
Deep dive into containers

with Docker

CS695 – Topics in Virtualization and Cloud Computing

Debojeet Das

Why containers?

11 March 2025 2

- Share the host OS kernel, eliminating the need for full OS replication per

application : efficient

- Package applications with all dependencies : “Build Once, Run Anywhere”

- Start in seconds (vs minutes for VMs) : “Quick Deployment”

- Ideal for microservices, serverless, and cloud-native applications

[Image Credit - https://dev.to/ben/meme-monday-1o5g#comment-22ekf]

https://dev.to/ben/meme-monday-1o5g

Docker Terminologies

11 March 2025 3

● Dockerfile: (Like source code) List of instructions to build an image

● Docker image: (Like compiled binary)

● Docker container: (Like running process) Runtime instance of an image

● Docker registry: (Like GitHub) Repository or store of images

● Docker engine: The docker daemon process running on the host which manages images and

containers

$ docker info

Docker is a server-client application. The docker engine (server) implements the container management and exposes

HTTP API for communication which is used by docker CLI (client).

Docker Terminologies

11 March 2025 4

Client Details

Server Details

Cgroup version 2

is being used here

Docker Images

11 March 2025 5

Container images can either be built locally or “pulled” from a registry (which was built by someone).

Let’s try to run a container by pulling a docker image first.

We will use a docker image based on Alpine Linux with a complete package index and only 5 MB in size!

$ docker pull alpine:3.18

$ docker image inspect alpine:3.18

[image registry - https://hub.docker.com/]

[image taken from ACM India Winter School on "Full-stack Networking (FSN)"]

https://hub.docker.com/

Docker containers and its hidden details

11 March 2025 6

$ docker run -it [--name <container-name>] alpine:3.18

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

6885e9657ee1 alpine:3.18. "/bin/sh" 23 minutes ago Up 23 minutes test

$ docker inspect <CONTAINER ID>or<NAME>

Let’s run a container and understand its internals!

Docker containers and its hidden details

11 March 2025 7

$ docker inspect <CONTAINER ID>or<NAME>

System configuration files

Network settings

Interesting details

OverlayFS

Docker containers and its hidden details

11 March 2025 8

$ cd /sys/fs/cgroup/cpu/docker/<container-id>

$ cd /sys/fs/cgroup/system.slice/docker-<container-id>.scope

For cgroup v1

For cgroup v2

cgroup

Docker containers and its hidden details

11 March 2025 10

Docker containers and its hidden details

11 March 2025 11

11 March 2025 12[image taken from ACM India Winter School on "Full-stack Networking (FSN)"]

Docker Build

11 March 2025 13

Build is a key part of container software development life cycle allowing us to package and bundle our

code and ship it anywhere

Docker Build

11 March 2025 14

Build is a key part of container software development life cycle allowing us to package and bundle our

code and ship it anywhere

Docker Build

11 March 2025 15

Basic build commands

Task - Create Docker image

11 March 2025 16

Goal: Create a “Hello World” application for container using Flask running on ubuntu.

1. Create hello.py with the following lines:

2. To run this in baremetal you will need to

install python3 and flask and then run the

application.

Similarly the Dockerfile should create a container

image, which has all the dependencies installed

and that automatically starts the application.

https://www.cse.iitb.ac.in/~debojeetdas/ta/hello.py

https://www.cse.iitb.ac.in/~debojeetdas/ta/hello.py

Task - Create Docker image

11 March 2025 17

FROM ubuntu:22.04

install app dependencies

copy the flask app

final configuration and running the application

Task - Create Docker image

11 March 2025 18

FROM ubuntu:22.04

install app dependencies

RUN apt-get update && apt-get install -y python3 python3-pip

RUN pip install flask==3.0.*

copy the flask app

COPY hello.py /

final configuration and running the application
ENV FLASK_APP=hello

CMD ["flask", "run", "--host", "0.0.0.0", "--port", "8000"]

Task - Create Docker image

11 March 2025 19

FROM ubuntu:22.04

install app dependencies

RUN apt-get update && apt-get install -y python3 python3-pip

RUN pip install flask==3.0.*

copy the flask app

COPY hello.py /

final configuration and running the application with exposed port
ENV FLASK_APP=hello

EXPOSE 8000

CMD ["flask", "run", "--host", "0.0.0.0", "--port", "8000"]

https://www.cse.iitb.ac.in/~debojeetdas/task/Dockerfile

https://www.cse.iitb.ac.in/~debojeetdas/task/Dockerfile

Let’s build and run your container

11 March 2025 20

1. Build the docker image

$ docker build -t test:latest .

2. See if the image is present and run it.

$ docker images

$ docker run -p 127.0.0.1:8000:8000 test:latest

Go to terminal and do curl to 127.0.0.1:8000 to see the application in action.

If you have docker hub account you can push the image just like git.

1. Docker login to registry

$ docker login --username username

2. Rename/Tag your image

$ docker tag my-image username/my-repo

3. Push the image

$ docker push username/my-repo

Docker Compose

11 March 2025 22

Docker Compose is a tool for defining and running multi-container applications. (Just like task 4)

You specify multiple docker containers and it brings them all up.

It sets up a single network for your entire application, all containers join them and can reach each other on
this network.

Checkout a simple example – https://www.cse.iitb.ac.in/~debojeetdas/ta/compose.tar.gz

$docker compose up

(to setup container deployments specified

in the docker compose yaml file)

https://www.cse.iitb.ac.in/~debojeetdas/ta/compose.tar.gz

Docker Internals - Layers

11 March 2025 23

Docker image is built as a series of layers, each layer represents a line in the Dockerfile.

● Every command that modifies the filesystem is a new layer.

● The layer only captures the diff from the previous layer.

● Layers are shared across different images.

[image taken from ACM India Winter School on "Full-stack Networking (FSN)"]

Docker Internals - Layers

11 March 2025 24

How many layers will be here?

FROM ubuntu:22.04

install app dependencies

RUN apt-get update && apt-get install -y python3 python3-pip

RUN pip install flask==3.0.*

copy the flask app

COPY hello.py /

RUN rm -r $HOME/.cache
final configuration and running the application with exposed port

ENV FLASK_APP=hello

EXPOSE 8000

CMD ["flask", "run", "--host", "0.0.0.0", "--port", "8000"]

1

2

3

5

x

x

x

4

Docker Internals - Layers

11 March 2025 25

Docker image is built as a series of layers, each layer represents

a line in the Dockerfile.

● When we run a container, a new writable layer (called

container layer) is created. Other layers are read-only.

● The difference between a container and an image is in this

writable layer

● When a container is deleted, the container layer is also deleted

● Multiple containers can share the same base image and have

their own state in the container layer

Copy-on-Write (COW) Strategy

If a file or directory exists in a lower layer within the image, and

another layer (including the writable layer) needs read access to

it, it just uses the existing file.

[image taken from docs.docker.com]

Understanding OverlayFS

11 March 2025 26

$ docker build -t hellocs695:latest .

$ docker images

$ docker image inspect hellocs695:latest

OverlayFS is a union filesystem. Docker uses overlay2 storage driver as its storage driver. (default)

It may run on top of XFS or ext4

A n-layer image, will create n+1 directories for the container

- The layer is mounted when container is started using mount command.

The directories are stored in /var/lib/docker/overlay2

They contain the following subdirectories:
- diff: layer's contents.

- link: shortened identifier for mounting.

- lower: its parent. (not available in lowest layer)

- work: used internally by OverlayFS (not available in lowest layer)

- merged: unified contents (not available in image layers)

Understanding OverlayFS

11 March 2025 27

Includes the filesystems of all the layers inside

the image/container except the last one

$ docker image inspect hellocs695:latest

Understanding OverlayFS

11 March 2025 28

$ docker image inspect hellocs695:latest

The filesystem of the top-most

layer of the image/container.

Understanding OverlayFS

11 March 2025 29

$ docker run -p 80:8000 --name cont-test hellocs695:latest

$ docker ps

$ docker inspect cont-test

Mount Point of the container

Understanding OverlayFS

11 March 2025 30

$ docker run -p 80:8000 --name cont-test hellocs695:latest

$ docker ps

$ docker inspect cont-test

$ mount | grep overlay

[image taken from docs.docker.com]

Understanding OverlayFS operations

11 March 2025 31

File Read:

- Scenario 1: The file does not exist in the container layer

Read from the image (lowerdir). Low overhead

- Scenario 2: The file only exists in the container layer

Read directly from the container. No overhead

- Scenario 3: The file exists in both the container layer and the image layer

File's version in the container layer is read. No overhead

Understanding OverlayFS operations

11 March 2025 32

File Write (First Time):

- CoW comes into play. The file is first copied into the container layer then modified.

However, OverlayFS works at the file level rather than the block level.
What is the implication?

Again, OverlayFS works with multiple layers.

What can be a side effect?

Understanding OverlayFS operations

11 March 2025 33

File Delete

- When a file is deleted within a container, a whiteout file is created in the container. No change in

image.

- When a directory is deleted within a container, an opaque directory is created within the container.

No change in the image.

Renaming Directory

- If the directory belongs to container it is allowed. If it belongs to the image throws an error.

There are other storage drivers like BTRFS which operates on block level.

Thank You!!

	Slide 1: Deep dive into containers with Docker
	Slide 2: Why containers?
	Slide 3: Docker Terminologies
	Slide 4: Docker Terminologies
	Slide 5: Docker Images
	Slide 6: Docker containers and its hidden details
	Slide 7: Docker containers and its hidden details
	Slide 8: Docker containers and its hidden details
	Slide 10: Docker containers and its hidden details
	Slide 11: Docker containers and its hidden details
	Slide 12
	Slide 13: Docker Build
	Slide 14: Docker Build
	Slide 15: Docker Build
	Slide 16: Task - Create Docker image
	Slide 17: Task - Create Docker image
	Slide 18: Task - Create Docker image
	Slide 19: Task - Create Docker image
	Slide 20: Let’s build and run your container
	Slide 22: Docker Compose
	Slide 23: Docker Internals - Layers
	Slide 24: Docker Internals - Layers
	Slide 25: Docker Internals - Layers
	Slide 26: Understanding OverlayFS
	Slide 27: Understanding OverlayFS
	Slide 28: Understanding OverlayFS
	Slide 29: Understanding OverlayFS
	Slide 30: Understanding OverlayFS
	Slide 31: Understanding OverlayFS operations
	Slide 32: Understanding OverlayFS operations
	Slide 33: Understanding OverlayFS operations
	Slide 34

