
The Xen-Blanket: Virtualize Once, Run Everywhere

Dan Williams†‡

djwill@cs.cornell.edu

Hani Jamjoom‡

jamjoom@us.ibm.com

Hakim Weatherspoon†

hweather@cs.cornell.edu

† Cornell University, Ithaca, NY
‡ IBM T. J. Watson Research Center, Hawthorne, NY

Abstract

Current Infrastructure as a Service (IaaS) clouds operate in

isolation from each other. Slight variations in the virtual ma-

chine (VM) abstractions or underlying hypervisor services

prevent unified access and control across clouds. While stan-

dardization efforts aim to address these issues, they will take

years to be agreed upon and adopted, if ever. Instead of stan-

dardization, which is by definition provider-centric, we ad-

vocate a user-centric approach that gives users an unprece-

dented level of control over the virtualization layer. We in-

troduce the Xen-Blanket, a thin, immediately deployable vir-

tualization layer that can homogenize today’s diverse cloud

infrastructures. We have deployed the Xen-Blanket across

Amazon’s EC2, an enterprise cloud, and a private setup at

Cornell University. We show that a user-centric approach

to homogenize clouds can achieve similar performance to a

paravirtualized environment while enabling previously im-

possible tasks like cross-provider live migration. The Xen-

Blanket also allows users to exploit resource management

opportunities like oversubscription, and ultimately can re-

duce costs for users.

Categories and Subject Descriptors D.4 [OPERATING

SYSTEMS]: Organization and Design

General Terms Design, Experimentation, Performance

Keywords Nested Virtualization, Cloud Computing, Xen

1. Introduction

Current Infrastructure as a Service (IaaS) clouds—both pub-

lic and private—are not interoperable. As a result, cloud

users find themselves locked into a single provider, which

may or may not suit their needs. Evidenced by the Ama-

zon Elastic Compute Cloud (EC2) downtime in April 2011,

outages can affect even large, mature and popular public

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’12, April 10–13, 2012, Bern, Switzerland.
Copyright c© 2012 ACM 978-1-4503-1223-3/12/04. . . $10.00

clouds. A multi-cloud deployment, on the other hand, facil-

itates fault tolerance strategies that can withstand the fail-

ure of an entire provider. Furthermore, multi-cloud deploy-

ments can offer new resource management and economic al-

ternatives to would-be cloud users that are already manag-

ing their own elaborate private cloud infrastructures. If well-

integrated with private clouds, public clouds can provide an

outlet for excess load or growth.

Fundamentally, today’s clouds lack the homogeneity nec-

essary for cost-effective multi-cloud deployments. That is,

a single VM image cannot be deployed—unmodified—

on any IaaS cloud. Even worse, there is no consistent

set of hypervisor-level services across providers. While

some progress towards multi-cloud homogeneity is expected

through standardization efforts such as the Open Virtual-

ization Format [11], these provider-centric approaches will

likely be limited to simple cloud attributes—like image

format—and take years to be universally adopted.

We propose a different way of implementing multi-

cloud homogeneity. Instead of relying on cloud providers to

change their environments, we advocate a user-centric view

of homogenization, where users are able to run their unmodi-

fied VMs on any cloud without any special provider support.

As such, users can implement or deploy hypervisor services

or management tools on clouds that do not supply them.

Towards this goal, we present the Xen-Blanket, a system

that transforms existing heterogeneous clouds into a uniform

user-centric homogeneous offering. The Xen-Blanket con-

sists of a second-layer hypervisor that runs as a guest inside a

VM instance on a variety of public or private clouds, forming

a Blanket layer. The Blanket layer exposes a homogeneous

interface to second-layer guest VMs, called Blanket guests,

but is completely user-centric and customizable. With the

Xen-Blanket, hypervisor-level techniques and management

tools, like VM migration, page sharing, and oversubscrip-

tion, can all be implemented inside the Blanket layer. Mean-

while, the Blanket layer contains Blanket drivers that allow

it to run on heterogeneous clouds while hiding interface de-

tails of the underlying clouds from guests.

Existing nested virtualization techniques (like the Turtles

project [2]), focus on an efficient use of hardware virtual-

ization primitives by both layers of virtualization. This re-

quires the underlying hypervisor—controlled by the cloud

provider—to expose hardware primitives. None of today’s

clouds currently offer such primitives. In contrast, the Xen-

Blanket can be deployed on third-party clouds today, requir-

ing no special support. Thus, the contributions of the Xen-

blanket are fundamentally different: the Xen-blanket enables

competition and innovation for products that span multiple

clouds, whether support is offered from cloud providers or

not. Further, the Xen-blanket enables the use of unsupported

features such as oversubscription, CPU bursting, VMmigra-

tion, and many others.

The Xen-Blanket is deployed today on both Xen-based

and KVM-based hypervisors, on public and private infras-

tructures within Amazon EC2, an enterprise cloud, and Cor-

nell University. The Xen-Blanket has successfully homog-

enized these diverse environments. For example, we have

migrated VMs to and from Amazon EC2 with no modi-

fications to the VMs. Furthermore, the user-centric design

of the Xen-Blanket affords users the flexibility to oversub-

scribe resources such as network, memory, and disk. As a

direct result, a Xen-Blanket image on EC2 can host 40 CPU-

intensive VMs for 47% of the price per hour of 40 small in-

stances with matching performance. Blanket drivers achieve

good performance: network drivers can receive packets at

line speed on a 1 Gbps link, while disk I/O throughput is

within 12% of single level paravirtualized disk performance.

Despite overheads of up to 68% for some benchmarks, Web

server macrobenchmarks can match the performance of sin-

gle level virtualization (i.e., both are able to serve an excess

of 1000 simultaneous clients) while increasing CPU utiliza-

tion by only 1%.

In this paper, we make four main contributions:

• We describe how user-centric homogeneity can be

achieved at the hypervisor level to enable multi-cloud de-

ployments, even without any provider support.

• We enumerate key extensions to Xen, including a set of

Blanket drivers and hypervisor optimizations, that trans-

form Xen into an efficient, homogenizing Blanket layer

on top of existing clouds, such as Amazon EC2.

• We demonstrate how the Xen-Blanket can provide an

opportunity for substantial cost savings by enabling users

to oversubscribe their leased resources.

• We discuss our experience using hypervisor-level oper-

ations that were previously impossible to implement in

public clouds, including live VM migration between an

enterprise cloud and Amazon EC2.

The paper is organized as follows. Section 2 further mo-

tivates the need for user-centric homogenization to be de-

ployed on today’s clouds. Section 3 introduces the concept

of a Blanket layer, and describes how the Xen-Blanket pro-

vides a user-centric homogenized layer, with the implemen-

tation details of the enabling Blanket drivers in Section 4.

Some overheads and advantages of the Xen-Blanket are

quantified in Section 5, while qualitative practical experi-

ence is described in Section 6. Finally, Section 7 identifies

future directions, Section 8 surveys related work, and Sec-

tion 9 concludes.

2. My Cloud, My Way

A cloud user would achieve several benefits from a homoge-

neous interface to a cloud that encompasses many different

cloud providers. If a single VM image can be deployed on

every cloud, image management, even upgrading and patch-

ing, is simplified. If any service offered by one cloud was

available in any other cloud, users would not feel locked-

in to a particular vendor. Hypervisor-level resource manage-

ment techniques and cloud software stacks would emerge

that truly span providers, offering users the control to utilize

and manage cloud resources to their full potential.

Today’s clouds lack homogeneity in three ways. First,

VM images—the building blocks of cloud applications—

cannot be easily instantiated on different clouds. Second,

clouds are becoming diverse in terms of the services they

provide to VMs. For example, Amazon EC2 provides tools

such as CloudWatch (integrated monitoring), AutoScaling,

and Elastic Load Balancing, whereas Rackspace contains

support for VM migration to combat server host degrada-

tion and CPU bursting to borrow cycles from other instances.

Third, a class of resource management opportunities that ex-

ist in a private cloud setting—in particular, tools that operate

at the hypervisor level—are not consistently available be-

tween providers. For example, there is no unified set of tools

with which users can specify VM co-location on physical

machines [29], page sharing between VMs [16, 23], or re-

source oversubscription [28].

The desire for a homogeneous interface across cloud

providers is not a call for standardization. We distinguish

between provider-centric and user-centric homogenization.

Standardization is an example of provider-centric homoge-

nization, in which every cloud provider must agree on an

image format, services, and management interfaces to ex-

pose to users. Standards are emerging; for example, Open

Virtualization Format (OVF) [11] describes how to pack-

age VM images and virtio defines paravirtualized device

interfaces. However, until all clouds (e.g., Amazon EC2,

Rackspace, etc.) adopt these standards, VM configurations

will continue to vary depending on the cloud they run on.

Even worse, it is unlikely—and infeasible—that the vast ar-

ray of current and future services available to VMs become

standardized across all clouds. Attempts at standardization

often lead to a set of functionality that represents the “least

common denominator” across all participating providers.

Many users will still demand services that are not in the stan-

dard set and cloud providers will continue to offer services

that differentiate their offering. As a result, standardization,

or provider-centric homogenization, is not sufficient.

Figure 1. The Xen-Blanket, completely controlled by the

user, provides a homogenization layer across heterogeneous

cloud providers without requiring any additional support

from the providers.

User-centric homogenization, in contrast, enables cloud

users to homogenize the cloud and customize it to match

their needs. It allows users to select their own VM image

format and services, then transform every cloud to support

it. The user is not tied into a “least common denominator”

of functionality, but quite the opposite: even completely cus-

tomized services and image formats can be deployed. The

user can then develop management tools that work for their

VMs across their (now homogenized) cloud. For example,

a user can experiment with new features like Remus [10]

across clouds and perhaps achieve high availability even in

the case of an entire provider failing.

Finally, any system that implements user-centric homoge-

nization must be immediately and universally deployable. A

system that enables user-centric homogenization cannot be

dependent on emerging features that are not standard across

clouds, such as the low overhead nested virtualization solu-

tion proposed in the Turtles Project [2].

3. The Xen-Blanket

The Xen-Blanket leverages nested virtualization to form a

Blanket layer, or a second layer of virtualization software

that provides a user-centric homogeneous cloud interface,

as depicted in Figure 1. A Blanket layer embodies three

important concepts. First, the bottom half of the Blanket

layer communicates with a variety of underlying hypervisor

interfaces. No modifications are expected or required to the

underlying hypervisor. Second, the top half of the Blanket

layer exposes a single VM interface to Blanket (second-

layer) guests such that a single guest image can run on

any cloud without modifications. Third, the Blanket layer

is completely under the control of the user, so functionality

typically implemented by providers in the hypervisor, such

as live VM migration, can be implemented in the Blanket

layer.

The bottom half of the Xen-Blanket ensures that the Xen-

Blanket can run across a number of different clouds without

requiring changes to the underlying cloud system or hyper-

visor. The bottom half is trivial if the following two assump-

tions hold on all underlying clouds. First, if device I/O is

emulated, then the Blanket hypervisor does not need to be

aware of the underlying hypervisor’s paravirtualized I/O in-

terfaces. Second, if hardware-assisted full virtualization for

x86 (called HVM in Xen terminology) is available, then the

Blanket hypervisor can run unmodified. However, these as-

sumptions limit the number of clouds that the Blanket layer

can cover; for example, we are not aware of any public cloud

that satisfies both assumptions.

The Xen-Blanket relaxes the emulated device assumption

by interfacing with a variety of underlying cloud paravir-

tualized device I/O implementations. Paravirtualized device

I/O has proved essential for performance and is required by

some clouds, such as Amazon EC2. However, there is cur-

rently no standard paravirtualized device I/O interface. For

example, older Xen-based clouds, including Amazon EC2,

require device drivers to communicate with Xen-specific

subsystems, such as the XenBus and XenStore, whereas

KVM-based systems expect device drivers to interact with

the hypervisor through virtio interfaces. The Xen-Blanket

supports such non-standard interfaces by modifying the bot-

tom half to contain cloud-specific Blanket drivers.

On the other hand, the Xen-Blanket does rely on sup-

port for hardware-assisted full virtualization for x86 on all

clouds. Currently, this assumption somewhat limits deploy-

ment opportunities. For example, a large fraction of both

Amazon EC2 and Rackspace instances expose paravirtual-

ized, not HVM interfaces, with Amazon EC2 only offering

an HVM interface to Linux guests in 4XL-sized cluster in-

stances. EC2 does, however, expose an HVM interface to

other sized instances running Windows, which we believe

can also be converted to deploy the Xen-Blanket. Further ef-

forts to relax the HVM assumption are discussed as future

work in Section 7.

The top half of the Blanket layer exposes a consistent VM

interface to (Blanket) guests. Guest VMs therefore do not

need any modifications in order to run on a number of dif-

ferent clouds. In order to maximize the number of clouds that

the Xen-Blanket can run on, the top half of the Xen-Blanket

does not depend on state of the art nested virtualization inter-

faces (e.g., the Turtles Project [2]). The Xen-Blanket instead

relies on other x86 virtualization techniques, such as paravir-

tualization or binary translation. For our prototype Blanket

layer implementation we chose to adopt the popular open-

source Xen hypervisor, which uses paravirtualization tech-

niques when virtualization hardware is not available. The

Xen-Blanket subsequently inherits the limitations of par-

avirtualization, most notably the inability to run unmodified

Figure 2. Guests using paravirtualized devices implement a front-end driver that communicates with a back-end driver (a). In

HVM environments, a Xen Platform PCI driver is required to set up communication with the back-end (b). The Xen-Blanket

modifies the HVM front-end driver to become a Blanket driver, which, with support of Blanket hypercalls, runs in hardware

protection ring 1, instead of ring 0 (c).

operating systems, such as Microsoft Windows.1 However,

this limitation is not fundamental. A Blanket layer can be

constructed using binary translation (e.g., a VMWare [21]-

Blanket), upon which unmodified operating systems would

be able to run. Blanket layers can also be created with other

interfaces, such as Denali [25], alternate branches of Xen, or

even customized hypervisors developed from scratch.

The Xen-Blanket inherits services that are traditionally

located in the hypervisor or privileged management domains

and allows the user to run or modify them. For instance,

users can issue xm commands from the Xen-Blanket. Users

can co-locate VMs [29] on a single Xen-Blanket instance,

share memory pages between co-located VMs [16, 23], and

oversubscribe resources [28]. If Xen-Blanket instances on

different clouds can communicate with each other, live VM

migration or high availability [10] across clouds become

possible.

4. Blanket Drivers

The Xen-Blanket contains Blanket drivers for each of the

heterogeneous interfaces exposed by today’s clouds. In prac-

tice, the drivers that must be implemented are limited to deal-

ing with paravirtualized device interfaces for network and

disk I/O. As described in Section 3, Blanket drivers reside in

the bottom half of the Xen-Blanket and are treated by the rest

of the Xen-Blanket as drivers interacting with physical hard-

ware devices. These “devices” are subsequently exposed to

guests through a consistent paravirtualized device interface,

regardless of which set of Blanket drivers was instantiated.

This section is organized as follows: we present back-

ground on how paravirtualized devices work on existing

1Despite the limitations of paravirtualization and the increasingly superior

performance of hardware assisted virtualization, paravirtualization remains

popular. Many cloud providers, including Amazon EC2 and Rackspace,

continue to offer paravirtualized Linux instances.

clouds. Then, we describe the detailed design and imple-

mentation of Blanket drivers. Finally, we conclude with a

discussion of hypervisor optimizations for the Xen-Blanket

and a discussion of the implications of evolving virtualiza-

tion support in hardware and software.

4.1 Background

To understand Blanket drivers, we first give some back-

ground as to how paravirtualized device drivers work in

Xen-based systems.2 First, we describe device drivers in a

fully paravirtualized Xen, depicted in Figure 2(a). The Xen-

Blanket uses paravirtualization techniques in the Blanket hy-

pervisor to provide guests with a homogeneous interface to

devices. Then, we describe paravirtualized device drivers for

hardware assisted Xen (depicted in Figure 2(b)), an under-

lying hypervisor upon which the Xen-Blanket successfully

runs.

Xen does not contain any physical device drivers itself;

instead, it relies on device drivers in the operating system

of a privileged guest VM, called Domain 0, to communicate

with the physical devices. The operating system in Domain 0

multiplexes devices, and offers a paravirtualized device in-

terface to guest VMs. The paravirtualized device interface

follows a split driver architecture, where the guest runs a

front-end driver that is paired with a back-end driver in Do-

main 0. Communication between the front-end and back-end

driver is accomplished through shared memory ring buffers

and an event mechanism provided by Xen. Both the guest

and Domain 0 communicate with Xen to set up these com-

munication channels.

In hardware assisted Xen, or HVM Xen, paravirtualized

device drivers are called PV-on-HVM drivers. Unlike par-

avirtualized Xen, guests on HVM Xen can run unmodified,

2A discussion of the paravirtualized drivers on KVM, which are similar, is

postponed to the end of Section 4.2.

so by default, communication channels with Xen are not

initialized. HVM Xen exposes a Xen platform PCI device,

which acts as a familiar environment wherein shared mem-

ory pages are used to communicate with Xen and an IRQ

line is used to deliver events from Xen. So, in addition to a

front-end driver for each type of device (e.g. network, disk),

an HVM Xen guest also contains a Xen platform PCI de-

vice driver. The front-end drivers and the Xen platform PCI

driver are the only Xen-aware modules in the HVM guest.

4.2 Design & Implementation

The Xen-Blanket consists of a paravirtualized Xen inside of

either a HVMXen or KVM guest. We will center the discus-

sion around Blanket drivers for Xen, and discuss the concep-

tually similar Blanket drivers for KVM at the end of this sub-

section. Figure 2(c) shows components of Blanket drivers.

The Blanket layer contains both a Xen hypervisor as well as

a privileged Blanket Domain 0. Guest VMs are run on top of

the Blanket layer, each containing standard paravirtualized

front-end device drivers. The Blanket Domain 0 runs the cor-

responding standard back-end device drivers. The back-end

drivers are multiplexed into the Blanket drivers, which act as

set of front-end drivers for the underlying hypervisors.

There are two key implementation issues that prohibit

standard PV-on-HVM front-end drivers from acting as Blan-

ket drivers.3 First, the Xen hypercalls required to bootstrap a

PV-on-HVM PCI platform device cannot be performed from

the Blanket Domain 0 hosting the Blanket drivers because

the Blanket Domain 0 does not run with the expected priv-

ilege level of an HVM guest OS. Second, the notion of a

physical address in the Blanket Domain 0 is not the same as

the notion of a physical address in a native HVM guest OS.

Performing Hypercalls

Typically, the Xen hypervisor proper runs in hardware pro-

tection ring 0, while Domain 0 and other paravirtualized

guests run their OS in ring 1 with user spaces in ring 3. HVM

guests, on the other hand, are designed to run unmodified,

and can use non-root mode from the hardware virtualiza-

tion extensions to run the guest OS in ring 0 and user space

in ring 3. In the Xen-Blanket, in non-root mode, the Blan-

ket Xen hypervisor proper runs in ring 0, while the Blanket

Domain 0 runs in ring 1, and user space runs in ring 3 (Fig-

ure 2(c)).

In normal PV-on-HVM drivers, hypercalls, in particular

vmcall instructions, are issued from the OS in ring 0. In the

Xen-Blanket, however, Blanket drivers run in the OS of the

Blanket Domain 0 in ring 1. The vmcall instruction must

be issued from ring 0. We overcome this by augmenting the

second-layer Xen to contain Blanket hypercalls that issue

their own hypercalls to the underlying Xen on behalf of the

Blanket Domain 0.

3Our implementation also required renaming of some global variables and

functions to avoid namespace collisions with the second-layer Xen when

trying to communicate with the bottom-layer Xen.

Figure 3. The PV-on-HVM drivers can send physical ad-

dresses to the underlying Xen, whereas the Blanket drivers

must first convert physical addresses to machine addresses.

Physical Address Translation

Guest OSs running on top of paravirtualized Xen, including

Domain 0, have a notion of physical frame numbers (PFNs).

The PFNs may or may not match the actual physical frame

numbers of the machine, called machine frame numbers

(MFNs). The relationship between these addresses is shown

in Figure 3. However, the guest can access the mapping

between PFNs and MFNs, in case it is necessary to use a

real MFN, for example, to utilize DMA from a device. HVM

guests are not aware of PFNs vs. MFNs. Instead, they only

use physical frame numbers and any translation necessary is

done by the underlying hypervisor.

For this reason, PV-on-HVM device drivers pass physi-

cal addresses to the underlying hypervisor to share memory

pages with the back-end drivers. In the Xen-Blanket, how-

ever, the MFN from the Blanket Domain 0’s perspective, and

thus the Blanket drivers’, matches the PFN that the under-

lying hypervisor expects. Therefore, Blanket drivers must

perform a PFN-to-MFN translation before passing any ad-

dresses to the underlying hypervisor, either through hyper-

calls or PCI operations.

Blanket Drivers for KVM

The implementation of Blanket drivers for KVM is very sim-

ilar. Paravirtualized device drivers in KVM use the virtio

framework, in which a PCI device is exposed to guests, sim-

ilar to the Xen platform PCI device. Unlike the Xen plat-

form PCI device, all communication with the underlying

KVM hypervisor can be accomplished as if communicating

with a physical PCI device. In particular, no direct hyper-

calls are necessary, simplifying the implementation of Blan-

ket drivers. The only modifications required to run virtio

drivers in the Xen-Blanket are the addition of PFN-to-MFN

translations.

4.3 Hypervisor Optimizations

The Xen-Blanket runs in non-root mode in an HVM guest

container. As virtualization support improves, the perfor-

mance of software running in non-root mode becomes close

to running on bare metal. For example, whereas page table

manipulations would cause a vmexit, or trap, on early ver-

sions of Intel VT-x processors, a hardware feature called ex-

tended page tables (EPT) has largely eliminated such traps.

However, some operations continue to generate traps, so de-

signing the Blanket layer to avoid such operations can often

provide a performance advantage.

For example, instead of flushing kernel pages from the

TLB on every context switch, the x86 contains a bit in the

cr4 control register called the “Page Global Enable” (PGE).

Page Global Enable allows certain pages to be mapped as

“global” so that they do not get flushed automatically. Xen

enables then disables the PGE bit in order to flush the global

TLB entries before doing a domain switch between guests.

Unfortunately, these cr4 operations each cause vmexits to

happen, generating high overhead for running Xen in an

HVM guest. By not using PGE and instead flushing all pages

from the TLB on a context switch, vmexits are avoided,

because of the EPT processor feature in non-root mode.

4.4 Implications of Future Hardware and Software

As discussed above the virtualization features of the hard-

ware, such as EPT, can have a profound effect on the per-

formance of the Xen-Blanket. Further improvements to the

HVM container, such as the interrupt path, may eventually

replace hypervisor optimizations and workarounds or enable

even better performing Blanket layers.

Other hardware considerations include thinking about

non-root mode as a place for virtualization. For example,

features that aided virtualization before hardware extensions

became prevalent, such as memory segmentation, should not

die out. Memory segmentation is a feature in 32 bit x86 pro-

cessors that paravirtualized Xen leverages to protect Xen, the

guest OS, and the guest user space in the same address space

to minimize context switches during system calls. The 64 bit

x86 64 architecture has dropped support for segmentation

except when running in 32 bit compatibility mode. Without

segmentation, two address spaces are needed to protect the

three contexts from each other, and two context switches are

required on each system call, resulting in performance loss.

On the software side, support for nested virtualization of

unmodified guests [2] may begin to be adopted by cloud

providers. While this development could eventually lead to

fully virtualized Blankets such as a KVM-Blanket, relying

on providers to deploy such a system is provider-centric: ev-

ery cloud must incorporate such technology before a KVM-

Blanket becomes feasible across many clouds. It may be

possible, however, for exposed hardware virtualization ex-

tensions to be leveraged as performance accelerators for a

system like the Xen-Blanket.

Figure 4. We run benchmarks on four different system con-

figurations in order to examine the overhead caused by the

Xen-Blanket. Native represents an unmodified CentOS 5.4

Linux. HVM represents a standard single-layer Xen-based

virtualization solutions using full, hardware-assisted virtual-

ization. PV represents a standard single-layer Xen-based vir-

tualization solutions using paravirtualization. Xen-Blanket

consists of a paravirtualized setup inside of our Xen-Blanket

HVM guest.

5. Evaluation

We have built Blanket drivers and deployed the Xen-

Blanket on two underlying hypervisors, across three re-

source providers. In this section, we first examine the over-

head incurred by the Xen-Blanket. Then, we describe how

increased flexibility resulting from a user-centric homoge-

nization layer can result in significant cost savings—47% of

the cost per hour—on today’s clouds, despite overheads.

5.1 Overhead

Intuitively, we expect some amount of degraded perfor-

mance from the Xen-Blanket due to the overheads of run-

ning a second-layer of virtualization. We compare four dif-

ferent scenarios, denoted by Native, HVM, PV, and Xen-

Blanket (Figure 4). The Native setup ran an unmodified Cen-

tOS 5.4 Linux. The next two are standard single-layer Xen-

based virtualization solutions using full, hardware-assisted

virtualization (HVM, for short) or paravirtualization (PV, for

short), respectively. The fourth setup (Xen-Blanket) consists

of a paravirtualized setup inside an HVM guest.4 All ex-

periments in this subsection were performed on a pair of

machines connected by a 1 Gbps network, each with two

six-core 2.93 GHz Intel Xeon X5670 processors,5 24 GB of

memory, and four 1 TB disks. Importantly, the virtualiza-

tion capabilities of the Xeon X5670 include extended page

table support (EPT), enabling a guest OS to modify page ta-

bles without generating vmexit traps. With the latest hard-

ware virtualization support, HVM is expected to outperform

4We have also run experiments on KVMwith comparable results, but focus

on a single underlying hypervisor for a consistent evaluation.
5Hyperthreading causes the OS to perceive 24 processors on the system.

Native HVM PV Xen-Blanket

Processes (µs)

null call 0.19 0.21 0.36 0.36
null I/O 0.23 0.26 0.41 0.41
stat 0.85 1.01 1.19 1.18
open/close 1.33 1.43 1.84 1.86
slct TCP 2.43 2.79 2.80 2.86
sig inst 0.25 0.39 0.54 0.53
sig hndl 0.90 0.79 0.94 0.94
fork proc 67 86 220 258
exec proc 217 260 517 633
sh proc 831 1046 1507 1749

Context Switching (µs)

2p/0K 0.40 0.55 2.85 3.07
2p/16K 0.44 0.57 3.03 3.46
2p/64K 0.45 0.66 3.18 3.46
8p/16K 0.74 0.85 3.60 4.00
8p/64K 1.37 1.18 4.14 4.53
16p/16K 1.05 1.10 3.80 4.14
16p/64K 1.40 1.22 4.08 4.47

File & Virtual Memory (µs)

0K file create 4.61 4.56 4.99 4.97
0K file delete 3.03 3.18 3.19 3.14
10K file create 14.4 18.1 19.9 28.8
10K file delete 6.17 6.02 6.01 6.08
mmap latency 425.0 820.0 1692.0 1729.0
prot fault 0.30 0.28 0.38 0.40
page fault 0.56 0.99 2.00 2.10

Table 1. The Xen-Blanket achieves performance within 3%

of PV for simple lmbench operations, but incurs overhead

up to 30% for file creation microbenchmarks.

PV, because of reduced hypervisor involvement. Therefore,

since the Xen-Blanket setup contains a PV setup, PV can be

roughly viewed as a best case for the Xen-Blanket.

System Microbenchmarks

To examine the performance of individual operations, such

as null system calls, we ran lmbench in all setups. In order

to distinguish the second-layer virtualization overhead from

CPU contention, we ensure that one CPU is dedicated to

the guest running the benchmark. To clarify, one VCPU

backed by one physical CPU is exposed to the guest during

single-layer virtualization experiments, whereas the Xen-

Blanket system receives two VCPUs backed by two physical

CPUs: one is reserved for the second-layer Domain 0 (see

Figure 2(c)), and the other one for the second-layer guest.

Table 1 shows the results from running lmbench in each

of the setups. For simple operations like a null syscall, the

performance of the Xen-Blanket is within 3% of PV, but

even PV is slower than native or HVM. This is because

a syscall in any paravirtualized system first switches into

(the top-most) Xen before being bounced into the guest OS.

We stress that, for these operations, nesting Xen does not

introduce additional overhead over standard paravirtualiza-

tion. All context switch benchmarks are within 12.5% of PV,

 0

 200

 400

 600

 800

 1000

64 128 256 512 1024

N
e

tw
o

rk
 R

e
c
ie

v
e

R
a

te
 (

M
b

p
s
)

Message size (bytes)

Native
PV

HVM
Xen-Blanket

Figure 5. Network I/O performance on the Xen-Blanket is

comparable to a single layer of virtualization.

 0

 20

 40

 60

 80

 100

64 128 256 512 1024
C

P
U

 U
ti
liz

a
ti
o

n
 (

%
)

Message size (bytes)

Xen-Blanket
HVM

PV
Native

Figure 6. CPU utilization while receiving network I/O on

the Xen-Blanket is within 15% of a single layer of virtual-

ization.

with most around 8% of PV. Eliminating vmexits caused

by the second-layer Xen is essential to achieve good perfor-

mance. For example, if the second-layer Xen uses the cr4

register on every context switch, overheads increase to 70%.

Worse, on processors without EPT, which issue vmexits

much more often, we measured overheads of up to 20×.

Blanket Drivers

Device I/O is often a performance bottleneck even for

single-layer virtualized systems. Paravirtualization is essen-

tial for performance, even in fully-virtualized environments.

To examine the network and disk performance of the Xen-

Blanket, we assign each of the configurations one VCPU (we

disable all CPUs except for one in the native case). Figure 5

and Figure 6 show the UDP receive throughput and the cor-

responding CPU utilization6 under various packet sizes. We

use netperf for the throughput measurement and xentop

in the underlying Domain 0 to measure the CPU utilization

of the guest (or Xen-Blanket and guest). The CPU utilization

of the native configuration is determined using top. Despite

the two layers of paravirtualized device interfaces, guests

running on the Xen-Blanket can still match the network

throughput of all other configurations for all packet sizes,

and receive network traffic at full capacity over a 1 Gbps

6 Errorbars are omitted for clarity: all CPU utilization measurements were

within 1.7% of the mean.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 5 10 15 20 25

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

Number of Jobs

Xen-Blanket
PV

HVM
Native

Figure 7. The Xen-Blanket can incur up to 68% overhead

over PV when completing a kernbench benchmark.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25A
v
g

.
T

h
ro

u
g

h
p

u
t

(M
B

/s
e

c
)

Simulated Clients

Native
HVM

PV
Xen-Blanket

Figure 8. The Xen-Blanket can incur up to 55% overhead

over PV when performing the dbench filesystem bench-

mark.

link. The Xen-Blanket does incur more CPU overhead be-

cause of the extra copy of packets in the Blanket layer. We

also ran dd to get a throughput measure of disk I/O. Sys-

tem caches at all layers were flushed before reading 2GB of

data from the root filesystem. Native achieved read through-

put of 124.6 MB/s, HVM achieved 86.3 MB/s, PV achieved

76.6 MB/s, and the Xen-Blanket incurred an extra overhead

of 12% over PV, with disk read throughput of 67.6 MB/s.

Macrobenchmarks

Macrobenchmarks are useful for demonstrating the overhead

of the system under more realistic workloads. For these

experiments, we dedicate 2 CPUs and 8 GB of memory to

the lowest layer Domain 0. The remaining 16 GB of memory

and 22 CPUs are allocated to single layer guests. In the case

of the Xen-Blanket, we allocate 14 GB of memory and 20

CPUs to the Blanket guest, dedicating the remainder to the

Blanket Domain 0. Unlike the microbenchmarks, resource

contention does contribute to the performance measured in

these experiments.

kernbench7 is a CPU throughput benchmark that con-

sists of compiling the Linux kernel using a configurable

number of concurrent jobs. Figure 7 shows the elapsed time

for the kernel compile. With a single job, the Xen-Blanket

stays within 5% of PV, however, performance falls to about

7 version 0.50

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 5 10 15 20 25

A
v
g

.
L

a
te

n
c
y
 (

m
s
)

Simulated Clients

Xen-Blanket
PV

HVM
Native

Figure 9. The average latency for ReadX operations during

the dbench benchmark for Xen-Blanket remains compara-

ble to PV.

 75

 80

 85

 90

 95

 100

 105

 850 900 950 1000 1050 1100
"G

o
o

d
"

R
e

s
p

o
n

s
e

s
 (

%
)

Simultaneous Sessions per Server

PV
Xen-Blanket

Figure 10. The Xen-Blanket performs just as well as PV for

the SPECweb2009 macrobenchmark.

68% worse than PV for high concurrency. The performance

loss here can be attributed to a high number of vmexits

due to APIC (Advanced Programmable Interrupt Controller)

operations to send inter-processor-interrupts (IPIs) between

VCPUs. Despite this overhead, the flexibility of the Xen-

Blanket enables reductions in cost, as described in Sec-

tion 5.2.

dbench8 is a filesystem benchmark that generates load

on a filesystem based on the standard NetBench benchmark.

Figure 8 show the average throughput during load imposed

by various numbers of simulated clients. Figure 9 shows

the average latency for ReadX operations, where ReadX is

the most common operation during the benchmark. PV and

the Xen-Blanket both experience significantly higher latency

than HVM. The advantage of HVM can be attributed to

the advantages of hardware memory management because

of extended page tables (EPT). The Xen-Blanket incurs up

to 55% overhead over PV in terms of throughput, but the

latency is comparable.

Finally, we ran the banking workload of SPECweb2009

for a web server macrobenchmark. For each experiment, a

client workload generator VM running on another machine

connected by a 1 Gbps link drives load for a server that runs

PHP scripts. As SPECweb2009 is a Web server benchmark,

the back-end database is simulated. A valid SPECweb2009

8 version 4.0

Type CPU (ECUs) Memory (GB) Disk (GB) Price ($/hr)

Small 1 1.7 160 0.085

Cluster 4XL 33.5 23 1690 1.60

Factor 33.5× 13.5× 10× 18.8×

Table 2. The resources on Amazon EC2 instance types do

not scale up uniformly with price. The user-centric design of

Xen-Blanket allows users to exploit this fact.

run involves 95% of the page requests to compete under a

“good” time threshold (2s) and 99% of the requests to be

under a “tolerable” time threshold (4s). Figure 10 shows the

number of “good” transactions for various numbers of simul-

taneous sessions. VMs running in both PV and Xen-Blanket

scenarios can support an identical number of simultaneous

sessions.9 This is because the benchmark is I/O bound, and

the Blanket drivers ensure efficient I/O for the Xen-Blanket.

The SPECweb2009 instance running in the Xen-Blanket

does utilize more CPU to achieve the same throughput, how-

ever: average CPU utilization rises from 4.3% to 5.1% under

1000 simultaneous client sessions.

5.2 User-defined Oversubscription

Even though running VMs in the Xen-Blanket does in-

cur overhead, its user-centric design gives a cloud user the

flexibility to utilize cloud resources substantially more ef-

ficiently than possible on today’s clouds. Efficient utiliza-

tion of cloud resources translates directly into monetary sav-

ings. In this subsection, we evaluate oversubscription on

the Xen-Blanket instantiated within Amazon EC2 and find

CPU-intensive VMs can be deployed for 47% of the cost of

small instances.

Table 2 shows the pricing per hour on Amazon EC2 to

rent a small instance or a quadruple extra large cluster com-

pute instance (cluster 4XL). Importantly, while the cluster

4XL instance is almost a factor of 19 times more expensive

than a small instance, some resources are greater than 19

times more abundant (e.g. 33.5 times more for CPU) while

other resources are less than 19 times more abundant (e.g 10

times more for disk). This suggests that if a cloud user has a

number CPU intensive VMs normally serviced as small in-

stances, it may be more cost efficient to rent a cluster 4XL

instance and oversubscribe the memory and disk. This is not

an option provided by Amazon; however, the Xen-Blanket is

user-centric and therefore gives the user the necessary con-

trol to implement such a configuration. A number of would-

be small instances can be run on the Xen-Blanket within a

cluster 4XL instance, using oversubscription to reduce the

price per VM.

To illustrate this point, we ran a CPU-intensive mac-

robenchmark, kernbench, simultaneously in a various num-

9 PV and Xen-Blanket run the same VM and thus the same configuration of

this complex benchmark. We omit a comparison with native and HVM to

avoid presenting misleading results due to slight configuration variation.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

1
VM

10
 V

M
s

20
 V

M
s

30
 V

M
s

40
 V

M
s

Sm
al
l

In
st
an

ce

A
v
e

ra
g

e
 E

la
p

s
e

d
T

im
e

 (
s
)

Xen-Blanket Instance
Small Instance

Figure 11. The Xen-Blanket gives the flexibility to oversub-

scribe such that each of 40 VMs on a single 4XL instance

can simultaneously complete compilation tasks in the same

amount of time as a small instance.

bers of VMs running inside a single cluster 4XL instance

with the Xen-Blanket. We also ran the benchmark inside

a small EC2 instance for a comparison point. The bench-

mark was run without concurrency in all instances for con-

sistency, because a small instance on Amazon only has one

VCPU. Figure 11 shows the elapsed time to run the bench-

mark in each of these scenarios. Each number of VMs on

the Xen-Blanket corresponds to a different monetary cost.

For example, to run a single VM, the cost is $1.60 per hour.

10 VMs reduce the cost per VM to $0.16 per hour, 20 VMs to

$0.08 per VM per hour, 30 VMs to $0.06 per VM per hour,

and 40 VMs to $0.04 per VM per hour. Running a single

VM, the benchmark completes in 89 seconds on the Xen-

Blanket, compared to 286 seconds for a small instance. This

is expected, because the cluster 4XL instance is significantly

more powerful than a small instance. Furthermore, the aver-

age benchmark completion time for even 40 VMs remains

33 seconds faster than for a small instance. Since a small in-

stance costs $.085 per VM per hour, this translates to 47%

of the price per VM per hour. It should be noted, however,

that the variance of the benchmark performance significantly

increases for large numbers of VMs on the same instance.

In some sense, the cost benefit of running CPU inten-

sive instances inside the Xen-Blanket instead of inside small

instances simply exploits an artifact of Amazon’s pricing

scheme. However, other benefits from oversubscription are

possible, especially when considering VMs that have uncor-

related variation in their resource demands. Every time one

VM experiences a burst of resource usage, others are likely

quiescent. If VMs are not co-located, each instance must op-

erate with some resources reserved for bursts. If VMs are

co-located, on the other hand, a relatively small amount of

resources can be shared to be used for bursting behavior, re-

sulting in less wasted resources.

Co-location of VMs also affect the performance of enter-

prise applications, made up of a number of VMs that may

heavily communicate with one another [20]. To demonstrate

the difference that VM placement can make to network per-

formance, we ran the netperf TCP benchmark between

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

16 64 256 1024 4096 16384

N
e

tw
o

rk
 R

e
c
ie

v
e

R
a

te
 (

M
b

p
s
)

Message size (bytes)

Co-located
Not Co-located

Figure 12. Co-location of VMs to improve network band-

width is another simple optimization made possible by the

user-centric approach of the Xen-Blanket.

two VMs. In the first setup, the VMs were placed on two

different physical servers on the same rack, connected by a

1 Gbps link. In the second, the VMs were co-located on the

same physical server. Figure 12 shows the network through-

put. The co-located servers are not limited by the network

hardware connecting the physical machines. By enabling co-

location, the Xen-Blanket can increase inter-VM throughput

by a factor of 4.5. This dramatic result is without any mod-

ification to the VMs. The user-centric design of the Xen-

Blanket enables other optimization opportunities, including

CPU bursting, page sharing and resource oversubscription,

that can offset the inherent overhead of the approach.

6. Experience with Multi-Cloud Migration

The Xen-Blanket homogenizes and simplifies the process of

migrating a VM between two clouds managed by two differ-

ent providers. While it is possible to migrate VMs between

multiple clouds today, the process is cloud-specific and fun-

damentally limited. For example, it is currently impossible to

live migrate [8, 18] a VM between cloud providers. We give

a qualitative comparison to illustrate the difficulty faced in

migrating a Xen VM from our private Xen environment to

Amazon EC2 with and without the Xen-Blanket. We also

show how one can reintroduce live migration across multi-

clouds using the Xen-Blanket. In our experiment, we use a

VM housing a typical legacy LAMP-based10 application that

contained non-trivial customizations and approximately 20

GB of user data.

6.1 Non-Live Multi-Cloud Migration

Figure 13 summarizes the four steps involved in a migra-

tion: modifying the VM’s disk image to be compatible with

EC2, bundling or compressing the image to be sent to EC2,

uploading the bundled image, and launching the image at

the new location. In both scenarios, bundling, uploading and

launching took one person about 3 hrs. However, the modify

step caused the scenario without the Xen-Blanket to be much

more time consuming: 24 hrs additional work as compared

to no additional work with the Xen-Blanket.

10 Linux, Apache, MySQL, and PHP

Figure 13. Comparison between the steps it takes to migrate

(offline) an image into Amazon’s EC2 with and without the

Xen-Blanket

Migrating a VM image from our private setup to Amazon

EC2 is relatively straightforward given the Xen-Blanket.

No image modifications are required, so the process begins

with bundling, or preparing the image to upload for use

in EC2. The image was compressed with gzip, split into

5 GB chunks for Amazon’s Simple Storage Service (S3),

and uploaded. Then, we started an EC2 instance running the

Xen-Blanket, retrieved the disk image from S3, concatenated

the pieces of the file, and unzipped the image. The VM itself

was created using standard Xen tools, such as xm create.

Without the Xen-Blanket, there currently exists a EC2-

specific process to create an Amazon Machine Image (AMI)

from an existing Xen disk image, roughly matching the bun-

dle, upload, and launch steps. Before that, two modifications

were required to our VM image. First, we had to modify the

image to contain the kernel because no compatible kernel

was offered by EC2.11 This task was complicated by the fact

that our private Xen setup did not have the correct tools to

boot the kernel within the image. Second, we had to shrink

our 40 GB disk image to fit within the 10 GB image limit

on EC2. This involved manually examining the disk image

in order to locate, copy, and remove a large portion of the

application data, then resizing the VM’s filesystem and im-

age. After the modifications were complete, we used an AMI

tool called ec2-bundle-image to split the VM image into

pieces and then compressed, split and uploaded the relocated

data to S3. We then started an EC2 instance with our new

AMI, configured it to mount a disk, and reintegrated the user

data from S3 into the filesystem.

It should be noted that subsequent launches of the mi-

grated VMs do not require all of the steps outlined above.

However, if a modified or updated version of the VM is re-

leased, the entire process must be redone. Even worse, we

expect migrating to other clouds to be similarly arduous and

provider-specific, if possible at all. In contrast, using the

Xen-Blanket, the migration process will always be the same,

and can be reduced to a simple remote copy operation.

6.2 Live Multi-Cloud Migration

Live migration typically relies on memory tracing: a

hypervisor-level technique. Such techniques are not avail-

able across clouds.12 The Xen-Blanket enables immediate

implementation of live migration across cloud providers. We

have experimented with live migration between an enter-

prise cloud and Amazon EC2. We note that since live mi-

gration between two clouds is not currently possible without

provider support or the Xen-Blanket, we do not have a com-

parison point to present.

Beyond the ability to implement hypervisor-level features

like memory tracing, there are two key challenges to imple-

ment live multi-cloud migration on the Xen-Blanket. First,

Xen-Blanket instances in different clouds are in different

IP subnets, causing communication issues before and af-

ter Blanket guest migrations. Second, Xen-Blanket instances

in different clouds do not share network attached storage,

which is often assumed for live VM migration.

To address the networking issues, each Xen-Blanket in-

stance runs a virtual switch in Domain 0 to which the virtual

network interfaces belonging to Blanket guest VMs are at-

tached. A layer-2 tunnel connects the virtual switches across

the Internet. The result is that VMs on either of the two

Xen-Blanket instances appear to be sharing a private LAN.

A few basic network services are useful to introduce onto

the virtual network. A gateway server VM can be run with

two virtual network interfaces: one attached to the virtual

11Until recently, Amazon EC2 only allowed a limited selection of a few

standard kernels and initial ramdisks for use outside the image. Luckily, in

July 2010, Amazon EC2 began to support kernels stored within the image.
12While some providers expose an interface for users to use live migration

within their own cloud, as with other provider-centric approaches, standard-

ization may take years.

Figure 14. Xen-Blanket instances are connected with a

layer-2 tunnel, while a gateway server VM provides DNS,

DHCP and NFS to the virtual network, eliminating the com-

munication and storage barriers to multi-cloud live migra-

tion.

switch and the virtual network; the other attached to the ex-

ternally visible interface of the Xen-Blanket instance. The

gateway server VM, shown in Figure 14, runs dnsmasq as a

lightweight DHCP and DNS server.

Once VMs on the Xen-Blanket can communicate, the

storage issues can be addressed with a network file system,

such as NFS. NFS is useful for live VMmigration because it

avoids the need to transfer the entire disk image of the VM

at once during migration. In our setup, the gateway server

VM also runs an NFS server. The NFS server exports files

onto the virtual network and is mounted by the Domain 0

of each Xen-Blanket instance. Both Xen-Blanket instances

mount the NFS share at the same location. Therefore, during

VM migration, the VM root filesystem image can always

be located at the same filesystem location, regardless of the

physical machine.

With Xen-Blanket VMs able to communicate, maintain

their network addresses, and access storage within either

cloud, live VM migration proceeds by following the typi-

cal procedure in the Blanket hypervisor. However, while we

have successfully live-migrated a VM from an enterprise

cloud to Amazon EC2 and back, this is simply a proof-of-

concept. It is clearly inefficient to rely on a NFS disk image

potentially residing on another cloud instead of a local disk.

Moreover, the layer-2 tunnel only connects two machines.

More sophisticated wide-area live migration techniques ex-

ist [5], that can, as future work, be implemented and evalu-

ated on the Xen-Blanket.

7. Future Work

Two limitations of the current Xen-Blanket are the inability

to support unmodified guest OSs (such as Microsoft Win-

dows) and the reliance on fully virtualized (HVM) contain-

ers. To address the first limitation, as discussed earlier, un-

modified guests can be supported with binary translation, for

example a VMWare-Blanket. The performance implications

of such a system is a subject of future research. The second

limitation can be addressed by allowing a version of the Xen-

Blanket to run on a paravirtualized interface, while continu-

ing to export a homogeneous interface to guests. Paravirtu-

alizing the Blanket layer is technically feasible, but may en-

counter performance issues in the memory subsystem where

hardware features such as Extended Page Tables (EPT) can-

not be used and is another subject of future research.

More broadly, a user-centric, homogeneous Blanket layer

enables future projects to examine features such as cross-

provider live migration (see Section 6.2), high availabil-

ity [10], and security [12] on one or more existing clouds.

It also offers researchers an environment within which novel

systems and hypervisor level experimentation can be per-

formed. We also plan to research issues in running entire

cloud stacks, such as Eucalyptus [14] or OpenStack [1], in

nested environments and across multiple clouds.

8. Related Work

There are several techniques that exist today to deploy ap-

plications on multiple clouds, but none afford the user the

flexibility or level of control of the Xen-Blanket. Conversely,

there are also a number of existing systems that offer a user

similar levels of control as the Xen-Blanket. However, none

of these systems are able to be deployed on today’s public

clouds.

Nested virtualization is leveraged by the Xen-Blanket

in order to allow a user to implement its own version of

homogeneity, including hypervisor-level services. Graf and

Roedel [15] and the Turtles Project [2] are pioneers of

enabling nested virtualization with one or more levels of

full virtualization, on AMD and Intel hardware, respec-

tively. Berghmans [3] describes the performance of sev-

eral nested virtualization environments. CloudVisor [30] ex-

plores nested virtualization in a cloud context, but for se-

curity, where the provider controls both layers. The Xen-

Blanket sacrifices full nested virtualization for immediate

deployment on existing clouds.

8.1 Multi-Cloud Deployments

Using tools from Rightscale [9], a user can create

ServerTemplates, which can be deployed on a variety of

clouds and utilize unique features of clouds without sacri-

ficing portability. However, users are unable to homogenize

the underlying clouds, particularly hypervisor-level services.

Middleware, such as IBM’s Altocumulus [17] system ho-

mogenizes both IaaS clouds like Amazon EC2 and Platform

as a Service (PaaS) clouds like Google App Engine into a

PaaS abstraction across multiple clouds. However, without

control at the IaaS (hypervisor) level, the amount of cus-

tomization possible by the cloud user is fundamentally lim-

ited.

fos [24], deployed on EC2 today and potentially deploy-

able across a wide variety of heterogeneous clouds, exposes

a single system image instead of a VM interface. How-

ever, users must learn to program their applications for fos;

the familiar VM interface and legacy applications contained

within must be abandoned.

Eucalyptus [14] and AppScale [7] are open-source cloud

computing systems that can enable private infrastructures to

share an API with Amazon EC2 and Google App Engine

respectively. However, the user cannot implement their own

multi-cloud hypervisor-level feature. OpenStack [1] is an-

other open-source implementation of an IaaS cloud, with the

same limitation.

The RESERVOIR project [19] is a multi-cloud agenda

in which two or more independent cloud providers create

a federated cloud. A provider-centric approach is assumed;

standardization is necessary before federation can extend

beyond the testbed. With the Xen-Blanket, such an agenda

could be applied across today’s public clouds.

8.2 User-Centric Design and Control

OpenCirrus [6] is an initiative that aims to enable cloud

targeted system level research—deploying a user-centric

cloud—by allowing access to bare hardware, as in Emu-

lab [26], in a number of dedicated data centers. However,

OpenCirrus is not aimed at applying this ability to existing

cloud infrastructures.

Cloud operating systems such as VMWare’s vSphere [22]

allow the administrator of a private cloud to utilize a pool

of physical resources, while providing features like au-

tomatic resource allocation, automated failover, or zero-

downtime maintenance. These features, which are examples

of hypervisor-level services, cannot easily be integrated with

current public cloud offerings.

Finally, the Xen-Blanket is an instantiation of our ex-

tensible cloud, or xCloud, proposal [27], which is influ-

enced by work on extensible operating systems. For ex-

ample, SPIN [4] allows extensions to be downloaded into

the kernel safely using language features, while Exoker-

nels [13] advocate hardware to be exposed to a library OS

controlled by the user. However, these extensibility strate-

gies are provider-centric, and unlikely to be incorporated in

today’s clouds. The combination of deployment focus and

user-level control sets the Xen-Blanket apart from existing

work.

9. Conclusion

Current IaaS clouds lack the homogeneity required for users

to easily deploy services across multiple providers. We have

advocated that instead of standardization, or provider-centric

homogenization, cloud users must have the ability to homog-

enize the cloud themselves. We presented the Xen-Blanket, a

system that enables user-centric homogenization of existing

cloud infrastructures.

The Xen-Blanket leverages a second-layer Xen

hypervisor—completely controlled by the user—that

utilizes a set of provider-specific Blanket drivers to execute

on top of existing clouds without requiring any modifica-

tions to the provider. Blanket drivers have been developed

for both Xen and KVM based systems, and achieve high

performance: network and disk throughput remain within

12% of paravirtualized drivers in a single-level paravir-

tualized guest. The Xen-Blanket is currently running on

Amazon EC2, an enterprise cloud, and private servers at

Cornell University. We have migrated VM images between

the three different sites with no modifications to the images

and performed live migration to and from Amazon EC2. We

have exploited the user-centric nature of the Xen-Blanket to

oversubscribe resources and save money on EC2, achieving

a cost of 47% of the price per hour of small instances for

40 CPU-intensive VMs, despite the inherent overheads of

nested virtualization.

We have only scratched the surface in terms of

the applications and functionality made possible by

user-centric homogenization, and the Xen-Blanket

in particular. The Xen-Blanket project website is lo-

cated at http://xcloud.cs.cornell.edu/, and

the code for the Xen-Blanket is publicly available at

http://code.google.com/p/xen-blanket/. We hope

other projects adopt the Xen-Blanket and look forward to

expanding the Xen-Blanket to cover even more underlying

cloud providers.

Acknowledgments

This work was partially funded and supported by an IBM

Faculty Award received by Hakim Weatherspoon, DARPA,

NSF TRUST and NSF FIA. Also, this work was performed

while Dan Williams was an intern at the IBM T. J. Watson

Research Center in Hawthorne, NY. We would like to thank

our shepherd, Andreas Haeberlen, and the anonymous re-

viewers for their comments.

References

[1] OpenStack. http://www.openstack.org/, Oct. 2010.

[2] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,

N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and B.-A.

Yassour. The turtles project: Design and implementation of

nested virtualization. In Proc. of USENIX OSDI, Vancouver,

BC, Canada, Oct. 2010.

[3] O. Berghmans. Nesting virtual machines in virtualization

test frameworks. Masters thesis, University of Antwerp, May

2010.

[4] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fi-

uczynski, D. Becker, C. Chambers, and S. Eggers. Extensibil-

ity, safety and performance in the SPIN operating system. In

Proc. of ACM SOSP, Copper Mountain, CO, Dec. 1995.

[5] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg.

Live wide-area migration of virtual machines including local

persistent state. In Proc. of ACM VEE, San Diego, CA, June

2007.

[6] R. Campbell, I. Gupta, M. Heath, S. Y. Ko, M. Kozuch,

M. Kunze, T. Kwan, K. Lai, H. Y. Lee, M. Lyons, D. Miloji-

cic, D. O’Hallaron, and Y. C. Soh. Open cirrusTMcloud com-

puting testbed: federated data centers for open source systems

and services research. In Proc. of USENIX HotCloud, San

Diego, CA, June 2009.

[7] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. So-

man, and R. Wolski. Appscale: Scalable and open appengine

application development and deployment. In Proc. of ICST

CLOUDCOMP, Munich, Germany, Oct. 2009.

[8] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,

I. Pratt, and A. Warfield. Live migration of virtual machines.

In Proc. of USENIX NSDI, Boston, MA, May 2005.

[9] T. Clark. Rightscale. http://www.rightscale.com, 2010.

[10] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson,

and A. Warfield. Remus: high availability via asynchronous

virtual machine replication. In Proc. of USENIX NSDI, San

Francisco, CA, Apr. 2008.

[11] Distributed Management Task Force, Inc. (DMTF).

Open virtualization format white paper version 1.00.

http://http://www.dmtf.org/sites/default/

files/standards/documents/DSP2017_1.0.0.pdf,

Feb. 2009.

[12] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.

Chen. ReVirt: Enabling intrusion analysis through virtual-

machine logging and replay. In Proc. of USENIX OSDI,

Boston, MA, Dec. 2002.

[13] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole. Exoker-

nel: An operating system architecture for application-level re-

source management. In Proc. of ACM SOSP, Copper Moun-

tain, CO, Dec. 1995.

[14] Eucalyptus Systems, Inc. Eucalyptus open-source

cloud computing infrastructure - an overview.

http://www.eucalyptus.com/pdf/whitepapers/

Eucalyptus_Overview.pdf, Aug. 2009.

[15] A. Graf and J. Roedel. Nesting the virtualized world. In Linux

Plumbers Conference, Portland, OR, Sept. 2009.

[16] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,

G. Varghese, G. M. Voelker, and A. Vahdat. Difference en-

gine: Harnessing memory redundancy in virtual machines. In

Proc. of USENIX OSDI, San Diego, CA, Dec. 2008.

[17] E. M. Maximilien, A. Ranabahu, R. Engehausen, and L. C.

Anderson. IBM altocumulus: a cross-cloud middleware and

platform. In Proc. of ACM OOPSLA Conf., Orlando, FL, Oct.

2009.

[18] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent

migration for virtual machines. In Proc. of USENIX Annual

Technical Conf., Anaheim, CA, Apr. 2005.

[19] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy,

K. Nagin, J. Tordsson, C. Ragusa, M. Villari, S. Clay-

man, E. Levy, A. Maraschini, P. Massonet, H. Muñoz, and

G. Tofetti. Reservoir - when one cloud is not enough. IEEE

Computer, 44(3):44–51, 2011.

[20] V. Shrivastava, P. Zerfos, K. won Lee, H. Jamjoom, Y.-H. Liu,

and S. Banerjee. Application-aware virtual machine migration

in data centers. In Proc. of IEEE INFOCOMMini-conference,

Shanghai, China, Apr. 2011.

[21] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualizing

I/O devices on VMware workstation’s hosted virtual machine

monitor. In Proc. of USENIX Annual Technical Conf., Boston,

MA, June 2001.

[22] VMware. ”VMware vsphere, the first cloud operating system,

provides an evolutionary, non-disruptive path to cloud com-

puting”. http://www.vmware.com/files/pdf/cloud/

VMW_09Q2_WP_Cloud_OS_P8_R1.pdf, 2009.

[23] C. A. Waldspurger. Memory resource management in

VMware ESX server. In Proc. of USENIX OSDI, Boston, MA,

Dec. 2002.

[24] D. Wentzlaff, C. Gruenwald, III, N. Beckmann,

K. Modzelewski, A. Belay, L. Youseff, J. Miller, and

A. Agarwal. An operating system for multicore and clouds:

mechanisms and implementation. In Proc. of ACM SoCC,

Indianapolis, IN, June 2010.

[25] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and perfor-

mance in the Denali isolation kernel. In Proc. of USENIX

OSDI, Boston, MA, Dec. 2002.

[26] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,

M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An inte-

grated experimental environment for distributed systems and

networks. In Proc. of USENIX OSDI, Boston, MA, Dec. 2002.

[27] D.Williams, E. Elnikety, M. Eldehiry, H. Jamjoom, H. Huang,

and H. Weatherspoon. Unshackle the cloud! In Proc. of

USENIX HotCloud, Portland, OR, June 2011.

[28] D. Williams, H. Jamjoom, Y.-H. Liu, and H. Weatherspoon.

Overdriver: Handling memory overload in an oversubscribed

cloud. In Proc. of ACM VEE, Newport Beach, CA, Mar. 2011.

[29] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cec-

chet, and M. D. Corner. Memory buddies: Exploiting page

sharing for smart colocation in virtualized data centers. In

Proc. of ACM VEE, Washington, DC, Mar. 2009.

[30] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor:

Retrofitting protection of virtual machines in multi-tenant

cloud with nested virtualization. In Proc. of ACM SOSP, Cas-

cais, Portugal, Oct. 2011.

