
eBPF Tutorial
CS695: Topics in Virtualization

and Cloud Computing

Kevin Prafull Baua

(Hard) ways to change the Kernel
1. Pushing your changes to Linux upstream

- Too hard and too long

2. Re-compiling locally
- Need compilation tools, unfeasible to distribute

3. Kernel Modules
- Need kernel knowledge,
 No safety guarantee

What is eBPF?

eBPF (extended Berkeley Packet Filter)
enables loading custom code into the
kernel dynamically and securely.

No system reboot required!

No Kernel crash!

eBPF program gets
loaded into kernel and
attaches to an hookpoint

eBPF program is ran each
time the hookpoint event
is triggered

Source: Fig 1-1 from Learning eBPF by Liz Rice

https://www.oreilly.com/library/view/learning-ebpf/9781098135119/

eBPF features

● Dynamic Loading:
Starts working as soon as program is loaded and
attached.

● Verification and Security:
eBPF verifier checks the program before loading

● High performance:
Can be JIT compiled to run natively.

Origins of eBPF

- eBPF stands for extended Berkeley Packet Filter

- Supported in kernel version 3.18 onwards from 2014

- Derived from the Berkeley Packet Filter, now known

as cBPF (classic BPF)

- Since then, eBPF has evolved to do much more than

just packet filtering

eBPF application areas
1. Tracing

system call trace, monitor network connections,
disk I/O latencies

2. Networking
Packet Filtering, load balancing, header processing

3. Security
Syscall restriction (Seccomp),
Disallowing modifications to important
kernel data structures (LSM)

4. Reducing kernel overheads
Offloading code and short circuiting paths e.g. XRP

5. ??
More Info: eBPF case studies

https://ebpf.io/case-studies/

eBPF Hello World

- Let’s write simple hello world program using eBPF

- Should print “Hello World” each time evecve() syscall is

triggered.

Source: Fig 2-4 from Learning eBPF by Liz Rice

https://www.oreilly.com/library/view/learning-ebpf/9781098135119/

eBPF and Driver Program
eBPF program (Kernelspace code):

- Actual code that will be run in kernel

- Can be written in C or Rust

Driver program (Userspace code):

- Used to load and attach eBPF program into the kernel

using BPF syscalls

- Can be written in any language Python, C, Rust, Go etc

hello.bpf.c

(eBPF program)

driver.py

(Driver program)

Hello World in BCC

$ sudo python3 driver.py

bpftool program inspections commands

$ sudo bpftool prog show
$ sudo bpftool prog show name hello --pretty
$ sudo bpftool prog dump xlated name hello

eBPF maps
Used to share data between eBPF programs and

userspace.

Usually key value stores but can be specialized data

structures.

Global variables are also stored as maps.

Examples BPF_MAP_TYPE_ARRAY, BPF_MAP_TYPE_HASH,

BPF_MAP_TYPE_RINGBUF

Source: https://ebpf.io/what-is-ebpf/

https://ebpf.io/what-is-ebpf/

eBPF maps

Typical usecases:

● Config information from userspace to eBPF program

● Storing state information to be used by next invocation

● Returning results and metrics back to userspace

Output (No. of execve
calls for each uid):
ID 1000: 1
ID 1000: 2
ID 1000: 2
ID 0: 8 ID 1000: 2
ID 0: 9 ID 1000: 2
ID 0: 9 ID 1000: 2
ID 0: 9 ID 1000: 2
ID 0: 9 ID 1000: 2
ID 0: 9 ID 1000: 2
ID 0: 10 ID 1000: 3
…..

bpftool map inspections commands
$ sudo bpftool map show
$ sudo bpftool map dump name counter_table

BCC tool examples
- opensnoop

Trace open() syscalls.

$ sudo /usr/sbin/opensnoop-bpfcc

- tcptrace
Trace TCP established connections (connect(), accept(),
close())

$ sudo /usr/sbin/tcptracer-bpfcc
More tools at:: BCC Github

https://github.com/iovisor/bcc/tree/master/tools

eBPF Program and Attachment types
Each eBPF program has a program type .
(e.g. BPF_PROG_TYPE_KPROBE)

A program type can have multiple compatible attachment
types.

They determine:

● Context provided (e.g. CPU registers)
● Helper functions and kfuncs available (e.g. bpf_trace_printk())
● Return code semantics

eBPF Program and Attachment types
● Kprobes and Kretprobes:

- Used to attach to any instruction in kernel

● Tracepoints:
- Maintained stable hookpoints in kernel

● XDP:
- Intercept packets at driver level before skb is formed

● Socket related types:
- Hooks operating at socket level

XDP (Xpress Data Path)
- Intercepts packets at early on

even before any kernel stack
processing

- Context:

- Return Values:

XDP_ABORTED, XDP_DROP,

XDP_PASS, XDP_TX,

XDP_REDIRECT

BPF_PROG_TYPE_XDP

Source: Fig 8-3 from Learning eBPF by Liz Rice

https://www.oreilly.com/library/view/learning-ebpf/9781098135119/

Source: Figure 4-1 from Learning eBPF

https://www.oreilly.com/library/view/learning-ebpf/9781098135119/

XRP: In-Kernel Storage Functions with eBPF
(OSDI '22 Best Paper Award)

Key value store using B+ trees

- B+ trees are usually used to implement Database and file
systems

- The tree needs to be traversed from root to leaf to get the
value corresponding to given key

- Since the tree lies in a file on
a disk, getting each node
requires a costly disk access

Source: GFG

https://www.geeksforgeeks.org/what-is-b-plus-tree-b-plus-tree-meaning/

Cilium
Cilium is an open source project to provide networking,
security, and observability for cloud native environments
such as Kubernetes clusters and other container orchestration
platforms.

- Kube proxy replacement
- Firewall
- Enforcing network policies
- Metrics and tracing

Load balancing in Kubernetes
- K8s runs services in pods with each pod typically have

separate IP address
- K8s actions might include adding new pods or changing

load balancing rules

Kube proxy

- Implements load balancing through IP tables
- Requires iptable update when pod IP changes
- Slow O(n) lookup and addition

Cilium

- Uses eBPF to encode routing logic
- Efficient O(1) logic lookup using eBPF hash maps

Source: Fig 8-6 from
 Learning eBPF
 by Liz Rice

https://www.oreilly.com/library/view/learning-ebpf/9781098135119/

Source: https://www.brendangregg.com/ebpf.html

https://www.brendangregg.com/ebpf.html

CREDITS: This presentation template was created by
Slidesgo, including icons by Flaticon, and
infographics & images by Freepik

Thanks
Links:

1. Learning eBPF by Liz Rice:
https://www.oreilly.com/library/view/learning-
ebpf/9781098135119/

2. BCC github
https://github.com/iovisor/bcc/tree/master

3. eBPF docs:
https://docs.ebpf.io/

4. bpftool tutorial
https://qmonnet.github.io/whirl-offload/2021/
09/23/bpftool-features-thread/

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://www.oreilly.com/library/view/learning-ebpf/9781098135119/
https://www.oreilly.com/library/view/learning-ebpf/9781098135119/
https://github.com/iovisor/bcc/tree/master
https://docs.ebpf.io/
https://qmonnet.github.io/whirl-offload/2021/09/23/bpftool-features-thread/
https://qmonnet.github.io/whirl-offload/2021/09/23/bpftool-features-thread/

