
virtio inside-out
CS695
Spring 2024-25

Plan
1. Introduction to QEMU Execution Model

a. qemu_init()
b. qemu_main_loop_wait()
c. KVM_IOVENTFD handled in kernel (EPT misconfig -> eventfd_signal)

2. Introducing VirtIO
a. Central idea from spec (managed shm between guest->host)
b. Connect it to qemu and linux -> modern implementation of the spec

3. QEMU + Linux implementation of virtio specification
a. Devices (via the QOM)
b. Notifications (via mmio writes to regions with registered callbacks)
c. Sending and receiving message buffers over a virtqueue

4. Hands-On VirtIO
a. Walkthrough the virtio-demo-pci device. (A minimal virtio device)

i. QEMU virtio-devices must follow the OOP paradigm.
ii. Driver-device pair share buffer data structures

b. Modify the device interface: send in two integers, return the product and the sum
c. Add a new device --- block number-based in guest, file offset in virtio backend

2

QEMU Execution Model

3

A minimal QEMU command-line invocation.

Components of a QEMU process (2016)a. qemu_init(): parse command line args, create Machine
State, register MMIO regions with r/w callbacks, init
devices, spawns` vCPU threads that perform
ioctl(KVM_RUN).

b. qemu_main_loop_wait(): Single thread, that polls file
descriptors for IO events, blocking.

c. IOThreads: Optimization for increased parallelism with
main loop.

Components of a QEMU process (2024)

Introducing VirtIO

4

The VirtIO Specification enables the creation of a direct communication channel between a virtual
device in a VM and a host-userspace hypervisor such as QEMU, through a shared, managed memory

region called a VirtQueue.

Requirements of a VirtIO device, VirtIO
spec 1.3. QEMU (and other hypervisors)
closely follow the specification in their VirtIO
implementations.

Logical Components of a VirtIO-based IO-virtualization
solution. Backend is implemented in VMM (ex. QEMU).
Frontend is a kernel module loaded into guest kernel

- The Linux Kernel and QEMU implement APIs to
develop VirtIO drivers and devices.

QEMU Execution Model

5

Mechanics of VirtIO Device Emulation

a. F.E. driver adds request buffers to the VirtQueue and
“kicks” the queue, sending a notification through KVM to a
file-descriptor monitored by the QEMU Main Loop.

b. The main loop dispatches the vq handler (pre-registered
at device realize time via virtio_add_queue())

c. IOEVENTFD/IRQFD can be enabled for a device by
setting the VIRTIO_PCI_FLAG_USE_IOEVENTFD_BIT
as a property.

Hands-on VirtIO

6

A. virtio-demo-pci

The provided VM image and QEMU (after applying virtio-demo-patch.patch) has a complete
implementation of a virtio device that exposes an ioctl interface to guest userspace.
This virtio-demo-pci device simply returns the product of two integers passed to it.
a. Attach the virtio-demo-pci device to your QEMU VM.

b. Load the virtio-demo.ko driver, run the user-space test program a few times.

c. Modify: For the two numbers passed to the device, return their sum and difference back to userspace.

Hands-on VirtIO

7

Relevant Files

Summary of changes to QEMU source
to add a new VirtIO device

Writing a Frontend Driver for a VirtIO device

8

PCI Enumeration

(qemu) info qtree after successful device realize. Above
is how QEMU represents an attached PCI device. Observe that
PCI BDF numbers and BAR regions are assigned by QEMU

a. On successful attachment of the new
virtio device to the pci bus, QEMU sends
an interrupt to the kernel.

b. This triggers kernel-space code to
allocate necessary structures to
represent the new PCI device.

c. The Kernel virtio subsystem initiates a
virtio handshake with the virtio-device.

d. If a driver is found that matches the
device <vendor id, device id> pair, they
are linked and feature negotiation
occurs.

e. Finally, control enters the F.E. driver and
the driver’s .probe()method is called.

For details see README in virtio-demo VM

Writing a Frontend Driver for a VirtIO device

9

The .probe method

Simplest possible virtio device probe. find_vq() maps
virtqueue interrupt lines to MSI-X vectors exposed by the device.
virtio_device_ready() completes the VirtIO handshake.

virtio_find_vq_*():

a. Create a virtqueue.

b. Compute MSI-X addresses for
interrupts and write to device MSI-X
capability struct. (qemu<->vm vq
interrupt mapping)

c. Registers a user-provided callback
as the interrupt handler for that
virtqueue’s interrupt vector.

A device may have several vqs, each
is initialized in .probe

Writing a Frontend Driver for a VirtIO device

10

Reading and writing to VirtQueues
Virtio drivers use the scatter-gather kernel API to
create descriptors that reference arbitrary structs on kernel
heap or stack.

Passing an outgoing request to the device (sg_out), and
registering a location to store the response (sg_in).

a. To write a request to a virtqueue:
Use sg_init_one() to convert your request outbuf to
a scatter-gather entry (s-g entry). Similarly for a
response inbuf. Finally, virtqueue_add_sgs(*,
token) will create virtio descriptor entries and update
the management metadata.

b. To retrieve a response from a virtqueue
Use virtqueue_get_buf()

Writing a VirtIO Backend for QEMU
Build-system Changes

 Step 0: Add a config option for your new device and add new meson build rules

11

For details read the virtio inside-out doc

Writing a VirtIO Backend for QEMU
Adding core device functionality

Creating a TypeInfo struct for your new virtio device.
type_init() adds to a type-table. $QEMU –device help
queries this table.

12

Step 1: Get QEMU to recognize the name of your PCI device.

Writing a VirtIO Backend for QEMU

Step 2: Setup a PCI-bindings struct to allow your device to attach to the Virtio-PCI bus

Adding core device functionality

13

Linkage between the PCI bindings and the virtio device backend.
- VirtIOXBlk is an instance of the TYPE_VIRTIO_XBLK_DEVICE

class.
- VirtIOXBlkPCI is an instance of the TYPE_VIRTIO_XBLK_PCI

class.

Writing a VirtIO Backend for QEMU

Step 3. Define a set of properties for your device

Defining properties for the virtio bindings class. Every
VirtIOPCIProxy object has these properties. Here we set them
to desired values.

Adding core device functionality

14

Writing a VirtIO Backend for QEMU
Adding core device functionality

Step 4: Define a struct to represent your device backend

15

Device backend struct definition. The one shown is the
simplest possible QEMU-compliant backend.

Writing a VirtIO Backend for QEMU

Step 5: Define #.class_init() method to create a useable OOP class from TypeInfo struct

Adding core device functionality

The class_init() defines the attributes and methods that this
upcoming OOP class has. In effect, it is a C++ class definition.

16

Writing a VirtIO Backend for QEMU
Adding core device functionality

Step 1a of enabling device attach - #.instance_init(). Any additional
properties that were assigned during class_init will be a part of the
dev->vdev instance.

Step 6: Enable successful device “attach” to the Virtio-PCI bus

17

(qemu) device_add
virtio-xblk-pci,id=v0,disable-legacy=on

error:
virtio_instance_init_common():
unknown type 'virtio-xblk-device'

- instance_init() for the .vdev
fails since device backend is not yet a
registered QEMU Type.

- Need to create file virtio-xblk.c with
the backend TypeInfo

Writing a VirtIO Backend for QEMU

Step 6: Enable successful device “attach” to the Virtio-PCI bus

Adding core device functionality

18

Step 1b of enabling device attach: Defining a new TypeInfo
struct for the “virtio-xblk-device” i.e. the device backend.

(qemu) device_add
virtio-xblk-pci,id=v0,disable-legacy=on

Detour: New backend file added to build. We now
have virtio-xblk-pci.c + virtio-xblk.c

Writing a VirtIO Backend for QEMU
Adding core device functionality

Step 2 of enabling device attach - #.realize() -> qdev_realize().
- The vpci_dev->bus was set after #.instance_init() but

before #.realize() during qemu init.

Step 6: Enable successful device “attach” to the Virtio-PCI bus

19

(qemu) device_add
virtio-xblk-pci,id=v0,disable-legacy=on

 re
duces to

Writing a VirtIO Backend for QEMU

Step 6: Enable successful device “attach” to the Virtio-PCI bus

Adding core device functionality

20

Step 3 of enabling device attach: Ensure the #.class_init of the device backend
defines #.realize() and #.get_features() methods. This ensures that
qdev_realize() from the pci bindings file succeeds.

On successful attach, the new virtio-pci
device is listed as a child of the virtio-pci
bus.

- (qemu) info qtree can be used to
inspect buses and realized devices.

Writing a VirtIO Backend for QEMU

21

Reading and writing to VirtQueues
The VirtqueueElement is the representation of a message in the virtqueue. It contains references to the actual sg_in and
sg_out, i.e. the driver-initialized sg buffers meant to be respectively written to and read from by the device.

a. To retrieve a request from a virtqueue, use virtqueue_pop()
This function returns a VirtqueueElement. Subsequent access to the inbufs and outbufs occur through the
in_sg and out_sg attributes.

b. To write a response to a virtqueue, use virtqueue_push()
For a device writing a response to an inbuf, the popped virtqueue element #.in_sg can be filled using
iov_from_buf(), and subsequently the element can be pushed back the virtqueue.

Pause

22

So Far:
- Enabled users to realize (attach) a custom Virtio device to the virtio-pci bus of

a compatible QEMU machine: (default is pc-i440fx-9.2)

Next Steps:
- Understand VirtIO device interactions from the guest’s perspective.

Appendix

23VirtQueue implementation: QEMU

VirtQueue implementation: Linux Kernel

The VirtQueue
a. A nested data structure that implements a VRing, located

in a shared page in guest physical memory.

b. Three VRings per VirtQueue: Descriptor Ring,
Available Ring and Used Ring.

c. Descriptor Ring entries point to data buffers, Available and
Used Ring entries manage VirtQueue metadata.

The Linux Kernel and QEMU both implement APIs
for developing VirtIO drivers and devices.

Appendix

24

The VirtQueue API
Linux Kernel
Full API reference in $kernel/virtio.h

a. sg_init_one()
Given a kernel-allocated physically contiguous region (storing
custom struct, array of ints etc.), create a scatter-gather list
containing 1 scatter-gather (sg) entry.

- Each sg entry is now linked to a fixed memory region
in kernel space.

b. virtqueue_add_sgs()
Given a list of sg entries for outgoing data (outbufs), empty buffers
to store any device-written data (inbufs), and an associated token,
this function:

- Create descriptor chains, stored in the descriptor ring of the
specified virtqueue and

- Update the available ring according to virtio spec.
A single sg entry would create a single descriptor

c. virtqueue_get_buf()
Look up the used ring, update metadata. Finally,
return a pointer to the updated driver token that
was registered via virtqueue_add_sgs().

d. virtqueue_kick()
Given a virtqueue in guest kernel, send a
notification to the corresponding virtqueue in
the backend.

Appendix

25

The VirtQueue API
QEMU
Full API reference in qemu/include/hw/virtio.h

a. iov_from_buf()
Adds a device buffer to the specified sg-entry. The device backend will have
written directly to the location in shared memory of the guest’s response
inbuf through the DMA mapping created by the virtio subsystem.

b. iov_to_buf()
Copy data in a VirtQueueElement to a device buffer.

c. virtqueue_pop()
Retrieve the next VirtQueueElement in the virtqueue.

d. virtqueue_push()
Place a VirtQueueElement onto the virtqueue

e. virtio_notify()
Send an interrupt to the virtqueue mapped to the current.

Appendix

26

QEMU’s TypeInfo hierarchy for Buses. The Bus hierarchy for
VirtIO devices over PCI is highlighted.

- All VirtIO devices are attached to the VIRTIO_PCI_BUS.
- The BUS enables device<->machine communication.

QEMU’s TypeInfo hierarchy of Device backends and
PCI transport bindings.

- The PCI bindings .c file is used to define an
association between the TYPE_VIRTIO_XBLK_PCI
and the TYPE_VIRTIO_XBLK_DEVICE classes.

- The PCI bindings enable device<->guest
communication.

The class hierarchies are recursively built during qemu init
by the #.class_init() method of each type_init()ed Type.

QOM Representation of Virtio Device

Hands-on VirtIO

27

B. virtio-xblk-pci

Apply the virtio-xblk-helper-patch.patch to your QEMU directory. This will generate a few
empty source files corresponding to a new virtio-xblk-pci device.

a. Implement virtio-xblk-pci.c and virtio-xblk.c and successfully attach the
virtio-xblk-pci device to your VM. (hint: use the virtio-demo patch to discover additional
necessary changes)

b. (extra) Write a Frontend Driver for the virtio-xblk-pci device.

Thank You

28

