Deep dive into containers
(Docker, K8s)

CS695 — Topics in Virtualization and Cloud Computing

Debojeet Das

Assignment 3’'s Conductor

Conductor container management tool had the
following features:

e Ability to create only debian container
Images.

e Running simple containers without any
cgroup capabilities.

e Allows only basic network functionalities.

THEN WELL'SHIP YOUR MACHINE

2L o
- LA
B L ANy

— — —

What if you want to build and containerize uﬁnun;'qwmgm‘ms
your own applications which requires custom
libraries or more functionalities?

[Image Credit - https://dev.to/ben/meme-monday-105g#comment-22ekf]
02/04/24 2

https://dev.to/ben/meme-monday-1o5g#comment-22ekf

Docker Terminologies

e Dockerfile: (Like source code) List of instructions to build an image

e Docker image: (Like compiled binary)

e Docker container: (Like running process) Runtime instance of an image

e Docker registry: (Like GitHub) Repository or store of images

e Docker engine: The docker daemon process running on the host which manages images and

containers

S docker info

Docker is a server-client application. The docker engine (server) implements the container management and exposes
HTTP API for communication which is used by docker CLI (client).

02/04/24 3

Docker Terminologies

Client: Docker Engine - Community Server:
Version: 26.0.0 Containers: 2
Context: default Running: 1
Debug Mode: false Paused: 0
Plugins: '

buildx: Docker Buildx (Docker Inc.)
Version: v0.13.1 :
Path: Jusr/libexec/docker/cli-plugins/docker-buildx Server Version: 26.0.0

compose: Docker Compose (Docker Inc.) Storage Driver: overlay?2
Version: v2.25.0 Backing Filesystem: extfs

Path: Jusr/libexec/docker/cli-plugins/docker-compose Supports d_type: true
Using metacopy: false
Native Overlay Diff: true
userxattr: false

Logging Driver: json-file

Caroup Driver: svstemd

Cgroup Version: 2

Stopped: 1
Images: 13

Client Details

Server Details

Cgroup version 2
is being used here

02/04/24 4

Docker Images

wine
-
-

Dockerfile Docker Image Docker Container

Container images can either be built locally or “pulled” from a registry (which was built by someone).
Let’s try to run a container by pulling a docker image first.
We will use a docker image based on Alpine Linux with a complete package index and only 5 MB in size!

$ docker pull alpine:3.18

$ docker image inspect alpine:3.18
[image taken from ACM India Winter School on "Full-stack Networking (FSN)"]

[image registry - https://hub.docker.com/]
02/04/24 5

https://hub.docker.com/

Docker containers and its hidden details

Let’s run a container and understand its internals!

$ docker run -it [--name <container-name>] alpine:3.18

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
6885e9657eel alpine:3.18 "/bin/sh" 23 minutes ago Up 23 minutes test

$ docker inspect <CONTAINER ID>or<NAME>

"Id": "6885e9657eel18412f1e0aaa86f2eeadabae923b1ada2263d363387fa79cc2afn”,
"Created": "2024-04-02T17:27:06.939030651Z7",
"Path": "/bin/sh",

"Args": [],
"State": {

"Status": "running",
"Running": true,

02/04/24 6

Docker containers and its hidden details

Interesting details

$ docker inspect <CONTAINER ID>or<NAME>

"ResolvConfPath": "/var/lib/docker/containers/6885e9657ee18412f1e0aaa86f2eeadabae923bl1ada2263d363387fa79cc2a00/resolv.conf",
"HostnamePath": "/var/lib/docker/containers/6885e9657ee18412f1e0aaa86f2eeadabae923b1ada2263d363387fa79cc2al0/hostname”,
"HostsPath": "/var/lib/docker/containers/6885e9657ee18412f1ePaaa86f2eeadabae923blada2263d363387fa79cc2af0/hosts”,

System configuration files

"NetworkSettings": {
"Bridge": "",

"SandboxID": "99e89b1463600362f0d686af8a4984f4c4c5c0194d8d35c78e4bbee8a7a6fan9”,
"SandboxKey": "/var/run/docker/netns/99e89b146360"

Network settings

network namespace inode
(can be linked to /var/run/netns for netns usage)

02/04/24 7

Docker containers and its hidden details

cgroup

S cd /sys/fs/cgroup/cpu/docker/<container—-id>

For cgroup v1

S cd /sys/fs/cgroup/system.slice/docker-<container-id>.scope

For CgI"OUp V2 ricky@rixcli(ysjlir?ux:
.controllers cpu.weight.nice memory.max
.events hugetlb.1GB.current memory.min
.freeze hugetlb.1GB.events memory.numa_stat
kill hugetlb.1GB.events.local memory.oom.group
.max.depth hugetlb. 1GB.max memory .peak
.max.descendants hugetlb.1GB.numa_stat memory.pressure
.pressure hugetlb.1GB.rsvd.current memory.reclaim
.procs hugetlb.1GB.rsvd.max memory.stat
.stat hugetlb.2MB.current memory.swap.current
.subtree_control hugetlb.2MB.events memory.swap.events
.threads hugetlb.2MB.events.local memory.swap.high
hugetlb.2MB.max memory.swap.max
hugetlb.2MB.numa_stat memory.swap.peak
hugetlb.2MB.rsvd.current memory.zswap.current
cpu.max.burst hugetlb.2MB.rsvd.max memory.zswap.max
cpu.pressure i0.max misc.current
.Cpus io.pressure misc.events
.cpus.effective io.prio.class misc.max
.cpus.partition io.stat pids.current
.mems i0.weight pids.events
.mems.effective memory.current pids.max
memory.events pids.peak
.uclamp.max memory.events. local rdma.current
.uclamp.min memory.high rdma.max
.weight memory . Low

02/04/24 8

Conductor to Docker - Commands

Conductor Docker
conductor.sh build <image-name> docker build -t <image-name> <dockerfile>
conductor.sh images docker images
conductor.sh rmi <image-name> docker rmi <image-name>
./conductor.sh run <image-name> <container-name> docker run -it --name <container-name> <image-name>

./conductor.sh addnetwork <container-name> -i

./conductor.sh ps docker ps

./conductor.sh stop <container-name> docker stop <container-name>
docker rm <container-name>

./conductor.sh exec <container-name> -- <command> docker exec -it <container-name> <command>
./condunctor.sh run <image-name> <container-name> docker run -it --name <container-name> -p 8080:80
./conductor.sh addnetwork <container-name> -e 8080-80 -i <image-name>

Major difference between Assignment 3’'s Conductor and Docker

Conductor is a bash script based tool whereas docker is a server-client application. The docker engine (server)
implements the container management and exposes HTTP API for communication which is used by docker CLI (client).
€.J. e.g. docker psis GET /containers/json

02/04/24 9

Docker containers and its hidden details

Let’s kill the container

$ docker
$ docker
$ docker
$ docker
$ docker

02/04/24

rm <name>/////////,

Error response from daemon: You cannot
remove a running container e@36efae...
Stop the container before attempting
removal or force remove

stop <name>
inspect <name>
e

rm <name>

inspect <name>

"State": {
"Status": "exited",
"Running": false,
"Paused": false,
"Restarting": false,

[]

Error: No such object: <name>

10

Docker containers and its hidden details

We saw the container in running status and exited status. What is this status?
Container is an instance of an image with a process running. Status is the state of that process.

1.

2.

6.

Created - Not started, no CPU or memory is used. DIVY:

a. Using docker create Try running docker
Running - Process is running stats command in
Exited - Process terminates, no CPU or memory used each of these status

a. Naturally - ML training job to examine the CPU

b. Manually - docker stop and memory usage

c. Error - code panic
Restarting docker run --restart=always centos:7 sleep 5

a. By default if command finishes, container exits. But, if restart policy is always, container restarts
Paused - Process is suspended, CPU is released, memory is consumed

a. docker pause <name>

b. docker unpause <name> - resumes the container from where it stopped
Removing - In the process of being removed

a. docker rm

02/04/24 1

Me After Setting A
Docker Contamer Up:

02/04/24 [image taken from ACM India Winter School on "Full-stack Networking (FSN)"] 12

Docker Build

Build is a key part of container software development life cycle allowing us to package and bundle our
code and ship it anywhere

Pulling vs building an image

When to pull?

e When using someone’s created image:
o If you want to play with python, get a python image

e To access your own created image
o Create image, push it to a registry and the pull it from elsewhere

When to build?

e To create an environment/recipe for sharing/running deterministically
e For creating any application for running on the cloud

02/04/24 13

Docker Build

Build is a key part of container software development life cycle allowing us to package and bundle our
code and ship it anywhere

= Image

- build “!!Ii"! run —

Dockerfile Docker Image Docker Container

FROM memcached:1.6

RUN apt update &% apt install -y stress-ng Networking experiments

FROM ubuntu:jammy
Install golang

RUN cd downloads \ k8s network simulator
&& wget https://go.dev/dl/gol.19.1.1inux-amd64.tar.gz \

&& tar -C /usr/local -xvf gol.19.1.linux-amd64.tar.gz
ENV PATH $PATH:/usr/local/go/bin

02/04/24 14

Docker Build

Basic build commands

02/04/24

Command

Description

FROM image | scratch

Use a pre-existing docker image as @
base image for the build

COPY path dst Add files to the image. Copy from path
in host into container at dst
RUN args... Run arbitrary coommands inside the

container

WORKDIR path

Set the default working directory

ENV name value

Set an environment variable

ENTRYPOINT/CMD

[“executable”, “param1”, “

param?2”]

Set the command to execute (when the
container starts)

15

Task - Create Docker image

Goal: Create a “Hello World” application for container using Flask running on ubuntu.

1. Create hello.py with the following lines: from flask import Flask

2. To run this in baremetal you will need to app = Flask(__name__)
install python3 and flask and then run the
application. @app. route("/")

Similarly the Dockerfile should create a container def hello():

image, which has all the dependencies installed return "Hello World!”
and that automatically starts the application.

02/04/24 16

Task - Create Docker image

FROM ubuntu:22.04

02/04/24 17

Task - Create Docker image

FROM ubuntu:22.04

RUN apt-get update && apt-get install -y python3 python3-pip
RUN pip install flask==3.0.*

COPY hello.py /

ENV FLASK_APP=hello
CMD ["flask", "run", "--host", "0.0.0.0", "--port", "8000"]

02/04/24 18

Task - Create Docker image

FROM ubuntu:22.04

RUN apt-get update && apt-get install -y python3 python3-pip
RUN pip install flask==3.0.*

COPY hello.py /

ENV FLASK_APP=hello
EXPOSE 8000
CMD ["flask", "run", "--host", "0.0.0.0", "--port", "8000"]

02/04/24 19

Let’s build and run your container

1. Build the docker image
$ docker build -t test:latest .

2. See if the image is present and run it.
$ docker images
$ docker run -p 127.0.0.1:8000:8000 test:latest

Go to terminal and do curl to 127.0.0.1:8000 to see the application in action.

If you have docker hub account you can push the image just like git.

1. Docker login to registry
$ docker login --username username

2. Rename/Tag your image
$ docker tag my-image username/my-repo

3. Push the image
$ docker push username/my-repo

02/04/24 20

The whole story

Docker
regisiry

. (e . e, . S . .

/

build

Dockerfile

S

e o o e — — — ———— — —— — —— — — " — - ——— - —— - - —

[image credit - https://blog.octo.com/docker-reqistry-first-steps]
02/04/24 21

https://blog.octo.com/docker-registry-first-steps

Docker Compose

Docker Compose is a tool for defining and running multi-container applications. (Just like task 4)
You specify multiple docker containers and it brings them all up.

It sets up a single network for your entire application, all containers join them and can reach each other on
this network.

Checkout a simple example - https://docs.docker.com/compose/gettingstarted/

services:
i Sdocker compose up
build: -
ports: (to setup container deployments specified
- "8000:5000" in the docker compose yaml file)
redis:

image: "redis:alpine”

02/04/24 22

https://docs.docker.com/compose/gettingstarted/

Docker Internals - Layers
_ = ‘I'mﬂ Image—

Layers
=1 = ¥

FROM golang:1.20-alpine FROM golang:1.20-alpine

WORKDIR /src WORKDIR /src

COPY . . COPY ro e

RUN go mod download RUN go mod download

RUN go build -o /bin/client ./cmd/client RUN go build -o /bin/client ./cmd/client

RUN go build -o /bin/server ./cmd/server Builder RUN go build -o /bin/server ./cmd/server

ENTRYPOINT ["/bin/server"] ENTRYPOINT ["/bin/server"]

Docker image is built as a series of layers, each layer represents a line in the Dockerfile.
e Every command that modifies the filesystem is a new layer.
e The layer only captures the diff from the previous layer.

e Layers are shared across different images.

02/04/24 [image taken from ACM India Winter School on "Full-stack Networking (FSN)"] 23

Docker Internals - Layers

Docker image is built as a series of layers, each layer represents
a line in the Dockerfile.

e \When we run a container, a new writable layer (called
container layer) is created. Other layers are read-only.

e The difference between a container and an image is in this
writable layer

e \When a container is deleted, the container layer is also deleted

e Multiple containers can share the same base image and have
their own state in the container layer

02/04/24 [image taken from ACM India Winter School on "Full-stack Networking (FSN)"]

—
3
=
5 3)
2
2
o

91e54dfb1179 0B |
d74508fb6632 1.895 KB

%l
€22013¢c84729 1945 KB |\
d3a1f33e8aba 188.1 MB

ubuntu:15.04

Container
(based on ubuntu:15.04 image)

<+—— Container layer

Image
Layers
(RO)

24

Network virtualization

Network virtualization techniques is required to connect different

VMs / Containers with each other as well as other hosts.
Types of Communication possible:

e |ntra-Host Communication

e |nter-Host Communication

02/04/24

Application

Guest Kernel
Network Stack

vNIC
\

©

Host KKernel
Network Stack

NIC

25

Intra-Host Communication

Application Application Application Application
Container Kernel Container Kernel Container Kernel Container Kernel
Network Stack Network Stack Network Stack Network Stack
veth veth veth veth
..................... veth veth ... ciiiceceeco.oveth ... veth ...

Host Kernel Network Stack Host Kernel Network Stack
__ NIC NIC
Layer 2 Forwarding Method Layer 3 Routing Method

02/04/24 26

Inter-Host Communication

Application

Container Kernel

Application

Container Kernel

Network Stack Network Stack
veth veth
..................... veth ... D veth
' OTEP ; OTEP
.| Host Kernel Network Host Kernel Network
Stack i Stack
A }

Overlay Communication

02/04/24

Application

Container Kernel
Network Stack

Application

Container Kernel
Network Stack

Shared

routing

Host Kernel Network | table Host Kernel Network

| *—————*

| Stack i Stack

S N |C o U (NIC) TR

Underlay Communication

27

Overlay communication - Tunneling

Data Application
S| VPF Transport
header| data
i IP data Internet
header
Frame e Frame Link
header footer

02/04/24 [image taken from ACM India Winter School on "Full-stack Networking (FSN)"] 28

Overlay communication - Tunneling

02/04/24 [image taken from ACM India Winter School on "Full-stack Networking (FSN)"]

Docker Internals - Networking

Docker's networking subsystem is pluggable, using drivers which can be changed. Several drivers exist
by default, and provide core networking functionality:

1.

2.

Bridge: The default network driver. If you don't specify a driver, this is the type of network you are
creating.

Host: Remove network isolation between the container and the Docker host, and use the host's
networking directly.

Overlay: Overlay networks connect multiple Docker daemons together and enable Swarm services
and containers to communicate across nodes. This strategy removes the need to do OS-level
routing.

IPvian: IPvlan networks give users total control over both IPv4 and IPv6 addressing. The VLAN
driver builds on top of that in giving operators complete control of layer 2 VLAN tagging and even
IPvlan L3 routing for users interested in underlay network integration.

Macvlan: Macvlan networks allow you to assign a MAC address to a container, making it appear
as a physical device on your network. The Docker daemon routes traffic to containers by their MAC
addresses.

None: Completely isolate a container from the host and other containers. none is not available for
Swarm services. See None network driver.

02/04/24 30

How does docker work in Windows and Mac OS?

ITS mncnmmm. ..

]

‘j -net=host

IISEII I'llﬂl

*

=
4

02/04/24 [image credit: https://twitter.com/sidpalas/status/1638558418830233600] 31

https://twitter.com/sidpalas/status/1638558418830233600

