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Assignment 3’s Conductor
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Conductor container management tool had the 
following features:

● Ability to create only debian container 
images.

● Running simple containers without any 
cgroup capabilities.

● Allows only basic network functionalities.

What if you want to build and containerize 
your own applications which requires custom 
libraries or more functionalities?

[Image Credit - https://dev.to/ben/meme-monday-1o5g#comment-22ekf]

https://dev.to/ben/meme-monday-1o5g#comment-22ekf


Docker Terminologies
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● Dockerfile: (Like source code) List of instructions to build an image

● Docker image: (Like compiled binary)

● Docker container: (Like running process) Runtime instance of an image

● Docker registry: (Like GitHub) Repository or store of images

● Docker engine: The docker daemon process running on the host which manages images and 

containers 

$ docker info

Docker is a server-client application. The docker engine (server) implements the container management and exposes 
HTTP API for communication which is used by docker CLI (client).



Docker Terminologies
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Client Details

Server Details
Cgroup version 2 

is being used here



Docker Images
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Container images can either be built locally or “pulled” from a registry (which was built by someone).

Let’s try to run a container by pulling a docker image first.

We will use a docker image based on Alpine Linux with a complete package index and only 5 MB in size!

$ docker pull alpine:3.18

$ docker image inspect alpine:3.18

[image registry - https://hub.docker.com/]
[image taken from ACM India Winter School on "Full-stack Networking (FSN)" ]

https://hub.docker.com/


Docker containers and its hidden details
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$ docker run -it [--name <container-name>] alpine:3.18

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
6885e9657ee1 alpine:3.18 "/bin/sh"   23 minutes ago   Up 23 minutes         test

$ docker inspect <CONTAINER ID>or<NAME>

Let’s run a container and understand its internals!



Docker containers and its hidden details
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$ docker inspect <CONTAINER ID>or<NAME>

Interesting details

System configuration files

network namespace inode
(can be linked to /var/run/netns for netns usage)

Network settings



Docker containers and its hidden details
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$ cd /sys/fs/cgroup/cpu/docker/<container-id>

cgroup

$ cd /sys/fs/cgroup/system.slice/docker-<container-id>.scope

For cgroup v1

For cgroup v2



Conductor to Docker - Commands
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Conductor Docker

conductor.sh build <image-name> docker build -t <image-name> <dockerfile>

conductor.sh images docker images

conductor.sh rmi <image-name> docker rmi <image-name>

./conductor.sh run <image-name> <container-name>

./conductor.sh addnetwork <container-name> -i
docker run -it --name <container-name> <image-name>

./conductor.sh ps docker ps

./conductor.sh stop <container-name> docker stop <container-name>
docker rm <container-name>

./conductor.sh exec <container-name> -- <command> docker exec -it <container-name> <command>

./condunctor.sh run <image-name> <container-name>

./conductor.sh addnetwork <container-name> -e 8080-80 -i
docker run -it --name <container-name> -p 8080:80 
<image-name>

Major difference between Assignment 3’s Conductor and Docker
Conductor is a bash script based tool whereas docker is a server-client application. The docker engine (server) 
implements the container management and exposes HTTP API for communication which is used by docker CLI (client). 
e.g. e.g. docker ps is  GET /containers/json



Docker containers and its hidden details
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Docker containers and its hidden details
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02/04/24 12[image taken from ACM India Winter School on "Full-stack Networking (FSN)" ]



Docker Build
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Build is a key part of container software development life cycle allowing us to package and bundle our 
code and ship it anywhere



Docker Build
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Build is a key part of container software development life cycle allowing us to package and bundle our 
code and ship it anywhere



Docker Build
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Basic build commands



Task - Create Docker image
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Goal: Create a “Hello World” application for container using Flask running on ubuntu.

1. Create hello.py with the following lines:

2. To run this in baremetal you will need to
install python3 and flask and then run the
application.

Similarly the Dockerfile should create a container
image, which has all the dependencies installed 
and that automatically starts the application.



Task - Create Docker image
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FROM ubuntu:22.04

# install app dependencies

# copy the flask app

# final configuration and running the application



Task - Create Docker image
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FROM ubuntu:22.04

# install app dependencies
RUN apt-get update && apt-get install -y python3 python3-pip
RUN pip install flask==3.0.*

# copy the flask app
COPY hello.py /

# final configuration and running the application
ENV FLASK_APP=hello
CMD ["flask", "run", "--host", "0.0.0.0", "--port", "8000"]



Task - Create Docker image
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FROM ubuntu:22.04

# install app dependencies
RUN apt-get update && apt-get install -y python3 python3-pip
RUN pip install flask==3.0.*

# copy the flask app
COPY hello.py /

# final configuration and running the application with exposed port
ENV FLASK_APP=hello
EXPOSE 8000
CMD ["flask", "run", "--host", "0.0.0.0", "--port", "8000"]



Let’s build and run your container
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1. Build the docker image
$ docker build -t test:latest .

2. See if the image is present and run it.
$ docker images
$ docker run -p 127.0.0.1:8000:8000 test:latest

Go to terminal and do curl to 127.0.0.1:8000 to see the application in action.

If you have docker hub account you can push the image just like git.

1. Docker login to registry
$ docker login --username username

2. Rename/Tag your image
$ docker tag my-image username/my-repo

3. Push the image
$ docker push username/my-repo



The whole story
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[image credit - https://blog.octo.com/docker-registry-first-steps]

https://blog.octo.com/docker-registry-first-steps


Docker Compose
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Docker Compose is a tool for defining and running multi-container applications. (Just like task 4)

You specify multiple docker containers and it brings them all up.

It sets up a single network for your entire application, all containers join them and can reach each other on 
this network.

Checkout a simple example - https://docs.docker.com/compose/gettingstarted/

$docker compose up

(to setup container deployments specified 
in the docker compose yaml file) 

https://docs.docker.com/compose/gettingstarted/


Docker Internals - Layers
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Docker image is built as a series of layers, each layer represents a line in the Dockerfile.

● Every command that modifies the filesystem is a new layer.

● The layer only captures the diff from the previous layer.

● Layers are shared across different images.

[image taken from ACM India Winter School on "Full-stack Networking (FSN)" ]



Docker Internals - Layers
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Docker image is built as a series of layers, each layer represents 
a line in the Dockerfile.

● When we run a container, a new writable layer (called 
container layer) is created. Other layers are read-only.

● The difference between a container and an image is in this 
writable layer

● When a container is deleted, the container layer is also deleted

● Multiple containers can share the same base image and have 
their own state in the container layer

[image taken from ACM India Winter School on "Full-stack Networking (FSN)" ]



Network virtualization
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Network Stack

NIC

Guest Kernel 
Network Stack

Application

vNIC

Network virtualization techniques is required to connect different 

VMs / Containers with each other as well as other hosts. 

Types of Communication possible:

• Intra-Host Communication

• Inter-Host Communication
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Inter-Host Communication
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Overlay communication - Tunneling

[image taken from ACM India Winter School on "Full-stack Networking (FSN)" ]
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Overlay communication - Tunneling

[image taken from ACM India Winter School on "Full-stack Networking (FSN)" ]



Docker Internals - Networking
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Docker's networking subsystem is pluggable, using drivers which can be changed. Several drivers exist 
by default, and provide core networking functionality:

1. Bridge: The default network driver. If you don't specify a driver, this is the type of network you are 
creating.

2. Host: Remove network isolation between the container and the Docker host, and use the host's 
networking directly.

3. Overlay: Overlay networks connect multiple Docker daemons together and enable Swarm services 
and containers to communicate across nodes. This strategy removes the need to do OS-level 
routing.

4. IPvlan: IPvlan networks give users total control over both IPv4 and IPv6 addressing. The VLAN 
driver builds on top of that in giving operators complete control of layer 2 VLAN tagging and even 
IPvlan L3 routing for users interested in underlay network integration.

5. Macvlan: Macvlan networks allow you to assign a MAC address to a container, making it appear 
as a physical device on your network. The Docker daemon routes traffic to containers by their MAC 
addresses.

6. None: Completely isolate a container from the host and other containers. none is not available for 
Swarm services. See None network driver.
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How does docker work in Windows and Mac OS?

[image credit: https://twitter.com/sidpalas/status/1638558418830233600]

https://twitter.com/sidpalas/status/1638558418830233600

