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Infrastructure as a Service Pitfalls

Infrastructure is now software, but even that is too hard

* Developers configure and manage complete software stack
- OS and software upgrades, security patches
- Monitoring and logging
- Auto-scaling, redundancy, geo-replication

Resources

Allocated VMs
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Functions as a Service

Many cloud applications are event-driven
 Events: HTTP requests, storage updates, publish-subscribe
 Event handlers:

- Web servers: generate html response

- Machine learning: model inference on input passed via HTTP

FaaS characteristics:
* Developers provide event-handling code as function source-code
* Functions are ‘pure functions’ and stateless
- All state is stored in cloud storage (S3, etc)
e Each function invocation runs in a sandbox (container/VM)
- Typically small resource limits (1 cpu core) and duration < 30 minutes
 Pricing: linear “scale-to-zero”. Per-invocation ($ 10e-7)



Overview and Themes

1. Functions as a Service: benefits for users and challenges for providers
2. Temporal locality to reduce cold-start overheads

3. Load-balancing

4. Queueing for GPU functions
5. Polymorphic function dispatch

Themes:

1. Look at resource management problems at various scales
(server, cluster level ; CPU, GPU, mixed,..)

2. Find similar problems in broader systems, and specialize and
apply classic solutions

3. Many interesting open problems “local” to your current
knowledge and expertise (the frontier is closer than you think)




FaaS Workflow From User Perspective

Source code uploaded to provider

#Initialization code
import numpy as np
import tensorflow as tf

m = download_model(’http://model_serve/
img_classify.pb’)
session = create_tensorflow graph(m)

def lambda_handler(event):
#This is called on every function invocation
picture = event[’data’]
prediction_output =
run_inference_on_image(picture)
return prediction_output

HTTP-trigger

PUT https://faas.com/img_recogn?input=photo.png @
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GCloud Functions Demo

gcloud functions deploy hw ——gen2 ——runtime=python312
——region=us—eastl ——entry-point=hello_http ——trigger-
http ——allow—unauthenticated —source=hw

Execute the function with https://us-east1-
first-220321.cloudfunctions.net/hw/?name=f000

Hw directory contains main.py

- Some restrictions of the FaaS programming model:

- No local state (i.e., cannot use local variables, file-system to
maintain status, counters, etc.)

* No direct networking — all communication via cloud storage


https://us-east1-first-220321.cloudfunctions.net/hw/?name=fooo
https://us-east1-first-220321.cloudfunctions.net/hw/?name=fooo

FaaS Provider Perspective

* API consists of 2 main end-points:

- Register a function. Bind function name with event-trigger and
function-code. Results in creation of container sandbox

- Invoke a function. When triggered (e.g., HTTP), run function code
In its sandbox on some server

-
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def lambda_handler(event):
#This is called on every function invocation
picture = event[’data’]
prediction_output = run_inference_on_image(picture)
return prediction_output

Worker

HTTP-based invocation, with inputs

PUT https://faas.com/img_recogn?input=face.png



FaaS Workloads

- FaaS is a common abstraction supporting a wide range of applications

» A workload is composed of a mix of many functions, each with different:
- Inter-arrival-time distribution (popularity): milliseconds to days
- Container size (cpu cores, memory): 0.1 to 10 GB
- Execution time: milliseconds to minutes

- Extremely skewed and heavy-tailed
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Function Latency

* Function latencies can be significantly higher than conventional

client-server architectures

* In figure below, the main function execution is 4.3 seconds, but
the end-to-end latency can be 5 + 8 seconds.

Controller

m = download_model(’http://model_serve/img_classify.pb’)
Load balancer session = create_tensorflow_graph(m)

Dist msg queue
Da.tabases import numpy as np

import tensorflow as tf

Docker \

def lambda_handler(event, context):
picture = event[’data’]
output = run_inference_on_image(picture)
return output

-« Inputs —

—_— Control Plane (OpenWh|3k) FaaS runtime | Lang runtime |  Explicit init Function Execution
0.45s 1.5s 1s 1.9s 4.3s
+«—— (0.2-5 seconds > 8 seconds




Function Keep-Alive

e Each function invocation must run in a sandboxed environment

e Create and setup new container/VVM for each invocation

FaaS runtime | Lang runtime Explicit init Function Execution
ML Inference (CNN) 512 MB 6.5s 458
Video Encoding 500 MB 56s 3s
Matrix Multiply 256 MB 2.5s 2.2s
Disk-bench (dd) 256 MB 2.28 1.8s
Web-serving 64 MB 245 2s .
Floating Point 128 MB 2s 1.7's

Keep-alive: Keep container in memory.

Subsequent invocations don’t incur cold-start.
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Keep-Alive Tradeoffs

e Keeping containers alive in memory can reduce latency by ~10x
 But increases server memory requirements

Keep-alive policy:

Which function containers to keep in memory, and for how long?

* Many tradeoffs:
* Frequently invoked functions?
 Small memory footprint functions?

e Largest (cold - warm) time?




FaaS Keep-alive === Caching

e Cold-start -> Cache Miss
e Warm-start -> Cache hit

 Keep-alive policy -> Cache eviction

e Cache eviction policies, analysis, etc can be used for
FaaS resource management!

e Current FaaS keep-alive: fixed Time-to-Live (TTL)

e OpenWhisk: 10 minutes TTL until eviction



Greedy-Dual Keep-Alive

* For functions, memory size is highly variable and crucial
* Other parameters: frequency, recency, cold-warm time
 Most caching is size-oblivious (LRU)

* Size-aware cache eviction: Greedy-Dual-Size-Frequency

Frequency * InitTime

KeepAlivePriority = Recency +
Memory

Warm Hits

FaasCache:
Our Greedy-Dual implementation

FaasCache

OpenWhisk

0 10000 20000 30000
Invocations

Better warm-hit performance

FaasCache: Keeping Serverless Computing Alive With Greedy-Dual Caching
ASPLOS 2021. A. Fuerst and P Sharma 13




FaaS Load-balancing Challenges

- Consider both server-load and locality (i.e., “sticky”)

- Improve cluster utilization and function latency

- Support horizontal scaling (change number of servers to meet
traffic needs)
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Consistent Hashing with Bounded Loads

Pl AN

1. If server is “full” we forward to
the next server

2. When under the load bound:
pure locality

3. Forwarding has a high but
decaying probability of warm hit '

@
@
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Challenges: Function heterogeneity
and stale cluster information

Load bound =3
(max number of running functions per server)
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Our approach: CH-RLU
Consistent Hashing with Random Load Updates

* Key refinements to CH-BL.:
- Use system-load information

e Can be stale/inconsistent

* Estimate “load in flight” and add this random load to
observed (stale) load as a “buffer”

- Separate handling of highly popular, “bursty” functions

 Use SHARDS from caching for sampling-based popular
function detection

 More aggressive forwarding of bursty functions to prevent
overloaded servers



CH-RLU yields good locality, load-balancing, and function latency
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HPDC 2022, A. Fuerst and P. Sharma



General FaaS resource management principles

Recap:
* 2 main challenges: heterogeneity and locality (cold-time >> warm)

* Main opportunity: can predict/estimate function characteristics using
historical information (arrival rate and cold/warm times)

e Workload: treat as a mixture of individual functions with different
characteristics

* Invocation latency: execution (i.e., service) time + queueing time
- Both depend on server-load and overcommitment-level



GPU Functions

 GPUs: Very limited concurrent execution capability (2—25)
 GPU containers: high initialization/cold-start overheads

Function GPU [Warm] CPU [Warm] GPU [Cold] CPU [Cold]
cupy 0.89 11.76 2.12 12.69
imagenet 1.93 4.77 6.71 4.5
onnx-roberta 0.18 4.62 1.08 0.89
pyhpc-eos 0.01 0.04 3.53 0.05
pyhpc-isoneural 0.02 0.52 7.93 0.54
rodinia-lavamd 0.6 17.75 0.75 15.0
rodinia-lud 0.74 22.24 0.93 55.21
rodinia-myocyte 1.67 40.49 2.97 41.21
rodinia-needle 1.3 27.24 1.42 41.33
rodinia-pathfinder 0.35 31.75 0.5 34.12 GPU
rodinia-srad 2.57 53.49 2.72 52.99
squeezenet 0.98 1.16 4.88 2.19 RS
torch-rnn 0.03 0.02 2.02 0.38 !
A
GPU queue
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GPU Queueing: Balancing Locality and Waiting

-------------

GPU queue

A A A : A

\

Fair queueing flow selector
>

------------

 Multi-Queue Fair Queueing (MQFQ): each function represents a flow

- Originally from disk scheduling: preserve locality for different
application request streams

* Select next flow to dispatch based on function arrival and service time
* Flow run-ahead for locality: looser fairness bound

20



MQFQ Fairness

FCFS MQFQ-Sticky
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popular functions dominating with FCFS.
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(b) The maximum difference in GPU execution
time among all functions is significantly smaller
than the theoretical upper-bound.
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MQFQ Performance
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(a) Average latency is 2 — 5X lower with MQFQ-
Sticky for different device-parallelism (D) levels.

5x lower latency compared to FCFS (due to cold-start reduction)
Open question: MQFQ performance modeling

- Latency depends on flow-queue state (number of functions of
different types), interference, etc.

- Offline optimal queueing policy to minimize expected latency?
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Polymorphic Function Dispatch

 GPUs are highly congested resource

 Can we offload some invocations to the CPU?

* Many functions (ML inference etc) can be made polymorphic
- Select CPU or GPU container at run-time

* Tradeoffs: some functions see higher GPU speedup; locality; queue
wait times

e Can we treat the GPU as a smaller ‘cache’ for functions?

Landlord Cache

Active Functions

Function R

Dispatching Agent ——>

invocation Hit/ .
Admit/ Inactive
Insert rA B [ C D E F
Miss
MQFQ 1ow Queues

cPUQueue GPU
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GPU Function Performance Under Load

Time (sec.)

Cupy benchmark time: <1 s

Function GPU [Warm] CPU [Warm] GPU [Cold] CPU [Cold]

cupy 0.89 11.76 2.12 12.69

imagenet 1.93 4.77 6.71 4.5

onnx-roberta 0.18 4.62 1.08 0.89

pyhpc-eos 0.01 0.04 3.53 0.05

pyhpc-isoneural 0.02 0.52 7.93 0.54

rodinia-lavamd 0.6 17.75 0.75 15.0

rodinia-lud 0.74 22.24 0.93 55.21

rodinia-myocyte 1.67 40.49 2.97 41.21

rodinia-needle 1.3 27.24 1.42 41.33

rodinia-pathfinder 0.35 31.75 0.5 34.12 ] o ]

rodinia-srad 2.57 53.49 2.72 52.99 Slgnlflcant queuelng de|ays

squeezenet 0.98 1.16 4.38 2.19

torch-rnn 0.03 0.02 202 038« Execution time also increases
B Execution o o High load |

401 mmm Queuing /\ . Low Load !




GPULandlord Dispatch

* Landlord caching: a meta-algorithm for size-aware caching
- Credit associated with each item
- Upon a hit, the item gets a credit equal to cost of cache miss

- For a miss, rents are charged from all residents (proportional to
their size). Lowest credit items evicted until room for new item

« GPULandlord intuition:

- To increase GPU warm starts, a small number of functions are
‘resident’

- Credits and rent proportional to opportunity cost.
m; = ElTcpyl = ElTgpyl
- E[T] is expected latency (queueing + service)
- Rent charged in proportion to size and popularity (enqueued items)

25



GPULandlord Algorithm

1: function GPULANDLORD(item) > [tem is function metadata:{fname, credits, Ng, 1, Tc, . . .}
2 if present(item) then

3 new_credit = OPPORTUNITYCOsT(item) >Te — T
4 if new credit < 0 then

5: ~ return Miss(item) > M1: Negative credit miss
6 else

7 ~ return Hit(item)

8 if ADMITFILTER(item) then

9 ~ Hirr(item)

10: else

11: | Miss(item)

12: function Hit(item)
13: L item.credit += OPPORTUNITYCoOST(item)

14: return GPU

15: function Miss(item)

16: CHARGERENTS(OPPORTUNITYCOST(item))

17: item.credit += OPPORTUNITYCOST(item) > Accumulate credit

18: return CPU

19: function ADMITFILTER(item)

20: return GPU with probability 1/1+item.Ng > A1: New function lottery
21: if GpuLoAD( ) < « then

22: t return OpPORTUNITYCoOsT(item) > 0 > A2: Positive credit criteria
23: item.credits += OPPORTUNITYCOsT(item) > Accumulate credits
24: if T /S > p then

25: _ return false > M2: Overload miss
26: return item.credits > victim.credits > A3: Cumulative opportunity cost displacement

26



Polymorphic Function Performance

6-30x reduction In latenc
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Polymorphic dispatch open questions

Slow

Dispatch queue / (CPU)

> . F B B A D C A
\ Fast

(GPU)

* Classic [Lin+Kumar ‘84]: threshold-based dispatch to fast server (wait for certain
time for the fast server, based on the queue backlog).

» [Hyytia+Righter ’22]: ICE: faster server gets to choose the smaller jobs (skim the
icing on the cake)

- Different speedups of functions => these classic policies cannot be easily
applied

* Reinforcement Learning?
« What to optimize? Weighted avg latency? Throughput?
 What is fairness in this context?
- Skewed workloads => specialized heuristics can work great
* E.g., high frequency small functions always on CPU
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Conclusions

 FaaS: de-facto programming model for modern cloud applications
* Locality and heterogeneity two central challenges for providers
« Keep-alive highly effective at combating cold-starts
* Load-balancing: Consistent hashing with bounded loads
 GPU functions: fair queueing principles to handle contention
- Modeling MQFQ performance? Lot of non-linearity

- Load balancing for GPU clusters? CH-BL induces “too much” locality
and gueueing for the popular functions. New techniques needed

* Polymorphic functions: run on either CPU or GPU.

- Dispatching policies: how to choose? Treat GPU as a cache?
Queueing-based approaches? Reinforcement Learning?
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