Cluster Comput (2009) 12: 141-152
DOI 10.1007/s10586-009-0079-x

XenLoop: a transparent high performance inter-VM network

loopback

Jian Wang - Kwame-Lante Wright - Kartik Gopalan

Received: 29 December 2008 / Accepted: 6 January 2009 / Published online: 17 January 2009

© Springer Science+Business Media, LLC 2009

Abstract Advances in virtualization technology have fo-
cused mainly on strengthening the isolation barrier be-
tween virtual machines (VMs) that are co-resident within
a single physical machine. At the same time, a large cat-
egory of communication intensive distributed applications
and software components exist, such as web services, high
performance grid applications, transaction processing, and
graphics rendering, that often wish to communicate across
this isolation barrier with other endpoints on co-resident
VMs. State of the art inter-VM communication mechanisms
do not adequately address the requirements of such appli-
cations. TCP/UDP based network communication tends to
perform poorly when used between co-resident VMs, but
has the advantage of being transparent to user applications.
Other solutions exploit inter-domain shared memory mech-
anisms to improve communication latency and bandwidth,
but require applications or user libraries to be rewritten
against customized APIs—something not practical for a
large majority of distributed applications. In this paper, we
present the design and implementation of a fully transparent
and high performance inter-VM network loopback channel,
called XenLoop, in the Xen virtual machine environment.
XenLoop does not sacrifice user-level transparency and
yet achieves high communication performance between co-

J. Wang - K. Gopalan ()

Computer Science, Binghamton University, Binghamton, NY,
USA

e-mail: kartik @cs.binghamton.edu

J. Wang
e-mail: jlanwang @cs.binghamton.edu

K.-L. Wright
Electrical Engineering, The Cooper Union, New York, NY, USA
e-mail: wright2 @cooper.edu

resident guest VMs. XenLoop intercepts outgoing network
packets beneath the network layer and shepherds the packets
destined to co-resident VMs through a high-speed inter-
VM shared memory channel that bypasses the virtualized
network interface. Guest VMs using XenLoop can migrate
transparently across machines without disrupting ongoing
network communications, and seamlessly switch between
the standard network path and the XenLoop channel. In our
evaluation using a number of unmodified benchmarks, we
observe that XenLoop can reduce the inter-VM round trip
latency by up to a factor of 5 and increase bandwidth by a
up to a factor of 6.

Keywords Virtual machine - Inter-VM communication -
Xen

1 Introduction

Virtual Machines (VMs) are rapidly finding their way into
data centers, enterprise service platforms, high performance
computing (HPC) clusters, and even end-user desktop envi-
ronments. The primary attraction of VMs is their ability to
provide functional and performance isolation across applica-
tions and services that share a common hardware platform.
VMs improve the system-wide utilization efficiency, pro-
vide live migration for load balancing, and lower the overall
operational cost of the system.

Hypervisor (also sometimes called the virtual machine
monitor) is the software entity which enforces isolation
across VMs residing within a single physical machine, often
in coordination with hardware assists and other trusted soft-
ware components. For instance, the Xen [1] hypervisor runs
at the highest system privilege level and coordinates with

@ Springer

mailto:kartik@cs.binghamton.edu
mailto:jianwang@cs.binghamton.edu
mailto:wright2@cooper.edu

142

Cluster Comput (2009) 12: 141-152

a trusted VM called Domain 0 (or Dom0) to enforce isola-
tion among unprivileged guest VMs. Enforcing isolation is
an important requirement from the viewpoint of security of
individual software components. At the same time enforcing
isolation can result in significant communication overheads
when different software components need to communicate
across this isolation barrier to achieve application objectives.
For example, a distributed HPC application may have two
processes running in different VMs that need to commu-
nicate using messages over MPI libraries. Similarly, a web
service running in one VM may need to communicate with
a database server running in another VM in order to satisfy
a client transaction request. Or a graphics rendering appli-
cation in one VM may need to communicate with a display
engine in another VM. Even routine inter-VM communica-
tion, such as file transfers or heartbeat messages may need
to frequently cross this isolation barrier.

In all the above examples, when the VM endpoints re-
side on the same physical machine, ideally we would like
to minimize the communication latency and maximize the
bandwidth, without having to rewrite existing applications
or communication libraries. Most state of the art inter-
VM communication mechanisms provide either application
transparency, or performance, but not both. For example, the
Xen platform enables applications to transparently commu-
nicate across VM boundary using standard TCP/IP sockets.
However, all network traffic from the sender VM to receiver
VM is redirected via Dom0, resulting in a significant per-
formance penalty. To illustrate this overhead, columns 1
and 2 in Table 1 compare the performance of the orig-
inal network communication path between two different
machines across a 1 Gbps Ethernet switch versus that be-
tween two Xen VMs on the same physical machine (labeled
“Netfront/Netback™). Flood Ping RTT refers to the aver-
age ICMP ECHO request/reply latency. Rows 2-5 use the
netperf [12] benchmark. TCP_RR and UDP_RR report av-
erage number of 1-byte request-response transactions/sec.
TCP_STREAM and UDP_STREAM report average band-
width. Row 6 shows bandwidth performance using the Im-
bench [7] benchmark. One can see that in all cases, except
TCP_STREAM, original inter-VM communication perfor-
mance is only marginally better or even slightly worse than
inter-machine performance, although one might expect a
significantly better communication performance within the
same machine.

To improve inter-VM communication performance, prior
works [4, 5, 18] have exploited the facility of inter-domain
shared memory provided by the Xen hypervisor, which is
more efficient than traversing the network communication
path via DomO. With [4, 18], network applications and/or
communication libraries need to be rewritten against new
APIs and system calls, thus giving up user-level trans-
parency. With [5], guests’ operating system code needs to

@ Springer

Table 1 Latency and bandwidth comparison

Inter Netfront/ XenLoop
Machine Netback
Flood Ping 101 140 28
RTT (us)
netperf
TCP_RR 9387 10236 28529
(trans/sec)
netperf
UDP_RR 9784 12600 32803
(trans/sec)
netperf
TCP_STREAM 941 2656 4143
(Mbps)
netperf
UDP_STREAM 710 707 4380
(Mbps)
Imbench
TCP 848 1488 4920
(Mbps)

be modified and recompiled, giving up kernel-level trans-
parency.

In this paper, we present the design and implementa-
tion of a fully transparent and high performance inter-VM
network loopback channel called XenLoop that permits
direct network traffic exchange between two VMs in the
same machine without the intervention of a third software
component, such as Dom0, along the data path. XenLoop
operates transparently beneath existing socket interfaces and
libraries. Consequently, XenLoop allows existing network
applications and libraries to benefit from improved inter-VM
communication without the need for any code modification,
recompilation, or relinking. Additionally, XenLoop does not
require any changes to either the guest operating system
code or the Xen hypervisor since it is implemented as a self-
contained Linux kernel module. Guest VMs using XenLoop
can automatically detect the identity of other co-resident
VMs and setup/teardown XenLoop channels on-the-fly as
needed. Guests can even migrate from one machine to an-
other without disrupting ongoing network communications,
seamlessly switching the network traffic between the stan-
dard network path and the XenLoop channel. Our current
prototype focuses on IPv4 traffic, although XenLoop can be
extended easily to support other protocol types.

A snapshot of performance results for XenLoop in col-
umn 3 of Table 1 shows that, compared to original network
data path, XenLoop reduces the inter-VM round-trip latency
by up to a factor of 5 and bandwidth by up to a factor of 6.
The XenLoop source code is publicly available [17].

Cluster Comput (2009) 12: 141-152

143

The rest of this paper is organized as follows. Sec-
tion 2 covers relevant background for network datapath
processing and the shared memory facility in Xen. Sec-
tion 3 presents the design and implementation of XenLoop.
Section 4 presents the detailed performance evaluation of
XenLoop. Section 5 discusses related work and Sect. 6 sum-
marizes our contributions and outlines future improvements.

2 Xen networking background

Xen virtualization technology provides close to native ma-
chine performance through the use of para-virtualization—a
technique by which the guest OS is co-opted into reducing
the virtualization overhead via modifications to its hardware
dependent components. In this section, we review the rel-
evant background of the Xen networking subsystem as it
relates to the design of XenLoop. Xen exports virtualized
views of network devices to each guest OS, as opposed to
real physical network cards with specific hardware make
and model. The actual network drivers that interact with the
real network card can either execute within Dom0—a priv-
ileged domain that can directly access all hardware in the
system—or within Isolated Driver Domains (IDD), which
are essentially driver specific virtual machines. IDDs require
the ability to hide PCI devices from Dom0 and expose them
to other domains. In the rest of the paper, we will use the
term driver domain to refer to either DomO or the IDD that
hosts the native device drivers.

The physical network card can be multiplexed among
multiple concurrently executing guest OSes. To enable this
multiplexing, the privileged driver domain and the unprivi-
leged guest domains (DomU) communicate by means of a
split network-driver architecture shown in Fig. 1. The driver

Fig. 1 Split Netfront-Netback

domain hosts the backend of the split network driver, called
netback, and the DomU hosts the frontend, called netfront.
The netback and netfront interact using high-level network
device abstraction instead of low-level network hardware
specific mechanisms. In other words, a DomU only cares
that it is using a network device, but doesn’t worry about the
specific type of network card.

Netfront and netback communicate with each other using
two producer-consumer ring buffers—one for packet recep-
tion and another for packet transmission. The ring buffers
are nothing but a standard lockless shared memory data
structure built on top of two primitives—grant tables and
event channels. Grant table can be used for bulk data trans-
fers across domain boundaries by enabling one domain to
allow another domain to access its memory pages. The ac-
cess mechanism can consist of either sharing or transfer of
pages. The primary use of the grant table in network I/O
is to provide a fast and secure mechanism for unprivileged
domains (DomUs) to receive indirect access to the network
hardware via the privileged driver domain. They enable the
driver domain to set up a DMA based data transfer directly
to/from the system memory of a DomU rather than per-
forming the DMA to/from driver domain’s memory with the
additional copying of the data between DomU and driver
domain.

The grant table can be used to either share or transfer
pages between the DomU and driver domain. For example,
the frontend of a split driver in DomU can notify the Xen
hypervisor (viathe gnttab_grant_foreign_access
hypercall) that a memory page can be shared with the driver
domain. The DomU then passes a grant table reference via
the event channel to the driver domain, which directly copies
data to/from the memory page of the DomU. Once the
page access is complete, the DomU removes the grant ref-
erence (via the gnttab_end_foreign_access call).

GUEST VM 1 NETWORK DRIVER DOMAIN GUEST VM 2
driver architecture in Xen. —_— r \ DESCRIPTOR —_——
Network traffic between VM1 DESCRIPTOR RINGS
and VM2 needs to traverse via RINGS
the software bridge in driver <+ 7x
domain < — VNIC

FRON
RX END
X [T+—T>
NATIVE NIC DRIVER
o GRAN
L TABLE
TABLE
(sare mw uB
L \ XEN HYPERVISOR

([pHysicaL nic]

@ Springer

144

Cluster Comput (2009) 12: 141-152

Such page sharing mechanism is useful for synchronous I/O
operations, such as sending packets over a network device
or issuing read/write to a block device.

At the same time, network devices can receive data
asynchronously, that is, the driver domain may not know
the target DomU for an incoming packet until the entire
packet has been received and its header examined. In this
situation, the driver domain first DMAs the packet into
its own memory page. Next, depending on whether the
received packet is small, the driver domain can choose
to copy the entire packet to the DomU’s memory across
a shared page. Alternatively, if the packet is large, the
driver domain notifies the Xen hypervisor (via the gnt-
tab_grant_foreign_transfer call) that the page
can be transferred to the target DomU. The DomU then ini-
tiates a transfer of the received page from the driver domain
and returns a free page back to the hypervisor. Excessive
switching of a CPU between domains can negatively impact
the performance due to increase in TLB and cache misses.
An additional source of overhead can be the invocation of
frequent hypercalls (equivalent of system calls for the hyper-
visor) in order to perform page sharing or transfers. Security
considerations may also force a domain to zero a page being
returned in exchange of a page transfer, which can negate
the benefits of page transfer to a large extent [8].

3 Design and implementation

The two basic design objectives behind XenLoop are
(a) user-level transparency and (b) significantly higher inter-

Fig. 2 XenLoop architecture
showing XenLoop module in
guest, the domain discovery
module in DomO, and the three
components of inter-VM
communication channel

APPLICATIONS
SOCKET LAYER

TRANSPORT LAYER

NETWORK LAYER INTER VM CHANNEL NETWORK LAYER
LISTENER CONNECTO
(ID=1) (ID=2)

XENLOOP LAYER — EVENT CHANNEL d XENLOOP LAYER

VM communication performance than via netfront-netback.
In this section, we describe the detailed design choices and
tradeoffs in implementing XenLoop, justify our design de-
cisions, and present implementation details.

3.1 XenLoop module in guest VM

Here we will discuss an overview of XenLoop architecture
shown in Fig. 2 and will discuss each component in greater
detail in the following subsections. Each guest VM hosts
a self-contained XenLoop kernel module which inserts it-
self as a thin layer in the network protocol stack between
the network layer and the link layer. The XenLoop module
contains a guest-specific software bridge that is capable of
intercepting every outgoing packet from the network layer
in order to inspect its header to determine the packet’s des-
tination. Linux provides a netfilter [11] hook mechanism to
perform this type of packet interception. The netfilter hook
enables XenLoop to handle packets of different protocol
types, though currently our protocol focuses on IPv4.

The XenLoop module also contains a mapping table that
stores the identity, as [guest-ID, MAC address] pair, of every
other guest VM within the same physical machine. This
mapping table is dynamically populated using a soft-state
domain discovery mechanism described later in Sect. 3.2.

Whenever two guest VMs within the same machine have
an active exchange of network traffic, they dynamically set
up a bidirectional inter-VM data channel between them-
selves using a handshake protocol. This channel bypasses
the standard data path via DomO for any communication in-
volving the two guests. Conversely, the Guests can choose

APPLICATIONS
SOCKET LAYER

TRANSPORT LAYER

SOFTWARE
BRIDGE

NETFRONT DRIVER

GUEST VM 1

@ Springer

IN f———
XENLOOP | oyz}——

FIFO 1

———our
=lIN XENLOOP
SOFTWARE

[>>| DISCOVERY [<<
MODULE

FIFO2

BRIDGE

NETFRONT DRIVER

NAaABRINDZ

GUEST VM 2

Cluster Comput (2009) 12: 141-152

145

to tear down the channel in the absence of the active traffic
exchange in order to conserve system resources.

For each outgoing packet during data communication, the
software bridge first inspects its destination address and re-
solves the layer-2 MAC address of the next-hop node. This
resolution is done with the help of a system-maintained
neighbor cache, which happens to be the ARP-table cache
in the case of IPv4. The software bridge then looks up the
mapping table to check if the next hop node is a guest VM
within the same machine, in which case the packet is for-
warded over the inter-VM data channel. If the FIFO is full,
or the packet cannot fit into the available space, then the
packet is placed in a waiting list to be sent once enough
resources are available. If the next hop node is not a VM
within the same machine, or if the packet size is bigger than
the FIFO size, then the packet is forwarded using the stan-
dard netfront-netback data path via the driver domain.

3.2 Discovering co-resident guest VMs

In order to set up inter-VM channels with other guests,
a guest needs to first discover the identity of co-resident
guests. Similarly, to tear down a stale inter-VM channel,
a guest needs to determine when the other endpoint no
longer exists. Ideally, we want this to occur transparently
without administrator intervention. To enable such trans-
parent setup and teardown of inter-VM channels, XenLoop
employs a soft-state domain discovery mechanism. Dom0,
being a privileged domain, is responsible for maintaining
XenStore—a store of key-value pairs representing differ-
ent system configuration parameters, including information
about each active guest VM. Whenever a new guest VM is
created in a machine, or when it migrates in from another
machine, new entries for that VM are created in XenStore
to represent its state. Conversely, when a VM dies or is mi-
grated away from a machine, its information in XenStore is
destroyed. Only DomO is capable of collating the XenStore
information about all active guests; unprivileged guest do-
mains can read and modify their own XenStore information,
but not each others’ information.

In order to advertise its willingness to set up XenLoop
channels with co-resident guests, the XenLoop module in
each guest VM creates a XenStore entry named “xenloop”
under its XenStore hierarchy (presently “/local/domain/
<guest-ID>/xenloop”). A Domain Discovery module in
DomO periodically (every 5 seconds) scans all guests in
XenStore, looking for the “xenloop” entry in each guest. It
compiles a list of [guest-ID, MAC address] identity pairs
for all active guest VMs in the machine that advertise
the “xenloop” entry and, by implication, their willingness
to participate in setting up inter-VM channels. The Do-
main Discovery module then transmits an announcement
message—a network packet with a special XenLoop-type

layer-3 protocol ID—to each willing guest, containing the
collated list of their [guest-ID, MAC address] identity pairs.
Absence of the “xenloop” entry in XenStore for any guest
leads to that guest VM’s identity being removed from future
announcement messages. The above mechanism provides a
soft-state discovery design where only the guests that are
alive and have an active XenLoop module participate in
communication via inter-VM channels.

The need to perform domain discovery announcements
from DomO arises because Xen does not permit unprivi-
leged guests to read XenStore information about other co-
resident guests. Another alternative discovery mechanism,
that doesn’t require a Discovery Module in Dom0, could
be to have each guest VM’s XenLoop module to broadcast
its own presence to other guests using special XenLoop-
type self-announcement network messages. However this
requires the software bridge in Dom0 to be modified to pre-
vent the XenLoop-type broadcasts from leaving the local
machine into the external network.

3.3 Inter-VM communication channel

The heart of XenLoop module is a high-speed bidirec-
tional inter-VM channel. This channel consists of three
components—two first-in-first-out (FIFO) data channels,
one each for transferring packets in each direction, and one
bidirectional event channel. The two FIFO channels are set
up using the inter-domain shared memory facility, whereas
the event channel is a 1-bit event notification mechanism for
the endpoints to notify each other of presence of data on the
FIFO channel.

FIFO design: Each FIFO is a producer-consumer circular
buffer that avoids the need for explicit synchronization be-
tween the producer and the consumer endpoints. The FIFO
resides in a piece of shared memory between the partici-
pating VMs. Each entry in the FIFO consists of a leading
8-byte metadata followed by the packet payload. To avoid
the need for synchronization, the maximum number of 8-
byte entries in the FIFO is set to 2]‘, while the front and
back indices used to access to the FIFO are m-bits wide,
where m > k. In our prototype, m = 32 and k is config-
urable to any value up to 31. Both front and back are always
atomically incremented by the consumer and producer re-
spectively, as they pop or push data packets from/to the
FIFO. It can be easily shown [2] that with the above design,
we do not need to worry about producer-consumer synchro-
nization or wrap-around boundary conditions. The situation
when multiple producer threads might concurrently access
the front of the FIFO, or multiple consumer threads the back,
is handled by using producer-local and consumer-local spin-
locks respectively that still do not require any cross-domain
produce-consumer synchronization. Hence the FIFOs are
designed to be lockless as far as producer-consumer inter-
action is concerned.

@ Springer

146

Cluster Comput (2009) 12: 141-152

LISTENER
(ID=1)
rgref_in = create_fifol()
rgref out = create_fifo2()
rport = create_evich()

CONNECTOR
(ID=2)

_— >
[rgref_in, rgref_out, rport]

send_create_channel()

connect_fifol(rgref_out)
connect_fifo2(rgref_in)
connect_evich(rport)

send_ack()

[connected]

Fig. 3 Bootstrapping the Inter-VM channel. The guest with smaller
ID acts as the listener and creates the shared FIFO pages and event
channel, whereas the guest with larger ID acts as connector

Channel bootstrap: When one of the guest VMs detects
the first network traffic destined to a co-resident VM, it ini-
tiates a bootstrap procedure to set up the two FIFOs and the
event channel with the other endpoint. Figure 3 illustrates
this bootstrap procedure. While the bootstrap is in progress,
the network traffic continues to traverse via the standard
netfront-netback data path. The bootstrap procedure is sim-
ilar to a “client-server” connection setup. During bootstrap,
the guest VM with the smaller guest ID assumes the role of
“server”, or the listener, whereas the other VM assumes the
role of “client”, or the connector. The identity of the listener
VM’s channel endpoint needs to be communicated to the
connector VM using out-of-band XenLoop-type messages
via the netfront-netback channel. The listener VM sets up
shared memory pages for the two FIFOs and grants access
to the connector VM to map these FIFO pages in its address
space. The listener VM also creates an event channel end-
point to which the connector VM is permitted to bind. The
listener then sends a create channel message to the connec-
tor, which contains three pieces of information—two grant
references, one each for a shared descriptor page for each
of the two FIFOs, and the event channel port number to bind
to. The grant references for the remaining data pages of each
FIFO are stored within the descriptor FIFO page. Upon re-
ceiving the create channel message, the connector VM maps
the descriptor page for each FIFO, reads the grant references
for remaining FIFO data pages from the descriptor page,
maps the data pages as well to its address space, and binds
to the event channel port of the listener VM. The connec-
tor VM completes the inter-VM channel setup by sending
a channel ack message to the connector. To protect against
loss of either message, the listener times out if the channel
ack does not arrive as expected and resends the create chan-
nel message 3 times before giving up.

Data transfer: Once the inter-VM channel is boot-
strapped, the network traffic between VMs can now be ex-
changed over this channel, bypassing the standard netfront-
netback data path. Note that the distinction between the roles

@ Springer

of listener and connector is only for the duration of chan-
nel bootstrap, and not during the actual data transfer. Both
the endpoints play symmetric roles during the actual data
transfer, acting as both senders and receivers of data. The
XenLoop module in the sender intercepts all data packets on
their way out from the network layer. If the packets are des-
tined to a connected co-resident VM, the sender copies these
packets onto its outgoing FIFO, which is conversely the in-
coming FIFO for the receiver. After copying the packet onto
the FIFO, the sender signals the receiver over the event chan-
nel, which in turn asynchronously invokes a pre-registered
callback at the receiver’s XenLoop module. The receiver
copies the packets from the incoming FIFO into its network
buffers, passes the packets to the network layer (layer-3),
and frees up the FIFO space for future packets.

Comparing options for data transfer: The above mecha-
nism involves two copies per packet, once at the sender side
onto the FIFO and once at the receiver from the FIFO. We
purposely eschew the use of page-sharing or page-transfer
mechanism employed by netback-netfront interface due to
the following reasons. An alternative to copying data pack-
ets would be that the sender should explicitly grant the
receiver permission to either share the packet’s data page
or transfer it. The sharing option requires one event channel
notification to the receiver, one hypercall by the receiver to
map the page, and another hypercall by the receiver to re-
lease the page. (Granting and revoking access permissions
do not require a hypercall at the sender side since the grant
table is mapped to the sender’s address space.) The trans-
fer option requires one event channel notification from the
sender, one hypercall by the receiver to transfer a page, and
another hypercall to give up a page in exchange to the hyper-
visor. Additionally, both sides have to zero out in advance
the contents of any page that they share, transfer, or give
up to avoid any unintentional data leakage. This is known
within the Xen community to be an expensive proposition.

One additional option to avoid the copy at the receiver
would be to directly point the Linux network packet data
structure struct sk_buff tothe data buffer in the FIFO,
and free the corresponding FIFO space only after the pro-
tocol stack has completed processing the packet. We also
implemented this option and found that the any potential
benefits of avoiding copy at the receiver are overshadowed
by the large amount of time that the precious space in FIFO
could be held up during protocol processing. This delay
results in back-pressure on the sender via the FIFO, signif-
icantly slowing down the rate at which FIFO is populated
with new packets by the sender. Thus we adopt a simple
two-copy approach as opposed to the above alternatives.

Channel teardown: Whenever a guest VM shuts down,
removes the XenLoop module, migrates, or suspends, all
active inter-VM channels need to be cleanly torn down.
The guest winding down first removes its “xenloop” adver-
tisement entry in XenStore to forestall any new XenLoop

Cluster Comput (2009) 12: 141-152

147

connections. It then marks all active FIFO channels as “inac-
tive” in the shared descriptor pages, notifies the guest VMs
at other endpoint over the respective event channels, and dis-
engages from both the FIFO pages and the event channel.
The other guest endpoints notice the “inactive” state marked
in shared descriptor page of each FIFO and similarly dis-
engage. The disengagement steps are slightly asymmetrical
depending upon whether initially each guest bootstrapped in
the role of a listener or a connector.

3.4 Transparently handling VM migration

XenLoop transparently adapts to the migration of VMs
across physical machines. If two communicating VMs, that
were originally on separate machines, now become co-
resident on the same machine as a result of migration,
then the Dynamic Discovery module on Dom0 detects and
announces their presence to other VMs on the same ma-
chine, enabling them to set up a new XenLoop channel.
Conversely, when one of two co-resident VMs is about to
migrate, it receives a callback from the Xen Hypervisor,
which allows it to delete its “xenloop” advertisement entry
in XenStore, and gracefully save any outgoing packets or
receive incoming packets that may be pending in all its inter-
VM channels, before disengaging from the channel itself.
The saved outgoing packets can be resent once the migration
completes. The entire response to migration is completely
transparent to user applications in the migrating guest, does
not require application-specific actions, and does not disrupt
any ongoing communications. On a related note, XenLoop
responds similarly to save-restore and shutdown operations
on a guest.

4 Performance evaluation

In this section, we present the performance evaluation of
XenLoop prototype. All experiments were performed us-
ing a test machine with dual core Intel Pentium D 2.8 GHz
processor, 1 MB cache, and 4 GB main memory. We de-
ployed Xen 3.2.0 for the hypervisor and paravirtualized
Linux 2.6.18.8 for the guest OS. Another Intel Pentium D
3.40 GHz machine, with 2 MB cache and 4 GB main
memory, was also used to measure the native machine-to-
machine communication performance over a 1 Gbps Eth-
ernet switch. We configured two guest VMs on the test
machine with 512 MB of memory allocation each for inter-
VM communication experiments. Our experiments compare
the following four communication scenarios:

e [nter-machine: Native machine-to-machine communica-
tion across a Gigabit switch.

e Netfront-netback: Guest-to-guest communication via stan-
dard netfront-netback datapath.

e XenLoop: Guest-to-guest communication via the Xen-
Loop inter-VM communication channel.

e Native loopback: Network communication between two
processes within a non-virtualized OS via the local loop-
back interface. This workload serves as a baseline com-
parison for other scenarios.

For test workloads, we use three unmodified benchmarks,
namely netperf [12], lmbench [7], and netpipe-
mpich [13-15], in addition to ICMP ECHO REQUEST/
REPLY (flood ping). netperf is a networking perfor-
mance benchmark that provides tests for both unidirectional
throughput and end-to-end latency. 1lmbench is a suite of
portable benchmarks that measures a UNIX system’s perfor-
mance in terms of various bandwidth and latency measure-
ment units. netpipe-mpich is a protocol independent
performance tool that performs request-response tests using
messages of increasing size between two processes which
could be over a network or within an SMP system.

4.1 Snapshot of microbenchmarks

Table 2 compares the measured bandwidth across four dif-
ferent communication scenarios using four benchmark gen-
erated workloads. We observe that across all cases, the
improvement in bandwidth for XenLoop over the netfront-
netback ranges from a factor of 1.55 to 6.19. Table 3 com-
pares the measured latency across the four communication
scenarios using four benchmark-generated request-response
workloads. Compared to netfront-netback, XenLoop yields
5 times smaller ping latency, 3 times smaller latency with
Imbench, 2.8 times higher transactions/sec with netperf
TCP_RR, 2.6 times higher transactions/sec with UDP_RR,
and 2.43 times smaller latency with netpipe-mpich. The la-
tency performance gap of XenLoop against native loopback

Table 2 Average bandwidth comparison

Inter Netfront/ XenLoop Native
Machine Netback Loopback
Imbench
(tcp) 848 1488 4920 5336
(Mbps)
netperf
(tcp) 941 2656 4143 4666
(Mbps)
netperf
(udp) 710 707 4380 4928
(Mbps)
netpipe-
mpich 645 697 2048 4836
(Mbps)

@ Springer

148

Cluster Comput (2009) 12: 141-152

Table 3 Average latency comparison

Inter Netfront/ XenLoop Native
Machine Netback Loopback
Flood
Ping 101 140 28 6
RTT (ps)
Imbench 107 98 33 25
(ps)
netperf
TCP_RR 9387 10236 28529 31969
(trans/sec)
netperf
UDP_RR 9784 12600 32803 39623
(trans/sec)
netpipe-
mpich 77.25 60.98 24.89 23.81
(ps)
Message Size vs Bandwidth
6000 .
[| %= netback/netfront]
t | & native loopback b
5000 - |G- native inter-machine]
—~ F | v xenloop J
” r
% 4000 a E
s]
32,3000 .
= F]
o0 r]
= r]
S 2000]
= r]
= r]
1000~ ——3
. \ ! 3
6 8 10 12 14

Message size (log2(bytes))

Fig.4 Throughput versus UDP message size using netperf benchmark

is wider than in the bandwidth case, being worse by a fac-
tor ranging from 1.2 to 4.6. Also note that average latency
for netfront-netback is either marginally better than inter-
machine latency, or sometimes worse. This illustrates the
large overhead incurred during small message exchanges
across netfront-netback interface.

4.2 Impact of message and FIFO sizes

Figure 4 plots the bandwidth measured with netperf’s
UDP_STREAM test as the sending message size increases.
Bandwidth increases for all four communication scenarios
with larger message sizes. This is because smaller messages
imply a larger number of system calls to send the same num-
ber of bytes, resulting in more user-kernel crossings. For

@ Springer

FIFO Size vs Bandwidth
|

3500

3400

w
W
(=
=

Throughput (Mbps)
g

3100

C | | |
3000) 5

3
FIFO size (log2(pages))

ol

Fig. 5 Throughput versus FIFO size using netperf UDP bandwidth
test

packets larger than 1 KB, XenLoop achieves higher band-
width than both netfront-netback and native inter-machine
communication. For packets smaller than 1 KB, native inter-
machine communication yields slightly higher bandwidth
than both XenLoop and netfront-netback due to significant
domain switching and split-driver induced overheads for
small packet sizes. Netback/netfront yields slightly lower
bandwidth than native inter-machine communication across
most message sizes. Beyond 1 KB packet size, neither na-
tive loopback nor XenLoop appear to be conclusively better
than the other. Figure 5 shows that increasing the FIFO size
has a positive impact on the achievable bandwidth. In our
experiments, we set the FIFO size at 64 KB in each direc-
tion.

4.3 MPI benchmark performance

Next we investigate the performance of XenLoop in the
presence of MPI applications using the netpipe-mpich
benchmark in the four communication scenarios. Netpipe-
mpich executes bandwidth and latency tests using request-
response transactions with increasing message sizes to
measure MPICH performance between two nodes. Figure 6
plots the one-way bandwidth variation and Fig. 7 plots
the latency variation with increasing message sizes. These
results validate our observations in earlier experiments. Xen-
Loop latency and bandwidth performance is significantly
better than netfront-netback performance, which in turn
closely tracks the native inter-machine performance. Xen-
Loop latency in this experiment also closely tracks the native
loopback latency, whereas XenLoop bandwidth follows the
native loopback trend at a smaller scale.

Cluster Comput (2009) 12: 141-152

149

Netpipe-mpich Bandwidth

5000 [T
F | ¥ netback/netfront
[| v native loopback
r | G—© native inter-machine
@ 4000 1~ &< xenloop
[« L
e L
%30001
= L
= L
= L
S
3 2000?
o .
= L
ﬁ L
10005
0% A T AR T

1000 10000
Data size (bytes)

le+05 le+06 le+07
Fig. 6 Throughput versus message size for netpipe-mpich benchmark

Netpipe-mpich Latency

SR AL U A L LA L A s

E | % netback/netfront]

[| v native loopback]

01k G—© native inter-machine |

—_ “"E | &< xenloop El

2 E E

b=} F]
g L
Q 001
Q E
77} E
N—" F
5 [
= 0.001?
(D] E
3 E
S [
3 [
0.0001

le-05 vl vl il vl il il v

10 100 1000 10000
Data size (bytes)

le+05 1e+06 1le+07

Fig. 7 Latency versus message size for netpipe-mpich benchmark

4.4 OSU MPI benchmark performance

We also investigate the performance of XenLoop using the
OSU MPI benchmark in the four communication scenar-
ios. The bandwidth tests measures the maximum sustainable
aggregate bandwidth by two nodes. The bidirectional band-
width test is similar to the unidirectional bandwidth test,
except that both the nodes send out a fixed number of back-
to-back messages and wait for the response. Figure 8 plots
the one-way bandwidth variation with increasing message
sizes, Fig. 9 plots the two-way bandwidth variation, and
Fig. 10 plots the latency variation. These results show the
same performance trend as the previous MPICH test. We
can see that XenLoop does much better job than native
inter-machine and netfront-netback when the message size
is smaller than 8192. This can be understood by observing
that large-sized messages fill the FIFO very quickly and sub-

OSU MPI Unidirectional Bandwidth Test v3.0
6000

*—% netback/netfront
GO native inter-machine
& xenloop

v—v native loopback

5000

4000

2000

1000

OO
—0—C—6—6—5

Throughput (Mbps)
""““‘\“‘“""\““‘“‘ﬁ""““\““““‘\““““‘

N L le
Y x

= 0121416 18 20
Message size (log2(bytes))

*Zf_

o
®

-
@

Fig. 8 Throughput versus message size for OSU MPI Uni-direction
benchmark

OSU MPI Bi-directional Bandwidth Test v3.0

10000

— netback/netfront
G—© native inter-machine
&> xenloop

w—v native loopback

9000

8000

7000

6000

5000

4000

3000

Throughput (Mbps)

2000

1000

Sy S i 16 s 20
Message size (log2(bytes))

Fig. 9 Throughput versus message size for OSU MPI Bi-direction
benchmark

sequent messages have to wait for the receiver to consume
the older ones.

4.5 VM migration performance

In this section, we demonstrate that after migration guest
VMs can dynamically switch between using XenLoop
channel and the standard network interface depending on
whether they reside on the same or different machines re-
spectively. In our experiment, originally the two VMs are
on different machines, then one of them migrates and be-
comes co-resident on the same machine as the second VM,
and then again migrates away to another machine. During
the migration, we run the netperf request-response latency
benchmark. Figure 11 shows the number of TCP request-
response transactions per second observed between two

@ Springer

Cluster Comput (2009) 12: 141-152

150
OSU MPI Latency Test v3.0
le+05E 3
F | %= netback/netfront b
F | G—© native inter-machine
—_ [| &< xenloop X
"E 10000 - | v— native loopback K 3
o £
Q n
[P L
w
O 1000 4
= E 3
Q E 3
- — F 4
£ r 1
=
100 <
=] L: B
2 []
< ¢ i
—
K)? E
L | | | | [. [R
0 2

68 10 1214 16 15 20 2
Message size (log2(bytes))

Fig. 10 Latency versus message size for OSU MPI Latency bench-
mark

Migration Latency

30000 ———— L I

25000

20000

15000

10000

5000

j

100 200 300 400 500 600
Time (Seconds)

Request-Response (transactions/sec)

=1
(=)

Fig. 11 Request response transactions/sec during migration

guest VMs during this migration process. Originally, the two
guests have a transaction rate of about 5500 transactions/sec
on separate machines, which translates to and average round
trip latency of 182 ps. Then, as the VMs migrate together,
detect that they are co-resident, and establish the Xen-
Loop channel, the transaction rate increases to about 21000
transactions/sec, i.e. the average latency drops to 47.6 ps.
The reverse is observed once the VMs separate again.

5 Related work

Most state-of-the-art inter-VM communication mechanisms
provide either transparency or performance, but not both.
As mentioned earlier, the Xen [1] platform enables applica-
tions to transparently communicate across the VM boundary

@ Springer

using standard TCP/IP network sockets. However, all net-
work traffic from the sender VM to the receiver VM is
redirected via the netfront-netback interface with Dom0, re-
sulting in significant performance penalty. There have been
recent efforts [8, 9] to improve the performance of the stan-
dard netback-netfront datapath in Xen, though not targeted
towards co-resident VM communication in particular.

Prior research efforts, namely XenSockets [18], IVC [4],
and XWay [5] have exploited the facility of inter-domain
shared memory provided by the Xen hypervisor, which is
more efficient than traversing the network communication
path via Dom0. In all these approaches, however, inter-VM
communication performance is improved at the expense of
some user or kernel-level transparency.

XenSockets [18] is a one-way communication pipe be-
tween two VMs based on shared memory. It defines a
new socket type, with associated connection establishment
and read-write system calls that provide interface to the
underlying inter-VM shared memory communication mech-
anism. User applications and libraries need to be modified
to explicitly invoke these calls. In the absence of support
for automatic discovery and migration, XenSockets is pri-
marily used for applications that are already aware of the
co-location of the other VM endpoint on the same phys-
ical machine, and which do not expect to be migrated.
XenSockets is particularly intended for applications that are
high-throughput distributed stream systems, in which la-
tency requirement are relaxed, and that can perform batching
at the receiver side.

IVC [4] is a user level communication library intended
for message passing HPC applications that provides shared
memory communication across co-resident VMs on a phys-
ical machine. Unlike XenSockets, IVC does not define a
new socket type, but provides a socket-style user-API us-
ing which an IVC aware application or library can be
(re)written. VM migration is supported, though not fully
transparently at user-space, by invoking callbacks into the
user code so it can save any shared-memory state before
migration gets underway. Authors also use IVC to write a
VM-aware MPI library called MVAPICH2-ivc to support
message passing HPC applications. IVC is beneficial for
HPC applications that are linked against MVAPICH2-ivc or
that can be modified to explicitly use the IVC APL

XWay [5] provides transparent inter-VM communication
for TCP oriented applications by intercepting TCP socket
calls beneath the socket layer. Available information indi-
cates that VM migration is a work-in-progress as of date and
there is no support for automatic discovery of co-resident
VMs. XWay also requires extensive modifications to the im-
plementation of network protocol stack in the core operating
system since Linux does not seem to provide a transparent
netfilter-type hooks to intercept messages above TCP layer.

In other application specific areas, XenFS [16] improves
file system performance through inter-VM cache sharing.

Cluster Comput (2009) 12: 141-152

151

HyperSpector [6] permits secure intrusion detection via
inter-VM communication. Prose [3] employs shared buffers
for low-latency IPC in a hybrid microkernel-VM environ-
ment. Proper [10] describes techniques to allow multiple
PlanetLab services to cooperate with each other.

6 Conclusions

There is a growing trend toward using virtualization to en-
force isolation and security among multiple cooperating
components of complex distributed applications. Such ap-
plication arise in high performance computing, enterprise,
as well as desktop settings. This makes it imperative for the
underlying virtualization technologies to enable high perfor-
mance communication among these isolated components,
while simultaneously maintaining application transparency.
In this paper, we presented the design and implementa-
tion of a fully transparent and high performance inter-VM
network loopback channel, called XenLoop, that preserves
user-level transparency and yet delivers high communica-
tion performance across co-resident guest VMs. XenLoop
couples shared memory based inter domain communica-
tion with transparent traffic interception beneath the net-
work layer and a soft-state domain discovery mechanism
to satisfy the twin objectives of both performance and
transparency. XenLoop permits guest VMs to migrate trans-
parently across machines while seamlessly switching be-
tween the standard network data path and the high-speed
XenLoop channel. Evaluation using a number of unmod-
ified benchmarks demonstrates a significant reduction in
inter-VM round trip latency and increase in communica-
tion throughput. As part of future enhancements, we are
presently investigating whether XenLoop functionality can
implemented transparently between the socket and transport
layers in the protocol stack, instead of below the network
layer, without modifying the core operating system code or
user applications. This can potentially lead to elimination
of network protocol processing overhead from the inter-VM
data path.

Acknowledgement We’d like to thank Suzanne McIntosh and
Catherine Zhang from IBM Research for helpful interactions and dis-
cussions regarding their implementation of XenSockets [18].

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S. et al.: Xen and the
art of virtualization. In: SOSP, Oct. 2003

2. Chisnall, D.: The Definitive Guide to the Xen Hypervisor, 2nd
edn. Prentice-Hall, Englewood Cliffs (2007)

3. Hensbergen, E.V., Goss, K.: Prose i/o. In: First International Con-
ference on Plan 9, Madrid, Spain, 2006

10.

11.
12.
13.

14.

15.

16.

17.

18.

Huang, W., Koop, M., Gao, Q., Panda, D.K.: Virtual machine
aware communication libraries for high performance computing.
In: Proc. of SuperComputing (SC’07), Reno, NV, Nov. 2007
Kim, K., Kim, C., Jung, S.-I., Shin, H., Kim, J.-S.: Inter-domain
socket communications supporting high performance and full
binary compatibility on Xen. In: Proc. of Virtual Execution En-
vironments, 2008

Kourai, K., Chiba, S.: HyperSpector: Virtual distributed moni-
toring environments for secure intrusion detection. In: Proc. of
Virtual Execution Environments, 2005

McVoy, L., Staelin, C.: Imbench: portable tools for performance
analysis. In: Proc. of USENIX Annual Technical Symposium,
1996

Menon, A., Cox, A.L., Zwaenepoel, W.: Optimizing network
virtualization in Xen. In: Proc. of USENIX Annual Technical Con-
ference, 2006

Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J.,
Zwaenepoel, W.: Diagnosing performance overheads in the Xen
virtual machine environment. In: Proc. of Virtual Execution Envi-
ronments, 2005

Muir, S., Peterson, L., Fiuczynski, M., Cappos, J., Hartman, J.:
Proper: privileged operations in a virtualised system environment.
In: USENIX Annual Technical Conference, 2005

Netfilter. http://www.netfilter.org/

Netperf. http://www.netperf.org/

Snell, Q.0O., Mikler, A.R., Gustafson, J.L.: NetPIPE: a network
protocol independent performance evaluator. In: Proc. of IASTED
International Conference on Intelligent Information Management
and Systems, 1996

Turner, D., Chen, X.: Protocol-dependent message-passing perfor-
mance on Linux clusters. In: Proc. of Cluster Computing, 2002
Turner, D., Oline, A., Chen, X., Benjegerdes, T.: Integrating new
capabilities into NetPIPE. In: Proc. of 10th European PVM/MPI
conference, Venice, Italy, 2003

XenFS. http://wiki.xensource.com/xenwiki/XenFS

XenLoop Source Code. http://osnet.cs.binghamton.edu/projects/
xenloop.html

Zhang, X., MclIntosh, S., Rohatgi, P., Griffin, J.L.: Xensocket:
a high-throughput interdomain transport for virtual machines. In:
Proc. of Middleware, 2007

Jian Wang graduated from Beijing
University of Posts and Telecommu-
nications with an M.S. in Computer
Science and worked at Sun Mi-
crosystems before joining the Ph.D.
program at Binghamton University.
His current research work is on
inter-VM communication mecha-
nisms in virtual machines.

@ Springer

http://www.netfilter.org/
http://www.netperf.org/
http://wiki.xensource.com/xenwiki/XenFS
http://osnet.cs.binghamton.edu/projects/xenloop.html
http://osnet.cs.binghamton.edu/projects/xenloop.html

152

Cluster Comput (2009) 12: 141-152

@ Springer

Kwame-Lante Wright is an Elec-
trical Engineering student at The
Cooper Union for the Advance-
ment of Science and Art. He joined
the XenLoop project through a Re-
search Experience for Undergrad-
uates (REU) program hosted by
Binghamton University and funded
by the National Science Foundation
(NSF).

Kartik Gopalan is an Assistant
Professor in Computer Science at
Binghamton University. He received
his Ph.D. in Computer Science from
Stony Brook University (2003), M.S.
in Computer Science from Indian
Institute of Technology at Chennai
(1996), and B.E. in Computer En-
gineering from Delhi Institute of
Technology (1994). His current re-
search interests include Resource
Virtualization, Wireless Networks,
and Real-Time Systems.

	XenLoop: a transparent high performance inter-VM network loopback
	Abstract
	Introduction
	Xen networking background
	Design and implementation
	XenLoop module in guest VM
	Discovering co-resident guest VMs
	Inter-VM communication channel
	Transparently handling VM migration

	Performance evaluation
	Snapshot of microbenchmarks
	Impact of message and FIFO sizes
	MPI benchmark performance
	OSU MPI benchmark performance
	VM migration performance

	Related work
	Conclusions
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

