X eBPF Tutorial

CS695: Topics in Virtualization
and Cloud Computing

Kevin Prafull Baua

(Hard) ways to change the Kernel

1.

Pushing your changes to Linux upstream
- Too hard and too long

Re-compiling locally
- Need compilation tools, unfeasible to distribute

Kernel Modules
- Need kernel knowledge, A
No safety guarantee KERNEL
CRASH

RAISE;KBEE§IONS

Vi ‘
/4
/' MINEPANIC
!
g A !
)/ THEKERNEL
.‘I f

WE ARE
NOT THE SAME

What is eBPF?

eBPF (extended Berkeley Packet Filter)
enables loading custom code into the
kernel dynamically and securely.

No system reboot required! @’QBPF

No Kernel crash!

, User space |
f Applications)
eBPF program gets
loaded into kernel and
attaches to an hookpoint - i
Systemcalls e, e ceccccccceccccccccccccccaa

eBPF program is ran each (Kernel)
time the hookpoint event . w

Is triggered Files E Networking .c

48) 4)

Memory . Processes |=

Source: Fig 1-1 from Learning eBPF by Liz Rice ~ g

https://www.oreilly.com/library/view/learning-ebpf/9781098135119/

eBPF features

e Dynamic Loading:
Starts working as soon as program is loaded and
attached.

e Verification and Security:
eBPF verifier checks the program before loading

e High performance:
Can be JIT compiled to run natively.

Origins of eBPF

eBPF stands for extended Berkeley Packet Filter
Supported in kernel version 3.18 onwards from 2014
Derived from the Berkeley Packet Filter, now known
as cBPF (classic BPF)

Since then, eBPF has evolved to do much more than

just packet filtering

eBPF application areas

1. Tracing

system call trace, monitor network connections,
disk I/O latencies

2. Networking
Packet Filtering, load balancing, header processing

3. Security

Syscall restriction (Seccomp),

N

Meta

Disallowing modifications to important g a

kernel data structures (LSM) CLOUDFLARE

4. Reducing kernel overheads
Offloading code and short circuiting paths e.g. XRP

5. 7?

O
g

oge

More Info: eBPF case studies

https://ebpf.io/case-studies/

eBPF Hello World

- Let's write simple hello world program using eBPF
- Should print “Hello World” each time evecve() syscall is

triggered.

User space . 1

Read trace
Apps] <
- \ hello.py)

J

\ J

SYStemcaIIS LK N R R E R)

Load hello() into kernel,
execve attach to execve

Kernel

h 4

“Hello world"
a’ hello()] S

\ 7

Source: Fig 2-4 from Learning eBPF by Liz Rice

https://www.oreilly.com/library/view/learning-ebpf/9781098135119/

eBPF and Driver Program

eBPF program (Kernelspace code).

- Actual code that will be run in kernel

- Can be written in C or Rust

Driver program (Userspace code):
- Used to load and attach eBPF program into the kernel
using BPF syscalls

- Can be written in any language Python, C, Rust, Go etc

e

eBPF
program

compile

prog.bpf.c

User space

eBPF
Bytecode

Driver code

\

Kernel space

Loaded &
verified

bpf syscalls

Hello World in BCC

1 int hello(void *ctx) {
2 bpf trace printk("Hello World!"); hello.bpf.c
3 return 0; (eBPF program)
4
1 #!/usr/bin/python3
2 from bcc import BPF
3
1 b = BPF(src_file="hello.bpf.c") driver.py
5
6 syscall = b.get_syscall fnname("execve") (Driver program)
7 b.attach_kprobe(event=syscall, fn_name="hello")
8
9 b.trace_print()

Output: $sudo python3 driver.py
b' sh-46728 [006] ...21 435223.474246: bpf_trace_printk: Hello World!'
b' sh-46730 [006] ...21 435223.476841: bpf_trace_printk: Hello World!'

bpftool program inspections commands
$ sudo bpftool prog show

$ sudo bpftool prog show name hello --pretty
$ sudo bpftool prog dump xlated name hello

eBPF maps

Used to share data between eBPF programs and

userspace.

Usually key value stores but can be specialized data

structures.

Global variables are also stored as maps.

Examples BPF_MAP_TYPE_ARRAY, BPF_MAP_TYPE_HASH,
BPF_MAP_TYPE_RINGBUF

[Process J [Process]

T sendmsg() 5 Arecvmsg()
[Syscall] L Syscall J
afeBPF
\d

] [Sockets

<.—
eBPF
Maps | > kempr TCP/IP

[Network Device

Linux
Kernel

N

Source: https://ebpf.io/what-is-ebpf/

https://ebpf.io/what-is-ebpf/

eBPF maps

Typical usecases:
e Config information from userspace to eBPF program
e Storing state information to be used by next invocation

e Returning results and metrics back to userspace

BPF_HASH(counter_table); Output (No. of execve

calls for each uid):

int hello(void *ctx) { ID 1000: 1
u64 uid; ID 1000: 2
u64 counter = 0; ID 1000: 2
uéd *p; ID O:8 ID1000:; 2

ID O:9 D 1000: 2
uid = bpf_get_current_uid_gid() & OxFFFFFFFF; ID0O:9 [ID1000: 2

p = counter_table. lookup(&uid); ID0O:9 1D1000:2

if (p '=0) { ID O:9 1D 1000: 2
counter = *p; ID O:9 1D 1000: 2

} ID O:10 1D 1000: 3

counter++:

counter_table.update(&uid, &counter);

return 0; bpftool map inspections commands

y $ sudo bpftool map show
$ sudo bpftool map dump name counter_table

BCC tool examples

- 0opensnoop
Trace open() syscalls.

$ sudo /usr/sbin/opensnoop-bpfcc
- tcptrace
Trace TCP established connections (connect(), accept(),

close())

$ sudo /usr/sbin/tcptracer-bpfcc
More tools at:: BCC Github

https://github.com/iovisor/bcc/tree/master/tools

eBPF Program and Attachment types

Each eBPF program has a program type.
(e.g. BPF_PROG_TYPE_KPROBE)

A program type can have multiple compatible attachment
types.

They determine:

e Context provided (e.g. CPU registers)
e Helper functions and kfuncs available (e.g. bpf_trace_printk())
e Return code semantics

eBPF Program and Attachment types

e Kprobes and Kretprobes:
- Used to attach to any instruction in kernel

e Tracepoints:
- Maintained stable hookpoints in kernel

o XDP:
- Intercept packets at driver level before skb is formed

e Socket related types:
- Hooks operating at socket level

XDP (Xpress Data Path)

- Intercepts packets at early on

BPF_PROG_TYPE_XDP

even before any kernel stack (Kernel)
processing
- Context: struct xdp_md { :
__u32 data; - J
__u32 data_end;
. g NIC | xoppass)
’ Packet arrives
- Return Values: P-====== +[eBPFprogram]
XDP_ABORTED, XDP_DROP,) ’
XDP.TX
XDP_PASS, XDP_TX, Physical network connectionT v

XDP_REDIRECT

Source: Fig 8-3 from Learning eBPF by Liz Rice

https://www.oreilly.com/library/view/learning-ebpf/9781098135119/

Syscalls

ELF object file

eBPF bytecode
eBPF maps

N V. N

Kernel
BPF verifier

User space :
r Go/C/Python etc. 1 -
1. Load programs and mag

BPF_PROG_LOAD
BPF_MAP_CREATE

2. Attach programs to ewgnt

3. Read/write maps
BPF_MAP_GET_NEXT_KEY
BPF_MAP_LOOKUP_ELEM
BPF_MAP_UPDATE_ELEM

BPF virtual
machine

BPF maps

BPF_MAP_DELETE ELEM

Source: Figure 4-1 from Learning eBPF

https://www.oreilly.com/library/view/learning-ebpf/9781098135119/

bpf syscalls

Driver code

btf_fd <- bpf(BTF_LOAD)

driver.py map_fd <- bpf(CREATE_MARP, btf_fd)

L

prog_fd <- bpf(PROG_LOAD, btf_fd)

eBPF
Bytecode

compile clang -target bpf

eBPF
program
User space

compare

e

Trigger

)
Interpreted
JIT compile Native
machine
code
4
frqc ’
Trigger

Kernel space

XRP: In-Kernel Storage Functions with eBPF
(OSDI '22 Best Paper Award)

Kernel Software is Becoming the Bottleneck for Storage

Average Read Latency Breakdown

100%
75%
. Hardware
50%
Kernel
25% Software

0%
NAND Optane SSD Optane SSD
SSD (Gen 1) (Gen 2)

Kernel software overhead accounts for ~50% of read latency on Optane SSD Gen 2

Key value store using B+ trees

- B+ trees are usually used to implement Database and file

systems
- The tree needs to be traversed from root to leaf to get the

value corresponding to given key

- Since the tree lies in a file on Tree 4
a disk, getting each node / \
requires a costly disk access / i \ / i \
3 g (| TheFRREEE o L. 8 U | — o| 55
Data ‘,:"
3) Pointer : f J

Disk File 2 3 4 5 10

Source: GFG

https://www.geeksforgeeks.org/what-is-b-plus-tree-b-plus-tree-meaning/

B+ Tree Index Lookup from User Space

\
(I Node parsing and 1/O
[| request submission
| | are performed in
User Space I Fetch Parse Parse Parse] user space
I Root Node Node Node Node,
\
-——Yr------r-\----=-- ‘ iy Kernel Boundary (5.6%)
Syscall Layer ()
. v 3.2%
m | Traverse the full |

Storage Device \)
i f%

XRP: A Framework for In-Kernel Storage Functions

XRP can accelerate many types of
Load a custom Initiate a operations such as index lookups, range

User Space function into chain of read queries, and aggregations
the kernel requests

Kernel Boundary (5.6%)

Syscall Layer

Custom Function 7

Storage Device V V V 1
\))) 51f~%

Throughput

S 300+ —— XRP :
o —»— read :
B :
o g
S 200 =
o+
-
o
3l
S 100~ + Increase by up to 120%
o :
= E Number of
= * Cores
0

1 2 3 456 7 8 9 1011 12
Number of Threads

Cilium

Cilium is an open source project to provide networking,
security, and observability for cloud native environments
such as Kubernetes clusters and other container orchestration
platformes.

- Kube proxy replacement

- Firewall

- Enforcing network policies
- Metrics and tracing

Load balancing in Kubernetes

- K8s runs services in pods with each pod typically have
separate |IP address

- K8s actions might include adding new pods or changing
load balancing rules

Kube proxy

- Implements load balancing through IP tables
- Requires iptable update when pod IP changes
- Slow O(n) lookup and addition
Cilium
- Uses eBPF to encode routing logic
- Efficient O(1) logic lookup using eBPF hash maps

Pod

Process

Socket

: I iptables iptables
"I’,fl?,ﬂ‘%s POSTROUTING POSTROUTING
l mangle nat
X~ 1 ~
&3
2L Linux routing
25
= I
iptables | iptables
PREROUTING PREROUTING
nat | mangle
veth B
1
veth
intables A iptables ([iptables eBPF
FCI)JRWARD POSTROUTING POSTROUTING host
| mangle nat routing
23 | (I ' T
O = L linuxXmolting |de - = = o0 o= o o = = e
g% Linux routing |« > aeBPF 833 el
(&) J \ J
iptables iptables
PREROUTING PREROUTING
nat | mangle

ethO

—

Source: Fig 8-6 from
Learning eBPFE
by Liz Rice

https://www.oreilly.com/library/view/learning-ebpf/9781098135119/

Linux bcc/BPF Tracing Tools

c* java* node* php* mysqgld_gslower
python* ruby* dbstat dbslower gethostlatency

/

bashreadline memleak
\ uthreads ugc I sslsniff
filetop \
A filelife fileslower o + / syscount
vfscount vfsstat \ Applications killsnoop
cachestat cachetop \ Runtlmes // execsnoop

ucalls uflow

opensnoop statsnoop vcbinew ustat

syncsnoop

dcstat dcsnoop exitsnoop

D \ System Libraries d / PAOpSTREC
4 cpudist cpuwalk
trace » runglat runglen
argdist X R System Call Interface rungslower
funccount < ‘1/ cpuunclaimed
guncilz"er VFS 4 Sockets - deadlock
sz:gkzoﬁgﬁy / Scheduler offcputime wakeuptime
profile y File Systems | TCP/UDP R offwaketime softirqgs
: slabratetop
§§r£SdiSt / Volume Manager/ P e —— oomkill memleak
rkssliover shmsnoop drsnoop
ext4dist ext4slower : . Memory
nfsslower nfsdist 4 Block Device Net Device -
xgssiower xfsdist ~—— criticalstat
zfsslower 1 i ttysnoo
Y Sadic / / Device Drivers ¥ P
mdflush biotop biosnoop tcptop tcplife tcptracer
) biolatency bitesize tcpconnect tcpaccept tcpconnlat 11estat |CPUs
Other: tcpretrans tcpsubnet tcpdrop NG
capable sofdsnoop tcpstates

https://github.com/iovisor/bcc#tools 2019

Source: https://www.brendangregg.com/ebpf.html

https://www.brendangregg.com/ebpf.html

Thanks

Links:

1. Learning eBPF by Liz Rice:
https:/Mww.oreilly.com/library/view/learning-
ebpf/9781098135119/

2. BCCgithub
https://aithub.com/iovisor/bcc/tree/master

3. eBPF docs:
https://docs.ebpf.io/

4. bpftool tutorial
https://amonnet.github.io/whirl-offload/2021/
09/23/bpftool-features-thread/

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://www.oreilly.com/library/view/learning-ebpf/9781098135119/
https://www.oreilly.com/library/view/learning-ebpf/9781098135119/
https://github.com/iovisor/bcc/tree/master
https://docs.ebpf.io/
https://qmonnet.github.io/whirl-offload/2021/09/23/bpftool-features-thread/
https://qmonnet.github.io/whirl-offload/2021/09/23/bpftool-features-thread/

