Deep dive Into containers
with Docker

CS695 — Topics in Virtualization and Cloud Computing

Debojeet Das

Why containers?

- Share the host OS kernel, eliminating the need for full OS replication per
application : efficient

- Package applications with all dependencies : “Build Once, Run Anywhere” I'TWII_ILKS "'".“ -
- Start in seconds (vs minutes for VMs) : “Quick Deployment” P
- Ideal for microservices, serverless, and cloud-native applications THEN WELLU'SHIP YOUR MACHINE
W
i::imwy % weite
:..‘.--._.- =t sl R
u 4 o
ghas AND THAT IS HOW DOCKER WAS BORN

y- docker:

[Image Credit - https://dev.to/ben/meme-monday-1o05g#comment-22ekf]
11 March 2025 2

https://dev.to/ben/meme-monday-1o5g

Docker Terminologies

e Dockerfile: (Like source code) List of instructions to build an image

e Docker image: (Like compiled binary)

e Docker container: (Like running process) Runtime instance of an image

e Docker registry: (Like GitHub) Repository or store of images

e Docker engine: The docker daemon process running on the host which manages images and

containers

S docker info

Docker is a server-client application. The docker engine (server) implements the container management and exposes
HTTP API for communication which is used by docker CLI (client).

11 March 2025 3

Docker Terminologies

Client: Docker Engine - Community Server:
Version: 26.0.0 Containers: 2
Context: default Running: 1
Debug Mode: false Paused: 0

Plugins: .
buildx: Docker Buildx (Docker Inc.) Stopped: 1
Images: 13

Version: v0.13.1 :
Path: Jusr/1libexec/docker/cli-plugins/docker-buildx Server Verglon: 26.0.0
Storage Driver: overlay?2

compose: Docker Compose (Docker Inc.)
Version: v2.25.0 Backing Filesystem: extfs
Path: Jusr/1libexec/docker/cli-plugins/docker-compose Supports d_type: true
Using metacopy: false

Client Details Native Overlay Diff: true
userxattr: false
Logging Driver: json-file
Caroup Driver: svstemd
Cgroup Version: 2

Server Details
Cgroup version 2
is being used here

11 March 2025

Docker Images

oh Image

build

i. >

Dockerfile Docker Image Docker Container

Container images can either be built locally or “pulled” from a registry (which was built by someone).
Let’s try to run a container by pulling a docker image first.

We will use a docker image based on Alpine Linux with a complete package index and only 5 MB in size!

$ docker pull alpine:3.18

S docker image inspect alpine:3.18

[image taken from ACM India Winter School on "Full-stack Networking (FSN)"]
[image registry - https://hub.docker.com/]

11 March 2025 S

https://hub.docker.com/

Docker containers and its hidden details

Let’'s run a container and understand its internals!

$ docker run -it [--name <container-name>] alpine:3.18

$ docker ps

PORTS NAMES

CONTAINER ID IMAGE COMMAND CREATED STATUS
test

6885e9657eel alpine:3.18. "/bin/sh" 23 minutes ago Up 23 minutes

$ docker inspect <CONTAINER ID>0r<NAME>

"Id": "6885e9657ee18412f1e0aaaB6f2eeadabae923b1ada2263d363387fa79¢cc2a00",
"Created": "2024-04-02T17:27:06.939030651Z2",
"Path": "/bin/sh",

"Args": [],
"State": {

"Status": "running",
"Running”: true,

11 March 2025

Docker containers and its hidden details

Interesting details

$ docker inspect <CONTAINER ID>0r<NAME>

"ResolvConfPath": "/var/lib/docker/containers/6885e9657ee18412f1e0aaa86f2eeadabae923bl1adaz2263d363387fa79cc2a00/resolv.conf"”,
"HostnamePath": "/var/lib/docker/containers/6885e9657ee18412f1ePaaa86f2eeadabae923blada2263d363387fa79cc2ab0/hostname”,
"HostsPath": "/var/lib/docker/containers/6885e9657ee18412f1e0aaa86f2eeadabae923b1ada2263d363387fa79¢cc2ab0/hosts”,

System configuration files

"LowerDir": "/var/lib/docker/overlay2/b@cfc7f88dcd15158b5c80b95fc68dab2ft436128d68312483882e7fa82ee@4e-init/diff
"MergedDir": "/var/lib/docker/overlay2/b@cfc7f88dcd15158b5c80b95fc68dab2ff436f28d68312483882e7fa82ee®4e/merged",
"UpperDir": "/var/lib/docker/overlay2/b@cfc7f88dcd15158b5c80b95fc68dab2ff436128dc8312483882e7fa82ee@4e/diff",
"WorkDir": "/var/lib/docker/overlay2/b@cfc7f88dcd15158b5c80@b95fco8dab2f436f28do8312483882e7fa82ee@4e/work"

OverlayFS

"NetworkSettings": {

"Bridge": .

"SandboxID": "99e89b1463600362f0d686atB8a4984f4c4c5c0194d8d35c78e4bbee8a7abfang”,
"SandboxKey": "/var/run/docker/netns/99e89b146360",

Network settings

11 March 2025 7

Docker containers and its hidden details

cgroup

$ cd /sys/fs/cgroup/cpu/docker/<container-id>
For cgroup v1

$ cd /sys/fs/cgroup/system.slice/docker-<container-id>.scope

For cgroup v2

ricky@rickys-linux:

.controllers cpu.weight.nice memory.
hugetlb. .curren emory.
hugetlb. .events memory.numa_s
hugetlb.1GB.events.local memory.oom.gr
hugetlb. 1GB.max /. peak
hugetlb. .numa_stat m y.pressure
hugetl B.rsvd.current
hugetlb
hugetl
S hugetlb.2MB8 ents
cgroup. hugetlb. ents.local
cgroup. type hugetlb ax
cpu.idle hugetlb.2MB.numa_stat /. SWap.peak
Cpu.max hugetlb. oIS current memory.zswap.current
cpu.max.burst hugetlb.2MB.rsvd.max Ory.ZSWap.max
.pressure 10.max c.current
cpuset.cpus 10.pr1 Sure .events
cpuset.cpus.effective 10. class .Max
cpuset.cpus.partition {o.stat s.current
cpuset.mems i ig ids.events
cpuset.mems.effective emory.current i1ds.max
cpu.stat } .events eak
) s.events. local rdma.current
high rdma.max

11 March 2025

Docker containers and its hidden details

Let’s kill the container

$ docker
$ docker
$ docker
$ docker
$ docker

11 March 2025

Error response from daemon: You cannot
remove a running container e@36efae...

Stop the container before attempting
removal or force remove
rm <name>

stop <name> "State": {

' . "Status": "exited",

inspec <name>‘_______ "Runnigg":ffilse,
"Paused": false,

rm <name> "Restarting": false,

inspect <name> }

N

Error: No such object: <name>

10

Docker containers and its hidden details

We saw the container in running status and exited status. What is this status?
Container is an instance of an image with a process running. Status is the state of that process.

1.

6.

Created - Not started, no CPU or memory is used. DIVY:

a. Using docker create Try running docker
Running - Process is running stats command in
Exited - Process terminates, no CPU or memory used each of these status

a. Naturally - ML training job to examine the CPU

b. Manually - docker stop and memory usage

c. Error - code panic
Restarting docker run --restart=always centos:7 sleep 5

a. By default if command finishes, container exits. But, if restart policy is always, container restarts
Paused - Process is suspended, CPU is released, memory is consumed

a. docker pause <name>

b. docker unpause <name> - resumes the container from where it stopped
Removing - In the process of being removed

a. docker rm

11 March 2025 11

Me After Setting A
Docker Container Up:

11 March 2025 [image taken from ACM India Winter School on "Full-stack Networking (FSN)"] 12

Docker Build

Build is a key part of container software development life cycle allowing us to package and bundle our
code and ship it anywhere

Pulling vs building an image

When to pull?

e When using someone’s created image:
o If you want to play with python, get a python image

e To access your own created image
o Create image, push it to a registry and the pull it from elsewhere

When to build?

e To create an environment/recipe for sharing/running deterministically
e For creating any application for running on the cloud

11 March 2025 13

Docker Build

Build is a key part of container software development life cycle allowing us to package and bundle our
code and ship it anywhere

= Image - —

: — — [
= build * run

Dockerfile Docker Image Docker Container

FROM memcached:1.6

RUN apt update &% apt install -y stress-ng Networking experiments

FROM ubuntu:jammy
Install golang

RUN cd downloads \ k8s network simulator
&& wget https://go.dev/dl/gol.19.1.1linux-amd64.tar.gz \

&& tar -C /usr/local -xvf gol.19.1.linux-amd64.tar.gz
ENV PATH $PATH:/usr/local/go/bin

11 March 2025 14

Docker Build

Basic build commands

11 March 2025

Command

Description

FROM image | scratch

Use a pre-existing docker image as a
base image for the build

COPY path dst Add files to the image. Copy from path
in host into container at dst

RUN args... Run arbitrary commmands inside the
container

WORKDIR path Set the default working directory

ENV name value

Set an environment variable

ENTRYPOINT/CMD

»n 1] LE I 11

[“executable”, “paraml”, “param?2”]

Set the command to execute (when the
container starts)

15

Task - Create Docker image

Goal: Create a “Hello World” application for container using Flask running on ubuntu.

1. Create hello.py with the following lines: from flask import Flask
2. To run this in baremetal you will need to app = Flask(__name__)
install python3 and flask and then run the
application. @app.route("/")

def hello():
return "Hello World!"

Similarly the Dockerfile should create a container
Image, which has all the dependencies installed
and that automatically starts the application.

https://www.cse.iitb.ac.in/~debojeetdas/ta/hello.py

11 March 2025 16

https://www.cse.iitb.ac.in/~debojeetdas/ta/hello.py

Task - Create Docker image

FROM ubuntu:22.04

11 March 2025 17

Task - Create Docker image

FROM ubuntu:22.04

RUN apt-get update && apt-get install -y python3 python3-pip
RUN pip install flask==3.0.*

COPY hello.py/

ENV FLASK_APP=hello
CMD ["flask", "run", "--host", "0.0.0.0", "--port", "8000"]

11 March 2025 18

Task - Create Docker image

FROM ubuntu:22.04

RUN apt-get update && apt-get install -y python3 python3-pip
RUN pip install flask==3.0.*

COPY hello.py/

ENV FLASK_APP=hello
EXPOSE 8000
CMD ["flask", "run", "--host", "0.0.0.0", "--port", "8000"]

https://www.cse.iitb.ac.in/~debojeetdas/task/Dockerfile

11 March 2025 19

https://www.cse.iitb.ac.in/~debojeetdas/task/Dockerfile

Let’s build and run your container

1. Build the docker image
$ docker build -t test:latest .

2. See if the image is present and run it.

$ docker images
$ docker run -p 127.0.0.1:8000:8000 test:latest

Go to terminal and do curl to 127.0.0.1:8000 to see the application in action.

If you have docker hub account you can push the image just like git.

1. Docker login to registry
$ docker login --username username

2. Rename/Tag your image
$ docker tag my-image username/my-repo

3. Push the image
$ docker push username/my-repo

11 March 2025 20

Docker Compose

Docker Compose is a tool for defining and running multi-container applications. (Just like task 4)
You specify multiple docker containers and it brings them all up.

It sets up a single network for your entire application, all containers join them and can reach each other on
this network.

Checkout a simple example — https://www.cse.iitb.ac.in/~debojeetdas/ta/compose.tar.gz

services:
web:
build: . $docker compose up
ports:
- "8000:5000" (to setup container deployments specified
redis In the docker compose yaml file)

image: "redis:alpine”

11 March 2025 22

https://www.cse.iitb.ac.in/~debojeetdas/ta/compose.tar.gz

Docker Internals - Layers

———
‘[m" Image —

[E_L\. g Layers
_ & " Dockerfile—) ,

FROM golang:1.20-alpine FROM golang:1.20-alpine

WORKDIR /src WORKDIR /src

COPY . . O copYy . .

RUN go mod download ——t @% — RUN go mod download

RUN go build -o /bin/client ./cmd/client RUN go build -o /bin/client ./cmd/client

RUN go build -o /bin/server ./cmd/server Builder RUN go build -o /bin/server ./cmd/server

ENTRYPOINT ["/bin/server"] ENTRYPOINT ["/bin/server"]

Docker image is built as a series of layers, each layer represents a line in the Dockerfile.
e Every command that modifies the filesystem is a new layer.
e The layer only captures the diff from the previous layer.

e Layers are shared across different images.

11 March 2025 [image taken from ACM India Winter School on "Full-stack Networking (FSN)"]

23

Docker Internals - Layers

How many layers will be here?
() FROM ubuntu:22.04
9 RUN apt-get update && apt-get install -y python3 python3-pip
© RUN pip install flask==3.0.*
@ coPY hello.py/
a RUN rm -r SHOME/.cache
ENV FLASK_ _APP=hello

EXPOSE 8000
CMD ["flask", "run", "--host", "0.0.0.0", "--port", "8000"]

11 March 2025 24

Docker Internals - Layers

i _________ T_ t:i?_R/_w.'?Y?r_ __________ :"\ Container layer
Y Y i A
Do_cke_r image is bun_t as a series of layers, each layer represents S 0B | | —
a line in the Dockerfile.
. . 1.895 KB
e When we run a container, a new writable layer (called S @ Image
container layer) is created. Other layers are read-only. T |\ D Layer
° The difference between a container and an image is in this e otmel | |
writable layer
ubuntu:15.04

e \When a container is deleted, the container layer is also deleted Container

(based on ubuntu:15.04 image)
e Multiple containers can share the same base image and have
their own state in the container layer

Copy-on-Write (COW) Strateqy

If a file or directory exists in a lower layer within the image, and
another layer (including the writable layer) needs read access to
it, it just uses the existing file.

11 March 2025 [image taken from docs.docker.com] 25

Understanding OverlayFS

OverlayFsS is a union filesystem. Docker uses overlay2 storage driver as its storage driver. (default)
It may run on top of XFS or ext4

S docker build -t hellocs695:1latest
S docker images
$ docker image inspect hellocs695:latest

A n-layer image, will create n+1 directories for the container
- The layer is mounted when container is started using mount command.

The directories are stored in /var/lib/docker/overlay?2
They contain the following subdirectories:

- diff: layer's contents.

- link: shortened identifier for mounting.

- lower: its parent. (not available in lowest layer)

- work: used internally by OverlayFS (not available in lowest layer)
- merged: unified contents (not available in image layers)

11 March 2025 26

Understanding OverlayFS

$ docker image inspect hellocs695:1latest

"Architecture"”: "amdo4",
50s e N,
"S1ze": 480400134,
"GraphDriver": {
"Data": {
"LowerBxelyl "/var/lib/docker/overlay2/ycssehg549aln2@1inrzwmvxj7/diff:/var/11

"MergedDir": "/Veuggmaldocker/overlay2/gb84z72yg@o3lc4ohryrl7hqy/merged”,
"UpperDir": " /g0o31Lcd4ohryrl7hqy/diff",

Includes the filesystems of all the layers inside

" sl W
WorkDir™: "/varss image/container except the last one

J0031Lc4ohryrl7hqgy/work"
|

"Name": "overlay2"

11 March 2025

Understanding OverlayFS

$ docker image inspect hellocs695:1latest

"Architecture"”: "amdo4",
50s e N,
"S1ze": 480400134,
"GraphDriver": {
"Data": {
"LowerDir": "/var/lib/docker/overlay2/ycssehg549aln2@01inrzwmvxj7/diff:/var/11

"MergedDir": "/var/lib/docker/overlay2/gb84z72yg@o31lc4ohryrl7hqy/merged”,
"UpperDir" ~/var/lib/docker/overlay2/gh84z72yg@do31lc4ohryrl7hqy/diff",
"WorkDir": "/vONggb/docker/overlay2/gb84z72yg@do31c4ohryrl7hqgy/work"

1 #

Name": "overlay? The filesystem of the top-most
layer of the image/container.

11 March 2025

Understanding OverlayFS

$ docker run -p 80:8000 --name cont-test hellocs695:1latest
$ docker ps
$ docker inspect cont-test

"Data": {.
“"LowerDir": "/var/lib/docker/overlay2/4d7b48aa22b2b814141262c44886b265b390829c91bf79203ac3702298548b96—-init/diff:/
n9%ooctety/diff:/var/lib/docker/overlay2/ycssehg549aln201nrzwmvxj7/diff:/var/lib/docker/overlay2/54su7pl@let3i0gk3tjwy8t1f/diff: /v
0152bddb57bb7a72c86386dc15701dd37b8d7948a2172b2d/diff",

“"Mergedbir”: "/var/lib/docker/overlay2/4d7b48aa22b2b814141262c44886b265b390829¢c91bf79203ac3702298548b96/merged",
“UpperbDir”: ")Nar/lib/docker/overlay2/4d7b48aa22b2b814141262c44886b265b390829¢c91bf79203ac3702298548b96/diff",
"WorkDir": "/varNaib/docker/overlay2/4d7b48aa22b2b814141262c44886b265b390829¢c91bf79203ac3702298548b96/work"

}

’
"Name': "overlay2"

Mount Point of the container

11 March 2025 29

Understanding OverlayFS

$ docker run -p 80:8000 --name cont-test hellocs695:1latest

$ docker ps
$ docker inspect cont-test

S mount

Docker constructs

grep overlay

Container mount

Container layer l

Image layer

11 March 2025 [image taken from docs.docker.com]

- —— e - - .- -

"lowerdir"

OverlaysFS constructs

30

Understanding OverlayFS operations

File Read:

- Scenario 1: The file does not exist in the container layer
Read from the image (lowerdir). Low overhead

- Scenario 2: The file only exists in the container layer
Read directly from the container. No overhead

- Scenario 3: The file exists in both the container layer and the image layer
File's version in the container layer is read. No overhead

11 March 2025

31

Understanding OverlayFS operations

File Write (First Time):
- CoW comes into play. The file is first copied into the container layer then modified.

However, OverlayFS works at the file level rather than the block level.
What is the implication?

Again, OverlayFS works with multiple layers.
What can be a side effect?

11 March 2025 32

Understanding OverlayFS operations

File Delete

- When a file is deleted within a container, a whiteout file is created in the container. No change in
image.

- When a directory is deleted within a container, an opaque directory is created within the container.
No change in the image.

Renaming Directory

- If the directory belongs to container it is allowed. If it belongs to the image throws an error.

There are other storage drivers like BTRFS which operates on block level.

11 March 2025 33

Thank Youl!

	Slide 1: Deep dive into containers with Docker
	Slide 2: Why containers?
	Slide 3: Docker Terminologies
	Slide 4: Docker Terminologies
	Slide 5: Docker Images
	Slide 6: Docker containers and its hidden details
	Slide 7: Docker containers and its hidden details
	Slide 8: Docker containers and its hidden details
	Slide 10: Docker containers and its hidden details
	Slide 11: Docker containers and its hidden details
	Slide 12
	Slide 13: Docker Build
	Slide 14: Docker Build
	Slide 15: Docker Build
	Slide 16: Task - Create Docker image
	Slide 17: Task - Create Docker image
	Slide 18: Task - Create Docker image
	Slide 19: Task - Create Docker image
	Slide 20: Let’s build and run your container
	Slide 22: Docker Compose
	Slide 23: Docker Internals - Layers
	Slide 24: Docker Internals - Layers
	Slide 25: Docker Internals - Layers
	Slide 26: Understanding OverlayFS
	Slide 27: Understanding OverlayFS
	Slide 28: Understanding OverlayFS
	Slide 29: Understanding OverlayFS
	Slide 30: Understanding OverlayFS
	Slide 31: Understanding OverlayFS operations
	Slide 32: Understanding OverlayFS operations
	Slide 33: Understanding OverlayFS operations
	Slide 34

