by anticipatory scheduling of sender
domains to durations less than aperiod.

Implementation considerations: We introduce an addi-
tional variable calledactual-network-transmit-intensityin
the book-keeping page of each guest domain. These vari-
ables are initialized to zero at domain start up and up-
dated as follows. When a guest domain transmits a net-
work packet, the netfront driver of the domain copies it
to its transmit-I/O-ring, which is shares withDomain0,
and increments theactual-network-transmit-intensityin
its book-keeping page by one. Additionally, we introduce
a anticipated-network-transmit-intensityvariable for each
guest domain in the book-keeping page ofDomain0, also
initialized to zero at domain start up. Whenever a guest
domain is de-scheduled, the hypervisor adds the value of
its actual-network-transmit-intensityvariable to the corre-
spondinganticipated-network-transmit-intensityvariable in
Domain0’s book-keeping page.

3.4 Scheduling of Domain0

As depicted in Figures 3(a),(b) and Figure 4,Domain0has
a crucial role in ensuring the timely delivery of received
packets to domains as well as transmitting the packets sent
by them (over their virtual network interfaces) on the phys-
ical interface. By default, the Xen scheduler employs a high
reservation of (15 msec,20 msec) forDomain0to ensure its
prompt scheduling. Additionally, we would like to preferen-
tially scheduleDomain0at times when it is likely to be on
the critical path as far as our goal of minimizing scheduling-
induced delays is concerned. We extend our basic approach
of scheduling the domain likely to reduce the delays for
most packets, to includeDomain0as well. To achieve this,
we identify two kinds of packets that would be processed
whenDomain0gets scheduled: (i) packets written by guest
domains to their virtual NICs and (ii) packets received for
delivery to domains and waiting in their reception-I/O-ring
within Domain0. Note that only forDomain0, transmission
event is deterministic whereas for the guest VMs, it could
only be anticipated.

Implementation considerations: When a packet arrives
at the NIC card for any domain, an interrupt is delivered
to the hypervisor which increments thenetwork-reception-
intensity variable of Domain0 by 1 in the book-keeping
page ofDomain0. Notice the difference in how thenetwork-
reception-intensityfor Domain0 is incremented compared
to those for the guest domains. Additionally, whenever a
guest domain is de-scheduled, the hypervisor increments
the network-transmission-intensityfor Domain0 by that
of this domain (we already described how this quantity
is updated). It should be clear by now that this update
occurs in the book-keeping page ofDomain0. As with
other variables,network-reception-intensityand network-
transmission-intensityfor Domain0are initialized to zero
when it starts.

Having explained these book-keeping activities, we now
describe how the scheduler uses them in its decision-
making. Whenever the scheduler is invoked, it simply ex-
amines the book-keeping page ofDomain0. Notice how
all the I/O statistics needed by our scheduler, maintained
in various book-keeping pages, eventually get propagated
to this page due to the mechanisms described above. Our
scheduler picks the domain with the highestnetwork inten-
sity, which is the sum of: (i)network-reception-intensity
and anticipated-network-transmission-intensityfor guest
domains and (ii)network-reception-intensityandnetwork-
transmission-intensityfor Domain0. Figure 5 presents an
example to help understand the overall implementation of
the scheduler. Note that, after scheduling a domain based on
its book-keeping variables, these variables are later adjusted
to reflect the completed network activities. This ensures that
we do not accumulate history and our scheduling is based
only on recent network activities.

We are now ready to answer the general question that
our scheduler must address, namely,which domain among
possibly multiple runnable domains - Domain0, recipient

domains, and (anticipated) sender domains - should be
scheduled?We propose a “greedy” approach which picks
the domainD that satisfies the following two conditions.

� Respect Reservations:SchedulingD would not violate
the CPU reservations of any of the domains.

� Minimize Delays:SchedulingD will help reduce the
scheduling-induced delay for themostpackets. This is
the greedy aspect of our algorithm that was mentioned
above.

3.5 Salient features and alternatives

We now present some salient features of our algorithm and
discuss some alternate design choices.

Co-ordinated scheduling and other benefits:The goal of
our algorithm is reminiscent of that of the gang schedul-
ing and co-scheduling algorithms developed in the par-
allel/distributed systems literature. In particular, like im-
plicit co-scheduling algorithms, it is expected to achieveco-
ordinated scheduling of various communicating tiers of a
multi-tier application. We compare our work with this body
of research in more detail in Section 5. Being completely
distributed imparts our algorithm the usual merits associ-
ated with such a design, including the lack of high-overhead
and complex global synchronization mechanisms, the ab-
sence of a single point of failures, and the potential to be
highly scalable.

A side-effect of our design is the preferential scheduling
of I/O-intensive domains near the beginning of aperiod.
This had the beneficial effect of significantly reducing the
number of domain context-switches in a consolidated server
with the corresponding improvement in efficiency due to
fewer address space changes (and associated cache pollu-
tion and TLB flushes).

Alternative design choices: A possible pitfall of our ap-
proach arises from the fact that it acts based solely onim-
mediatereception/transmission intensity. For instance, it
preferentially schedules a domain receiving high-intensity
traffic even if another domain had received packets ear-
lier. Alternative approaches that incorporate the time that
the packets intended for a domain have been waiting in the
reception-I/O-ring of a domain also into scheduling deci-
sions are certainly possible. We treat these as outside the
scope of our current investigation and intend to evaluate
them in our future work. A key issue to appreciate here is
that our algorithm continues to provide the CPU reserva-
tion guarantees offered by SEDF which ensures that a do-
main performing high-intensity network activity would not
induce an unbounded delay in the scheduling of the other
domains, since they are guaranteed their slice time units
within their period, only that it could be delayed to the end
of their period.

4. Experimental Evaluation
4.1 Experimental setup

Our experimental testbed consists of a pair of Xen hosted
servers. Each server has dual Xeon 3.4 GHz CPUs with
2 MB of L1 cache, 800 MHz Front Side Bus, and 2 GB
RAM. For our experiments, we pinned all domains to a sin-
gle CPU. Extending our communication-aware scheduler to
multi-processors is part of future work. The machines were
setup to use Xen 3.0.2 and are connected via Gigabit Ether-
net. Each of our experimental machines hosts 6-8 VMs with
each VM assigned between 120 MB to 300 MB of RAM de-
pending on its requirement. Note that although real-world
applications are likely to require larger amounts of RAM,
they would also be hosted on servers with correspondingly
larger memory than is available on the servers in our re-
search lab. Our servers are representative of those used
in many hosting platforms except possibly having smaller
RAM. We deliberately choose applications whose memory
footprints are small enough to allow us to consolidate 6-8
of them on a single machine while meeting their CPU, disk,
network, and memory needs. Finally, the applications that
we experiment with have CPU and I/O needs that are large
enough to make it prohibitive to host hundreds of them on
servers employed in data centers as explored in some recent
research [50]. Based on these observations, we deem it rea-
sonable to expect degrees of consolidation of at most a few
tens of applications.Domain0 is given 320 MB of RAM.
The domains and the physical hosts have unique IPs and
the domains communicate via bridge networking.

Applications and workloads: In order to measure im-
provements in performance and server consolidation we
use two applications: (i) a two-tiered implementation of the
TPC-W benchmark [41] representing an online bookstore
developed at New York University [44], and (ii) a streaming
media server. These simulate the kind of real world appli-
cations that are likely to be hosted in VHPs. Additionally,
we use some domains running CPU-intensive applications
for illustrative purposes in some of our experiments.

Our chosen implementation of TPC-W is a fully J2EE
compliant application, designed using the “Session Facade”
pattern. Session handling is provided by the Apache/ Tom-
cat servlet container. We configure the application using
JBoss 3.2.8SP1 [25] for the application logic tier and MySql
4.1 [31] for the database tier. We use the workload gener-
ator provided with TPC-W to simulate multiple concurrent
browser clients accessing the application.

We implement a simple, multi-threaded streaming me-
dia server and accompanying client in Java. Our stream-
ing media server spawns a thread to stream data to each
client. The client program implements a buffer and starts
consuming data only when the buffer is filled. If, during a
run, the buffer becomes empty (buffer under-run), the client
waits till it fills before continuing consumption. Each buffer
under-run event is seen as a playback discontinuity and its
performance can be measured as a function of how many
of these the client experiences while reading streaming data

(a) Client: Buffer Size (b) Server: Transmission time

(c) Client: Cumulative
data

(d) Server: No. Clients supported

Figure 6. Performance and scalability improvement for
streaming media server.

from the server. The server streams data at a constant rate
of 3.0 Mbps per client. By default, each client is assumed
to use a buffer of size 8 MB. For all experiments, we report
statistics collected over 20 minute runs.

4.2 Performance improvements

To measure the performance benefits due to our sched-
uler, we run several experiments with TPC-W under various
degrees of consolidation and compare the client response
times with those on default Xen. Recall that in Figure 1,
we showed how consolidating the tiers of a TPC-W appli-
cation along with several CPU-intensive guest domains on
one physical host causes the response times to deteriorate
significantly. We present the results of repeating this ex-
periment with our scheduler in Table 1. We find that our
scheduler is able to co-ordinate the communication events
between the tiers of TPC-W, helping reduce the response
times of requests. We report the average,95th percentile,
and maximum values of the observed response times. Simi-
lar benefits were found when multiple instances of the TPC-
W application are co-located in a single physical server.

Scheduler Avg. (msec) 95
th (msec) Max. (msec)

Modified SEDF 869 5720 12778
Default SEDF 1319 7149 26158

Percentage Improvement 34.11 19.98 51.15

Table 1. Performance of the TPC-W application.

Next, we investigate the benefits of communication-
aware scheduling for our streaming media server. We dis-
cuss a representative set of experiments. In this discussion,
the domain hosting the media server competes with 7 CPU-

intensive domains. Data is streamed to 45 clients at a con-
stant rate of 3.0 Mbps each over a period of 20 minutes. 45
is the maximum number of clients that the server running on
the modified hypervisor can support with minimal perfor-
mance degradation experienced by the clients (one buffer
under-run in 20 minutes). We determine this by repeating
the experiment with a varying number of clients (reducing
the number in each repetition) till the server can support
them all to the degree mentioned above. We measure the
number of buffer under-runs at each client. We plot this in
Figure 6(a) for the default and modified schedulers as noted
at a representative client. Whereas with default Xen, a client
experiences 11 buffer under-runs on average, our scheduler
reduces this number to 1 on average.

Figure 6(c) shows the cumulative data received by the
selected client and depicts the number of times the client
experienced discontinuities. Clearly, our scheduler provides
much better end-user experience when compared to the de-
fault scheduler. Figure 6(b) plots the CDFs for the trans-
mission times of data units (3MB) under the two schedul-
ing policies, allowing us to appreciate the reduction in
scheduling-induced delays caused by our scheduler. This
graph shows that the enhanced scheduler enables the server
to send 95% of its data units under25 msec, while the de-
fault scheduler is able to send 95% of its data units under
about2300 msec, a significant difference in data delivery
performance.

Finally, we vary the number of clients and measure their
performance to determine any impact our scheduler might
have on the scalability of the streaming server. The client
buffer size was kept at 6 MB for this set of experiments.
Figure 6(d) compares the number of clients for which the
streaming server could support an SLO of at most one
playback discontinuity during the delivery of a movie. As
shown, the communication-aware scheduling improves the
effective capacity of the streaming server from 18 clients
(when hosted on default Xen) to 60 clients (when hosted on
our modified hypervisor).

Feature enabled Time to experience a discontinuity (min)
Only Domain0Optimization 14.5

Only anticipation 4
Combination of above two 17

Table 2. Examination of performance with different com-
binations of our optimizations enabled.

Next, we conduct experiments to ascertain the relative
contributions of the various components of our overall
scheduling algorithm. Table 2 presents our observations for
the streaming media server serving 45 clients. We repeat the
experiment thrice, each time with a different combination of
our optimizations enabled: (i) only preferential scheduling
of Domain0, (ii) only anticipatory scheduling, and (iii) both
of the above. We use the average time for a client buffer to
under-run as the metric and find that preferential scheduling
of Domain0is crucial to reduce scheduling-induced delays.
Anticipatory scheduling, while useful, is ineffective unless
Domain0is scheduled to complement it. We would like to

Figure 7. Improved consolidation for TPC-W.

re-emphasize that merely providing a high CPU reserva-
tion of (15, 20) toDomain0does not ensure that it gets
scheduled at the right times. Our optimization, described
in Section 3.4, indeed plays a crucial role in reducing the
delays associated with the scheduling ofDomain0.

4.3 Improved consolidation

We use the same workload for TPC-W as in the last sec-
tion. We vary the number of CPU-intensive domains con-
solidated with the tiers of TPC-W from 0 onwards. We pick
an SLO of the average response time being 1 sec. Figure 7
shows the results of our experiments.

We find that while with default Xen, we were able to
consolidate 4 CPU-intensive domains, with our modified
hypervisor, we were able to add an extra CPU-intensive do-
main, an improvement of 25% in the resulting consolida-
tion. We have observed similar improvements in consolida-
tion for: (i) TPC-W subjected to different workloads and (ii)
the streaming media server.

4.4 Evaluation of fairness guarantees

Next, we present another facet of the experiment conducted
in Section 4.2 with the streaming media server handling 45
clients.Do the performance improvements for the streaming
media server upon using our scheduling come at the cost of
reduced CPU allocations for the competing CPU-intensive
domains?The results presented in Figure 8 address this
fairness issue. As seen in Figure 8(a), the CPU-intensive
domains continue to receive CPU allocations close to their
consumptions on default Xen. There is a decrease of less
than 1% in their allocations and our algorithm ensures that
they continue to receive CPU more than their reservations.
The accumulated 4-5% CPU stolen from these domains
is utilized by the streaming media server andDomain0to
achieve the substantial improvement in performance and
scalability as described earlier (see Figure 8(b)).

We conduct similar experiments for evaluating the fair-
ness of CPU allocations with the TPC-W application. We
present these results in Table 3. The TPC-W is consolidated

(a) CPU-intensive

(b) Streaming server

Figure 8. Fairness in CPU allocation for CPU-intensive
domains consolidated with the streaming media server.

with 5 CPU-intensive domains and subjected to the stan-
dard TPC-W workload as in Section 4.2. We see that our
scheduler is able to match the fairness guarantees provided
by default SEDF while improving the performance seen by
the clients of TPC-W as described earlier. This is an effec-
tive demonstration of the benefit of communication-aware
scheduling - our scheduler is providing essentially the same
CPU allocation to TPC-W, but by changing the order in
which CPU is assigned, significant performance and con-
solidation gains are being realized. The last column in the
table presents the aggregate CPU utilization on the server
(nearly identical for both cases).

CPU Usage Dom0 Jboss DB CPU. Agg.
Def.(mean) 0.65 1.96 4.43 17.58 94.94

Def.(variance) 0.13 11.57 40.07 3.30

Mod.(mean) 0.65 1.68 4.53 17.89 96.31
Mod.(variance) 0.17 10.35 48.31 3.38

Table 3. Average CPU utilization (%) for different do-
mains running TPC-W with the default and the modified
schedulers.Legend:Def.=Default SEDF; Mod.=Modified
SEDF; CPU.=One among the 5 CPU-intensive VMs;
Agg.=Aggregate CPU usage of the Server.

4.5 Reduced context switching

In Section 3.5, we had hypothesized that our scheduler
may have the beneficial side-effect of reducing the overall
domain context switches by coalescing the scheduling of
communication-intensive domains towards the beginning of
a period. We conduct measurements to validate this using
XenMon [23]. For a server hosting our streaming server
with 7 CPU-intensive domains, we found that the number of
domain context switches were reduced by almost 33% when
using our modified hypervisor compared to default Xen. We
postulate that with more consolidated communicating tiers,
we might see a further reduction in the number of context
switches.

5. Related Work
Earlier , we pointed out aspects of existing research on non-
virtualized hosting platforms relevant to the design of a
VHP. In this section, we discuss additional existing research
on virtualization and scheduling that is closely related to
this paper.

Efficient virtualization techniques As mentioned earlier,
virtualization is being actively researched and employed for
designing consolidated hosting environments [15, 51, 10].
Consequently, there have been several prior studies propos-
ing and evaluating novel enhancements to virtualization
platforms such as Xen and VMware [48, 28]. Another rel-
evant body of work is concerned with reducing the over-
heads of virtualization [29] and accounting them accurately
to hosted VMs to ensure fair CPU allocations [22, 23, 21].

Scheduling in parallel systems The need for co-ordinated
scheduling of communicating entities has been extensively
looked at in the context of parallel applications running on
tightly coupled multi-processors (whether it be message-
passing or shared-memory systems [11]) as well as clus-
ters. While earlier work attempted this by explicitly per-
forming periodic synchronization [27, 52], subsequent re-
laxations explored the possibility of local scheduling at
each node based on communication events to achieve sim-
ilar goals [4, 42, 32, 43, 53]. While the goals of our work
are similar, to the best of our knowledge, this is the first
study to explore these ideas in the domain of the Xen VMM
for multi-tier applications. These applications have unique
characteristics including being more loosely coupled than
the ones previously studied and tiers with heterogeneous re-
source needs. Additionally, VHPs are likely to support sub-
stantially higher levels of consolidation/multi-programming
at each node than the platforms studied in earlier work.
Finally, over and beyond metrics such as throughput and
overall completion time that the traditional parallel systems
try to optimize, VHPs are expected to provide responsive-
ness and fairness guarantees as well. Our scheduling mech-
anisms attempt to address these multiple goals.

6. Conclusions
Advances in virtualization technologies have created a lot
of interest among Internet data center providers to exploit
features of VMMs for cost-cutting via improved consolida-
tion. We identified one major shortcoming in the Xen VMM
that proves to be an obstacle in its efficient operation when
employed in a VHP: The VM scheduler in Xen is agnostic
of the communication behavior of modern, multi-tier appli-
cations and also the scheduling of the privileged domain is
in the critical path of every network operation.

We developed a new communication-aware CPU schedul-
ing algorithm for the Xen VMM. Using experiments with
realistic Internet server applications and benchmarks, we
demonstrated the performance/cost benefits and the wide
applicability of our algorithms. For example, the TPC-W
benchmark exhibited improvements in average response
times of up to 35% for a variety of consolidation scenarios.
A streaming media server hosted on our prototype VHP
was able to satisfactorily service up to3.5 times as many
clients as one running on the default Xen. The source code
for our implementation is publicly available.

Acknowledgements
We would like to thank the anonymous reviewers for their
detailed comments which helped us improve the quality
of the presentation. This research was funded in part by
NSF grants 0103583, 0509234, 0325056 and 0429500.
Dr.Bhuvan Urgaonkar would also like to acknowledge a
start-up grant provided by the CSE Department, Pennsylva-
nia State University to support his research.

References
[1] M. Adler, Y. Gong, , and A. Rosenberg. Optimal Sharing of Bags of Tasks

in Heterogeneous Clusters. InProceedings of the Fifteenth Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA), Scheduling I,
pages 1–10. ACM Press, 2003.

[2] Amazon Elastic Compute Cloud.http://www.nature.com/ .

[3] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S. Lueng,
M. Vandervoorde, C. Waldspurger, and W. Weihl. Continuous Profiling:
Where Have All the Cycles Gone? InProceedings of the 16th ACM Symposium
on Operating Systems Principles, pages 1–14, October 1997.

[4] A. Arpaci-Dusseau. Implicit Coscheduling: Coordinated Scheduling with
Implicit Information in Distributed Systems.ACM Transactions on Computer
Systems, 19(3):283–331, 2001.

[5] A. Arpaci-Dusseau and D.E. Culler. Extending Proportional-Share Scheduling
to a Network of Workstations. InProceedings of Parallel and Distributed
Processing Techniques and Applications (PDPTA’97), Las Vegas, NV, June
1997.

[6] G. Banga, P. Druschel, and J. Mogul. Resource Containers: A New Facility
for Resource Management in Server Systems. InProceedings of the Third
Symposium on Operating System Design and Implementation (OSDI’99), New
Orleans, pages 45–58, February 1999.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebuer,
I. Pratt, and A. Warfield. Xen and the Art of Virtulization. InProceedings of
the Nineteenth Symposium on Operating Systems Principles (SOSP), 2003.

[8] R. Barr, Z. J. Haas, and R. van Renesse. JiST: An Efficient Approach to
Simulation Using Virtual Machines: Research Articles.Softw. Pract. Exper.,
35(6):539–576, 2005.

[9] M. Benani and D. Menasce. Resource Allocation for Autonomic Data Centers
Using Analytic Performance Models. InProceedings of IEEE International
Conference on Autonomic Computing, Seattle (ICAC-05), WA, June 2005.

[10] M. Bennani and D. Menacse. Autonomic Virtualized Environments. In
Proceedings of the IEEE International Conference on Autonomic and
Autonomous Systems (ICAS 2006), Santa Clara, CA, July 2006.

[11] B. Buck and P. Keleher. Locality and Performance of Page- and Object-Based
DSMs. InProc. of the First Merged Symp. IPPS/SPDP 1998), pages 687–693,
1998.

[12] A. Chandra, M. Adler, P. Goyal, and P. Shenoy. Surplus Fair Scheduling: A
Proportional-Share CPU Scheduling Algorithm for Symmetric Multiprocessors.
In Proceedings of the Fourth Symposium on Operating System Design and
Implementation (OSDI 2000), San Diego, CA, October 2000.

[13] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam.
Managing Server Energy and Operational Costs in Hosting Centers. In
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS 2005), Banff, Canada, June
2005, June 2005.

[14] Y. Chen, A. Das, Q. Wang, A. Sivasubramaniam, R. Harper, and M. Bland.
Consolidating Clients on Back-end Servers with Co-location and Frequency
Control. In Posthe ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS 2006), June 2006, June 2006.

[15] C. Clark, K. Fraser, Steven Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield. Live Migration of Virtual Machines. InProceedings of the Second
Symposium on Networked Systems Design and Implementation (NSDI’05), May
2005.

[16] Credit Based Scheduler.http://wiki.xensource.com/xenwiki/
CreditScheduler .

[17] R. Doyle, J. Chase, O. Asad, W. Jin, and Amin Vahdat. Model-Based Resource
Provisioning in a Web Service Utility. InProceedings of the Fourth USITS,
March 2003.

[18] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time (BVT) Scheduling:
Supporting Latency-sensitive Threads in a General-purpose Scheduler. In
Proceedings of the Seventeenth ACM Symposium on Operating Systems
Principles, pages 261–276, New York, NY, USA, 1999. ACM Press.

[19] R. Goldberg. Survey of Virtual Machine Research.IEEE Computer, pages
34–45, June 1974.

[20] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum. Cellular Disco: Resource
Management using Virtual Clusters on Shared-memory Multiprocessors.
In Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP’99), pages 154–169, December 1999.

[21] S. Govindan, A. Nath, A. Das, B. Urgaonkar, and A. Sivasubramaniam.
Communication-aware CPU Management in Consolidated Virtualization-based
Hosting Platforms. Technical report, Department of Computer Science and
Engineering, The Pennsylvania State University, October 2006.

[22] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. Enforcing Performance
Isolation Across Virtual Machines in Xen. InProceedings of the Seventh
International Middleware Conference, Melbourne, Australia, November-
December 2006.

[23] D. Gupta, R. Gardner, and L. Cherkasova. XenMon: QoS Monitoring and
Performance Profiling Tool. Technical Report HPL-2005-187, HP Labs, 2005.

[24] Intel VT. http://www.intel.com/technology/itj/2006/
v10i3/foreword.htm .

[25] The JBoss Application Server.http://www.jboss.org .

[26] M. B. Jones, D. Rosu, and M. Rosu. CPU Reservations and Time Constraints:
Efficient, Predictable Scheduling of Independent Activities. InProceedings of
the Sixteenth ACM Symposium on Operating Systems Principles (SOSP’97),
Saint-Malo, France, pages 198–211, December 1997.

[27] S. T. Leutenegger and M. K. Vernon. The Performance of Multiprogrammed
Multiprocessor Scheduling Algorithms. InSIGMETRICS ’90: Proceedings of
the 1990 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pages 226–236, 1990.

[28] J. Liu, W. Huang, B. Abali, and D. K. Panda. High Performance VMM-Bypass
I/O in Virtual Machines. InProceedings of the USENIX Annual Technical
Conference (USENIX’06), Boston, MA, May-June 2006.

[29] A. Menon, A. Cox, and W. Zwaenepoel. Optimizing Network Virtualization
in Xen. In Proceedings of the USENIX Annual Technical Conference
(USENIX’06), Boston, MA, May 2006.

[30] J. Moore, D. Irwin, L. Grit, S. Sprenkle, and J. Chase. Managing Mixed-Use
Clusters with Cluster-on-Demand. Technical report, Department of Computer
Science, Duke University, November 2002.

[31] MySQL. http://www.mysql.com .

[32] S. Nagar, A. Banerjee, A. Sivasubramaniam, and C. R. Das. A Closer Look
at Co-scheduling Approaches for a Network of Workstations. InSPAA ’99:
Proceedings of the eleventh annual ACM symposium on Parallel algorithms
and architectures, pages 96–105, 1999.

[33] M. Nelson, B. Lim, and G. Hutchins. Fast Transparent Migration for Virtual
Machines. InProceedings of the 2005 USENIX Annual Technical Conference,
pages 391–394, April, 2005.

[34] J. Nieh and M. Lam. A SMART Scheduler for Multimedia Applications.ACM
Transactions on Computer Systems, 21(2):117–163, 2003.

[35] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design and Implementation
of Zap: A System for Migrating Computing Environments. InProceedings of
Fifth USENIX Symposium on Operating Systems Design and Implementation,
pages 361–376, 2002.

[36] P. Pradhan, R. Tewari, S. Sahu, A. Chandra, and P. Shenoy. An Observation-
based Approach Towards Self-Managing Web Servers. InProceedings of the
Tenth International Workshop on Quality of Service (IWQoS 2002), May 2002.

[37] C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M. Rosenblum.
Optimizing the Migration of Virtual Computers. InProceedings of the 5th
Symposium on Operating Systems Design and Implementation, December
2002.

[38] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated Resource Management
for Cluster-based Internet Services. InProceedings of the Fifth USENIX
Symposium on Operating Systems Design and Implementation (OSDI), Boston,
MA, December 2002.

[39] S. Shende, A. Malony, J. Cuny, K. Lindlan, P. Beckman, and S. Karmesin.
Portable Profiling and Tracing for Parallel Scientific Applications usingC++.
In Proceedings of ACM SIGMETRICS Symposium on Parallel and Distributed
Tools (SPDT), pages 134–145, August 1998.

[40] J. E. Smith and R. Nair.Virtual Machines: Architectures, Implementations and
Applications. Morgan Kauffmann, New York, 2004.

[41] W. Smith. TPC-W: Benchmarking An Ecommerce Solution.http:
//www.tpc.org/information/other/techarticles.asp .

[42] P. Sobalvarro and W. E. Weihl. Demand-Based Coscheduling of Parallel Jobs on
Multiprogrammed Multiprocessors. InIPPS ’95: Proceedings of the Workshop
on Job Scheduling Strategies for Parallel Processing, pages 106–126, 1995.

[43] M. S. Squillante, Y. Zhang, A. Sivasubramaniam, N. Gautam, H. Franke,and
J. Moreira. Modeling and Analysis of Dynamic Co-scheduling in Parallel
and Distributed Environments. InSIGMETRICS ’02: Proceedings of the 2002
ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, pages 43–54, 2002.

[44] NYU TPC-W. http://www.cs.nyu.edu/pdsg/ .

[45] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. An
Analytical Model for Multi-tier Internet Services and its Applications. In
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS 2005), Banff, Canada, June
2005.

[46] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource Overbooking and
Application Profiling in Shared Hosting Platforms. InProceedings of the
Fifth USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2002), Boston, MA, December 2002.

[47] VMware. http://www.vmware.com/ .

[48] C. Waldspurger. Memory Resource Management in VMWare ESX Server.
In Proceedings of the Fifth Symposium on Operating System Design and
Implementation (OSDI’02), December 2002.

[49] C. A. Waldspurger and W. E. Weihl. Lottery Scheduling: Flexible Proportional-
share Resource Management. InProceedings of the USENIX Symposium on
Operating System Design and Implementation (OSDI’94), November 1994.

[50] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Performance in the Denali
Isolation Kernel. InProceedings of the Fifth Symposium on Operating System
Design and Implementation (OSDI’02), December 2002.

[51] XenSource Press Release.http://www.xensource.com/news/
pressreleases.html .

[52] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam. Improving Parallel
Job Scheduling by Combining Gang Scheduling and Backfilling Techniques.
In IPDPS ’00: Proceedings of the 14th International Symposium on Parallel
and Distributed Processing, pages 133–142, 2000.

[53] Y. Zhang, A. Sivasubramaniam, J. E. Moreira, and H. Franke. A Simulation-
based Study of Scheduling Mechanisms for a Dynamic Cluster Environment.
In Proceedings of the 11th ACM International Conference on Supercomputing
(ICS), pages 100–109, 2000.

