
Deep dive into containers
(Docker, K8s)
CS695 – Topics in Virtualization and Cloud Computing

Debojeet Das

Assignment 3’s Conductor

02/04/24 2

Conductor container management tool had the
following features:

● Ability to create only debian container
images.

● Running simple containers without any
cgroup capabilities.

● Allows only basic network functionalities.

What if you want to build and containerize
your own applications which requires custom
libraries or more functionalities?

[Image Credit - https://dev.to/ben/meme-monday-1o5g#comment-22ekf]

https://dev.to/ben/meme-monday-1o5g#comment-22ekf

Docker Terminologies

02/04/24 3

● Dockerfile: (Like source code) List of instructions to build an image

● Docker image: (Like compiled binary)

● Docker container: (Like running process) Runtime instance of an image

● Docker registry: (Like GitHub) Repository or store of images

● Docker engine: The docker daemon process running on the host which manages images and

containers

$ docker info

Docker is a server-client application. The docker engine (server) implements the container management and exposes
HTTP API for communication which is used by docker CLI (client).

Docker Terminologies

02/04/24 4

Client Details

Server Details
Cgroup version 2

is being used here

Docker Images

02/04/24 5

Container images can either be built locally or “pulled” from a registry (which was built by someone).

Let’s try to run a container by pulling a docker image first.

We will use a docker image based on Alpine Linux with a complete package index and only 5 MB in size!

$ docker pull alpine:3.18

$ docker image inspect alpine:3.18

[image registry - https://hub.docker.com/]
[image taken from ACM India Winter School on "Full-stack Networking (FSN)"]

https://hub.docker.com/

Docker containers and its hidden details

02/04/24 6

$ docker run -it [--name <container-name>] alpine:3.18

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
6885e9657ee1 alpine:3.18 "/bin/sh" 23 minutes ago Up 23 minutes test

$ docker inspect <CONTAINER ID>or<NAME>

Let’s run a container and understand its internals!

Docker containers and its hidden details

02/04/24 7

$ docker inspect <CONTAINER ID>or<NAME>

Interesting details

System configuration files

network namespace inode
(can be linked to /var/run/netns for netns usage)

Network settings

Docker containers and its hidden details

02/04/24 8

$ cd /sys/fs/cgroup/cpu/docker/<container-id>

cgroup

$ cd /sys/fs/cgroup/system.slice/docker-<container-id>.scope

For cgroup v1

For cgroup v2

Conductor to Docker - Commands

02/04/24 9

Conductor Docker

conductor.sh build <image-name> docker build -t <image-name> <dockerfile>

conductor.sh images docker images

conductor.sh rmi <image-name> docker rmi <image-name>

./conductor.sh run <image-name> <container-name>

./conductor.sh addnetwork <container-name> -i
docker run -it --name <container-name> <image-name>

./conductor.sh ps docker ps

./conductor.sh stop <container-name> docker stop <container-name>
docker rm <container-name>

./conductor.sh exec <container-name> -- <command> docker exec -it <container-name> <command>

./condunctor.sh run <image-name> <container-name>

./conductor.sh addnetwork <container-name> -e 8080-80 -i
docker run -it --name <container-name> -p 8080:80
<image-name>

Major difference between Assignment 3’s Conductor and Docker
Conductor is a bash script based tool whereas docker is a server-client application. The docker engine (server)
implements the container management and exposes HTTP API for communication which is used by docker CLI (client).
e.g. e.g. docker ps is GET /containers/json

Docker containers and its hidden details

02/04/24 10

Docker containers and its hidden details

02/04/24 11

02/04/24 12[image taken from ACM India Winter School on "Full-stack Networking (FSN)"]

Docker Build

02/04/24 13

Build is a key part of container software development life cycle allowing us to package and bundle our
code and ship it anywhere

Docker Build

02/04/24 14

Build is a key part of container software development life cycle allowing us to package and bundle our
code and ship it anywhere

Docker Build

02/04/24 15

Basic build commands

Task - Create Docker image

02/04/24 16

Goal: Create a “Hello World” application for container using Flask running on ubuntu.

1. Create hello.py with the following lines:

2. To run this in baremetal you will need to
install python3 and flask and then run the
application.

Similarly the Dockerfile should create a container
image, which has all the dependencies installed
and that automatically starts the application.

Task - Create Docker image

02/04/24 17

FROM ubuntu:22.04

install app dependencies

copy the flask app

final configuration and running the application

Task - Create Docker image

02/04/24 18

FROM ubuntu:22.04

install app dependencies
RUN apt-get update && apt-get install -y python3 python3-pip
RUN pip install flask==3.0.*

copy the flask app
COPY hello.py /

final configuration and running the application
ENV FLASK_APP=hello
CMD ["flask", "run", "--host", "0.0.0.0", "--port", "8000"]

Task - Create Docker image

02/04/24 19

FROM ubuntu:22.04

install app dependencies
RUN apt-get update && apt-get install -y python3 python3-pip
RUN pip install flask==3.0.*

copy the flask app
COPY hello.py /

final configuration and running the application with exposed port
ENV FLASK_APP=hello
EXPOSE 8000
CMD ["flask", "run", "--host", "0.0.0.0", "--port", "8000"]

Let’s build and run your container

02/04/24 20

1. Build the docker image
$ docker build -t test:latest .

2. See if the image is present and run it.
$ docker images
$ docker run -p 127.0.0.1:8000:8000 test:latest

Go to terminal and do curl to 127.0.0.1:8000 to see the application in action.

If you have docker hub account you can push the image just like git.

1. Docker login to registry
$ docker login --username username

2. Rename/Tag your image
$ docker tag my-image username/my-repo

3. Push the image
$ docker push username/my-repo

The whole story

02/04/24 21

[image credit - https://blog.octo.com/docker-registry-first-steps]

https://blog.octo.com/docker-registry-first-steps

Docker Compose

02/04/24 22

Docker Compose is a tool for defining and running multi-container applications. (Just like task 4)

You specify multiple docker containers and it brings them all up.

It sets up a single network for your entire application, all containers join them and can reach each other on
this network.

Checkout a simple example - https://docs.docker.com/compose/gettingstarted/

$docker compose up

(to setup container deployments specified
in the docker compose yaml file)

https://docs.docker.com/compose/gettingstarted/

Docker Internals - Layers

02/04/24 23

Docker image is built as a series of layers, each layer represents a line in the Dockerfile.

● Every command that modifies the filesystem is a new layer.

● The layer only captures the diff from the previous layer.

● Layers are shared across different images.

[image taken from ACM India Winter School on "Full-stack Networking (FSN)"]

Docker Internals - Layers

02/04/24 24

Docker image is built as a series of layers, each layer represents
a line in the Dockerfile.

● When we run a container, a new writable layer (called
container layer) is created. Other layers are read-only.

● The difference between a container and an image is in this
writable layer

● When a container is deleted, the container layer is also deleted

● Multiple containers can share the same base image and have
their own state in the container layer

[image taken from ACM India Winter School on "Full-stack Networking (FSN)"]

Network virtualization

02/04/24 25

Host Kernel
Network Stack

NIC

Guest Kernel
Network Stack

Application

vNIC

Network virtualization techniques is required to connect different

VMs / Containers with each other as well as other hosts.

Types of Communication possible:

• Intra-Host Communication

• Inter-Host Communication

02/04/24 26

Intra-Host Communication

Bridge

Container Kernel
Network Stack

Application

veth

Container Kernel
Network Stack

Application

veth

veth veth

Host Kernel Network Stack

NIC

Layer 2 Forwarding Method

Host

Container Kernel
Network Stack

Application

veth

Container Kernel
Network Stack

Application

veth

veth veth

Host Kernel Network Stack

NIC

Layer 3 Routing Method

Host

02/04/24 27

Inter-Host Communication

OTEP

Container Kernel
Network Stack

Application

veth

veth

Host Kernel Network
Stack

NIC

OTEP

Container Kernel
Network Stack

Application

veth

veth

Host Kernel Network
Stack

NIC

Container Kernel
Network Stack

Application

veth

veth

Host Kernel Network
Stack

NIC

Container Kernel
Network Stack

Application

veth

veth

Host Kernel Network
Stack

NIC

Shared
routing
table

Overlay Communication Underlay Communication

02/04/24 28

Overlay communication - Tunneling

[image taken from ACM India Winter School on "Full-stack Networking (FSN)"]

02/04/24 29

Overlay communication - Tunneling

[image taken from ACM India Winter School on "Full-stack Networking (FSN)"]

Docker Internals - Networking

02/04/24 30

Docker's networking subsystem is pluggable, using drivers which can be changed. Several drivers exist
by default, and provide core networking functionality:

1. Bridge: The default network driver. If you don't specify a driver, this is the type of network you are
creating.

2. Host: Remove network isolation between the container and the Docker host, and use the host's
networking directly.

3. Overlay: Overlay networks connect multiple Docker daemons together and enable Swarm services
and containers to communicate across nodes. This strategy removes the need to do OS-level
routing.

4. IPvlan: IPvlan networks give users total control over both IPv4 and IPv6 addressing. The VLAN
driver builds on top of that in giving operators complete control of layer 2 VLAN tagging and even
IPvlan L3 routing for users interested in underlay network integration.

5. Macvlan: Macvlan networks allow you to assign a MAC address to a container, making it appear
as a physical device on your network. The Docker daemon routes traffic to containers by their MAC
addresses.

6. None: Completely isolate a container from the host and other containers. none is not available for
Swarm services. See None network driver.

02/04/24 31

How does docker work in Windows and Mac OS?

[image credit: https://twitter.com/sidpalas/status/1638558418830233600]

https://twitter.com/sidpalas/status/1638558418830233600

