
Keeping it Local: Functions as a
Service Resource Management

Prateek Sharma
Indiana University Bloomington

1

• Developers configure and manage complete software stack

- OS and software upgrades, security patches

- Monitoring and logging

- Auto-scaling, redundancy, geo-replication

Infrastructure is now software, but even that is too hard

Infrastructure as a Service Pitfalls

2

Allocated VMs

Time

Perfectly elastic scaling

Resources

• Events: HTTP requests, storage updates, publish-subscribe

• Event handlers:

- Web servers: generate html response

- Machine learning: model inference on input passed via HTTP

Many cloud applications are event-driven

Functions as a Service

3

FaaS characteristics:
• Developers provide event-handling code as function source-code

• Functions are ‘pure functions’ and stateless

- All state is stored in cloud storage (S3, etc)

• Each function invocation runs in a sandbox (container/VM)

- Typically small resource limits (1 cpu core) and duration < 30 minutes

• Pricing: linear “scale-to-zero”. Per-invocation ($ 10e-7)

1. Functions as a Service: benefits for users and challenges for providers

2. Temporal locality to reduce cold-start overheads

3. Load-balancing

4. Queueing for GPU functions

5. Polymorphic function dispatch

Themes:

Overview and Themes

4

1. Look at resource management problems at various scales
(server, cluster level ; CPU, GPU, mixed,..)

2. Find similar problems in broader systems, and specialize and
apply classic solutions

3. Many interesting open problems “local” to your current
knowledge and expertise (the frontier is closer than you think)

FaaS Workflow From User Perspective

5

FaaS

#Initialization code
import numpy as np
import tensorflow as tf

m = download_model(’http://model_serve/
img_classify.pb’)
session = create_tensorflow graph(m)

def lambda_handler(event):
 #This is called on every function invocation
 picture = event[’data’]
 prediction_output =
run_inference_on_image(picture)
 return prediction_output

HTTP-trigger

PUT https://faas.com/img_recogn?input=photo.png

Provider returns code results

Source code uploaded to provider

gcloud functions deploy hw --gen2 --runtime=python312
--region=us-east1 --entry-point=hello_http --trigger-
http --allow-unauthenticated —source=hw

Execute the function with https://us-east1-
first-220321.cloudfunctions.net/hw/?name=fooo

Hw directory contains main.py

• Some restrictions of the FaaS programming model:

• No local state (i.e., cannot use local variables, file-system to

maintain status, counters, etc.)

• No direct networking — all communication via cloud storage

GCloud Functions Demo

6

https://us-east1-first-220321.cloudfunctions.net/hw/?name=fooo
https://us-east1-first-220321.cloudfunctions.net/hw/?name=fooo

FaaS Provider Perspective

7

StoreLoad
Balancer

Worker
(Server)

Worker Worker

λimg_recogn

#Initialization code
import numpy as np
import tensorflow as tf

m = download_model(’http://model_serve/img_classify.pb’)
session = create_tensorflow graph(m)

def lambda_handler(event):
 #This is called on every function invocation
 picture = event[’data’]
 prediction_output = run_inference_on_image(picture)
 return prediction_output

HTTP-based invocation, with inputs
PUT https://faas.com/img_recogn?input=face.png

FaaS control plane

• API consists of 2 main end-points:

- Register a function. Bind function name with event-trigger and

function-code. Results in creation of container sandbox

- Invoke a function. When triggered (e.g., HTTP), run function code

in its sandbox on some server

• FaaS is a common abstraction supporting a wide range of applications

• A workload is composed of a mix of many functions, each with different:

• Inter-arrival-time distribution (popularity): milliseconds to days

• Container size (cpu cores, memory): 0.1 to 10 GB

• Execution time: milliseconds to minutes

• Extremely skewed and heavy-tailed

FaaS Workloads

8

Execution-duration20% of functions (red) are 99% of invocations

• Function latencies can be significantly higher than conventional
client-server architectures

• In figure below, the main function execution is 4.3 seconds, but
the end-to-end latency can be 5 + 8 seconds.

Function Latency

9

FaaS runtime

0.45s 1.5s

Explicit init Function Execution

Linux Boot

8 seconds
1.9s 4.3s

import numpy as np
import tensorflow as tf

Lang runtime

def lambda_handler(event, context):
 picture = event[’data’]
 output = run_inference_on_image(picture)
 return output

m = download_model(’http://model_serve/img_classify.pb’)
session = create_tensorflow_graph(m)

1s

Inputs

Control Plane (OpenWhisk)
Docker

• Controller
• Load balancer
• Dist msg queue
• Databases

0.2-5 seconds

Function Keep-Alive

10

• Each function invocation must run in a sandboxed environment

• Create and setup new container/VM for each invocation

[*]

Keep-alive: Keep container in memory.
Subsequent invocations don’t incur cold-start.

FaaS runtime

0.45s 1.5s

Explicit init Function Execution

Linux Boot

8 seconds
1.9s 4.3s

import numpy as np
import tensorflow as tf

Lang runtime

def lambda_handler(event, context):
 picture = event[’data’]
 output = run_inference_on_image(picture)
 return output

m = download_model(’http://model_serve/img_classify.pb’)
session = create_tensorflow_graph(m)

1s

Inputs

• Keeping containers alive in memory can reduce latency by ~10x

• But increases server memory requirements

Keep-alive policy:
Which function containers to keep in memory, and for how long?

• Many tradeoffs:

• Frequently invoked functions?

• Small memory footprint functions?

• Largest (cold - warm) time?

Keep-Alive Tradeoffs

11

• Cold-start -> Cache Miss
• Warm-start -> Cache hit
• Keep-alive policy -> Cache eviction

• Cache eviction policies, analysis, etc can be used for
FaaS resource management!

• Current FaaS keep-alive: fixed Time-to-Live (TTL)

• OpenWhisk: 10 minutes TTL until eviction

FaaS Keep-alive === Caching

12

• For functions, memory size is highly variable and crucial

• Other parameters: frequency, recency, cold-warm time

• Most caching is size-oblivious (LRU)

• Size-aware cache eviction: Greedy-Dual-Size-Frequency

𝐾𝑒𝑒𝑝𝐴𝑙𝑖𝑣𝑒𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑅𝑒𝑐𝑒𝑛𝑐𝑦 +
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 𝐼𝑛𝑖𝑡𝑇𝑖𝑚𝑒

𝑀𝑒𝑚𝑜𝑟𝑦

Better warm-hit performance

FaasCache:
Our Greedy-Dual implementation

FaasCache: Keeping Serverless Computing Alive With Greedy-Dual Caching  
ASPLOS 2021. A. Fuerst and P. Sharma

Greedy-Dual Keep-Alive

13

- Consider both server-load and locality (i.e., “sticky”)
- Improve cluster utilization and function latency

- Support horizontal scaling (change number of servers to meet

traffic needs)

FaaS Load-balancing Challenges

14

Worker
(Server)

Worker Worker

Load
Balancer

Consistent Hashing with Bounded Loads

1. If server is “full” we forward to
the next server

2. When under the load bound:
pure locality

3. Forwarding has a high but
decaying probability of warm hit

3 0

2Challenges: Function heterogeneity
and stale cluster information

15

Load bound = 3
(max number of running functions per server)

• Key refinements to CH-BL:

- Use system-load information

• Can be stale/inconsistent

• Estimate “load in flight” and add this random load to

observed (stale) load as a “buffer”

- Separate handling of highly popular, “bursty” functions

• Use SHARDS from caching for sampling-based popular

function detection

• More aggressive forwarding of bursty functions to prevent

overloaded servers

Our approach: CH-RLU
Consistent Hashing with Random Load Updates

16

CH-RLU yields good locality, load-balancing, and function latency

• Increase in function latency
compared to best-case latency
(warm start under no load)

• CH-RLU: < 5% increase, vs.
OpenWhisk’s 20%

• Variance in server loads over time
• LL: Least loaded. Not locality

aware, but lowest load variance
• OpenWhisk: Not load aware, so can

result in some servers getting
overloaded while others are idle

Locality-aware Load-Balancing For Serverless Clusters. 
HPDC 2022, A. Fuerst and P. Sharma
 17

• 2 main challenges: heterogeneity and locality (cold-time >> warm)

• Main opportunity: can predict/estimate function characteristics using

historical information (arrival rate and cold/warm times)

• Workload: treat as a mixture of individual functions with different

characteristics

• Invocation latency: execution (i.e., service) time + queueing time

- Both depend on server-load and overcommitment-level

Recap:

General FaaS resource management principles

18

• GPUs: Very limited concurrent execution capability (2—5)

• GPU containers: high initialization/cold-start overheads

GPU Functions

19

4

Fn-id Function GPU [Warm] CPU [Warm] GPU [Cold] CPU [Cold]

0 cupy 0.89 11.76 2.12 12.69
1 imagenet 1.93 4.77 6.71 4.5
2 onnx-roberta 0.18 4.62 1.08 0.89
3 pyhpc-eos 0.01 0.04 3.53 0.05
4 pyhpc-isoneural 0.02 0.52 7.93 0.54
5 rodinia-lavamd 0.6 17.75 0.75 15.0
6 rodinia-lud 0.74 22.24 0.93 55.21
7 rodinia-myocyte 1.67 40.49 2.97 41.21
8 rodinia-needle 1.3 27.24 1.42 41.33
9 rodinia-path�nder 0.35 31.75 0.5 34.12
10 rodinia-srad 2.57 53.49 2.72 52.99
11 squeezenet 0.98 1.16 4.88 2.19
12 torch-rnn 0.03 0.02 2.02 0.38
Table 1. Service times (in seconds) for GPU and CPU warm and cold function invocations.

when the container state can be located in device memory. Cold-starts are signi�cantly higher
latency due to container, function, and device-runtime (e.g., CUDA) initialization.
Most functions in Table 1 have signi�cantly lower GPU warm times compared to the CPU, by

2⇥ –70⇥. Cold-starts on GPU can add several seconds of additional latency, a fact also observed
for Alibaba GPU functions [5]. Because of this overhead, temporal locality becomes a prominent
desideratum for GPU functions.

2.3 Black-box GPU multiplexing
A typical FaaS server runs 10–50 functions concurrently, and thus even if a small fraction of them can
bene�t from GPU acceleration, an immediate need arises for multiplexing the GPU to run multiple
functions concurrently. We also desire black-box multiplexing and retain container isolation. That
is, functions cannot share their containers with other functions, and we want multiple function
containers to run concurrently on the GPU. We require general-purpose functions and do not
modify the function code in any way, unlike recent “specialized serverless GPUs” which exclusively
target ML inference workloads [33, 60].

The GPU programming model makes this challenging, since GPUs are designed for high through-
put computation by a single long-running application. Hardware support for GPU multiplexing can
increase concurrency. Multi-Process Service [48] (MPS) allows multiple processes to make share
the device concurrently and has been proposed for FaaS [33]. Nvidia MIG [49] (Multi-Instance
GPU) pre-partitions device resources at manufacturing time, and one or more of these virtualized
GPU partitions can be assigned to a VM or container via direct device assignment. Even with the
hardware multiplexing support, the maximum concurrency is typically small, and is limited by
memory availability and performance interference.

2.4 Can GPUs Help Serverless Workloads?
GPUs can provide signi�cant speedup, but the limited concurrency results in a large queueing time
for GPU containers. This can increase the overall end-to-end latency (aka sojourn time) which is
the primary metric of interest. In the ideal case, functions can obtain signi�cant speedup and have
small execution (i.e., service) times , but this requires a “warm” invocation, and availability of GPU

, Vol. 1, No. 1, Article . Publication date: January 2025.

.. F B B A D C A

A

B

GPU queue

GPU

• Multi-Queue Fair Queueing (MQFQ): each function represents a flow

- Originally from disk scheduling: preserve locality for different

application request streams

• Select next flow to dispatch based on function arrival and service time

• Flow run-ahead for locality: looser fairness bound

GPU Queueing: Balancing Locality and Waiting

20

A A A

GPU queue

G

Fair queueing flow selector

A

B

GPU

MQFQ Fairness

21

� 	�
�

�� ��� �!��

�

��

�

�
�
�$
�
�
��
�
#
&
��
�
��
�
�

����

� 	�
�

�� ��� �!��

������%���(

�!�%��"'

�!�%�����

�����"'

��������

�����%�#%

(a) GPU service time as functions are added to
the workload at the 5 minute mark. MQFQ is fair,
and provides all functions similar service, unlike
popular functions dominating with FCFS.

� � �� �� 	� 	�
�

�����������������! ���

�

���

	��

��

���

�
�#

��
!�

��
���

��
��

��
���

�
��

�"
��

��
 ��

��
��

��
��

��

������ ��������� ������������

(b) The maximum di�erence in GPU execution
time among all functions is signi�cantly smaller
than the theoretical upper-bound.

��� �� ��� ��	 ��
 ���
��!%�#$��""�&��#� �"�#�����

�

���

����

����

	���

�
$�
��
�&
��
��
$�
��
' ����������%��$���#�

����������%��$���#�
�������"���
�������"���

(c) MQFQ provides lower end-to-end latency
across a range of workloads.

Figure 5: MQFQ-Sticky provides fair GPU access to functions, and also signi�cantly reduces end-to-end latency.

execution time>5 seconds), the latency drops signi�cantly, and
MQFQ improves upon FCFS by 15% at the higher loads.
Result:MQFQ provides fair access to GPUs to functions. It also reduces
end-to-end latency compared to FCFS by 2⇥ at high load.

6.2 Queueing-Policy Comparison
To characterize the di�erences due to queueing policies, we show
the empirical evaluation with a medium-intensity Azure workload
(trace 4 in Table 3), which comprises of 19 functions. This workload
results in average GPU utilization of around 70% (Figure 6c), and
represents the average case.
Average Latency. The latency across all invocations is shown in
Figure 6a. Not shown in the �gure is the current baseline FCFS

Naïve scheduling with nvidia-docker, which does not have a con-
tainer pool and su�ers from excessive cold-starts.The FCFS Naïve av-
erage latency is close to 3,000 seconds—a 300⇥ overhead. The
high latency is because of every invocation results in a cold-start,
causing a large queue buildup. Note that our workload trace is open-
loop—with invocations generated at pre-determined timestamps.
Because the standard GPU-container overhead is so high, in this rest
of this section, we will retain our memory-management optimizations
when comparing MQFQ-Sticky with other queueing policies.

A D=1, when only one function is serviced at a time, MQFQ
approximates classic SFQ [36], and outperforms FCFS by 5⇥ with a
11.8 vs 51.8-second average respective latency thanks to its locality
and fairness oriented design. Paella’s SJF encourages locality at the
expense of long functions that experience head-of-line blocking,
resulting in a 8⇥ to 20⇥ higher latency. Batch has middle of the
road performance, lacking fairness and advanced locality policies.
At higher concurrency levels, MQFQ-Sticky improves latency by
an additional 25% to an average of 8.9-seconds per invocation.

Most policies bene�t from higher GPU concurrency (D) which
decreases the queue wait times. However for Paella, it degrades
performance, because its SJF dispatching results in concurrent in-
vocations of the same function, increasing the number of cold
starts [65]. When D is set too high (D=3), the device cannot handle
the higher concurrency, and all policies su�er varying degrees of
degradation due to resource contention and interference.
Per-function latency. In Figure 6b, we show the per-function
latency (averaged across all its invocations). FCFS has the worst

global inter-function latency variance (752), and the highest average
latency. MQFQ-Sticky reduces latency in the range of 2 � 10⇥, and
has only one-third the inter-function latency variance of FCFS. Also,
the invocation latency variance for each function (the error bars) is
3 � 4⇥ lower compared with FCFS and Batch.
Result: MQFQ-Sticky reduces average latency by 5⇥ across all func-
tions, and also reduces their jitter and tail latency by 3⇥–4⇥.

6.3 MPS, MIG, and Multi-GPU
We now examine the e�ectiveness of MQFQ with MPS and MIG
on the A30 GPU. Figure 7a compares the latency across di�erent
Azure-sampled workloads, with the weighted average latency nor-
malized to MQFQ-Sticky without any of these features. We create
two MIG slices, and MQFQ+MIG schedules functions across these
two “vGPUs”. Surprisingly, this increases latency, and primarily
occurs because of higher execution times for certain functions run-
ning on the smaller MIG slices, shown in Figure 7b. Note that the
same unmodi�ed functions run on the MIG slices without account-
ing for the reduced resource availability. This causes some functions
such as RNN and FFT to see a large slowdownwithMIG—increasing
the average latency.

Turning back to Figure 7a, we now look at theMPS performance.
With pure MPS without MQFQ, the latency increases by 3 to 240%
compared toMQFQ-Sticky. However, whenMPS is usedwithMQFQ,
we can get the best of both worlds: MPS can schedule the individual
kernels and thread launches to improve low-level throughput, and
MQFQ provides the higher-level scheduling.
Result:MQFQ+MPS reduces latency by up to 80%, showing the versa-
tility of our design: it can provide low latencies both with and without
hardware multiplexing support.
Multiple GPUs. Our system easily scales to orchestrating and
dispatching across multiple physical GPUs. We run a high-load
trace and show the comparison in Figure 7c after we add a second,
identical, V100 GPU to the server. Two GPUs not only allows us to
runD⇥2 invocations, but also do on-the-�y load balancing between
them to avoid compute contention with higher D. As a baseline,
the multi-GPU blue dashed line has 2.3⇥ lower latency at D=1.
At higher device parallelism, the multi-GPU case sees a latency
reduction of 4⇥ vs. the single GPU setting. Device parallelism also

9

� 	�
�

�� ��� �!��

�

��

�

�
�
�$
�
�
��
�
#
&
��
�
��
�
�

����

� 	�
�

�� ��� �!��

������%���(

�!�%��"'

�!�%�����

�����"'

��������

�����%�#%

(a) GPU service time as functions are added to
the workload at the 5 minute mark. MQFQ is fair,
and provides all functions similar service, unlike
popular functions dominating with FCFS.

� � �� �� 	� 	�
�

�����������������! ���

�

���

	��

��

���

�
�#

��
!�

��
���

��
��

��
���

�
��

�"
��

��
 ��

��
��

��
��

��

������ ��������� ������������

(b) The maximum di�erence in GPU execution
time among all functions is signi�cantly smaller
than the theoretical upper-bound.

��� �� ��� ��	 ��
 ���
��!%�#$��""�&��#� �"�#�����

�

���

����

����

	���

�
$�
��
�&
��
��
$�
��
' ����������%��$���#�

����������%��$���#�
�������"���
�������"���

(c) MQFQ provides lower end-to-end latency
across a range of workloads.

Figure 5: MQFQ-Sticky provides fair GPU access to functions, and also signi�cantly reduces end-to-end latency.

execution time>5 seconds), the latency drops signi�cantly, and
MQFQ improves upon FCFS by 15% at the higher loads.
Result:MQFQ provides fair access to GPUs to functions. It also reduces
end-to-end latency compared to FCFS by 2⇥ at high load.

6.2 Queueing-Policy Comparison
To characterize the di�erences due to queueing policies, we show
the empirical evaluation with a medium-intensity Azure workload
(trace 4 in Table 3), which comprises of 19 functions. This workload
results in average GPU utilization of around 70% (Figure 6c), and
represents the average case.
Average Latency. The latency across all invocations is shown in
Figure 6a. Not shown in the �gure is the current baseline FCFS

Naïve scheduling with nvidia-docker, which does not have a con-
tainer pool and su�ers from excessive cold-starts.The FCFS Naïve av-
erage latency is close to 3,000 seconds—a 300⇥ overhead. The
high latency is because of every invocation results in a cold-start,
causing a large queue buildup. Note that our workload trace is open-
loop—with invocations generated at pre-determined timestamps.
Because the standard GPU-container overhead is so high, in this rest
of this section, we will retain our memory-management optimizations
when comparing MQFQ-Sticky with other queueing policies.

A D=1, when only one function is serviced at a time, MQFQ
approximates classic SFQ [36], and outperforms FCFS by 5⇥ with a
11.8 vs 51.8-second average respective latency thanks to its locality
and fairness oriented design. Paella’s SJF encourages locality at the
expense of long functions that experience head-of-line blocking,
resulting in a 8⇥ to 20⇥ higher latency. Batch has middle of the
road performance, lacking fairness and advanced locality policies.
At higher concurrency levels, MQFQ-Sticky improves latency by
an additional 25% to an average of 8.9-seconds per invocation.

Most policies bene�t from higher GPU concurrency (D) which
decreases the queue wait times. However for Paella, it degrades
performance, because its SJF dispatching results in concurrent in-
vocations of the same function, increasing the number of cold
starts [65]. When D is set too high (D=3), the device cannot handle
the higher concurrency, and all policies su�er varying degrees of
degradation due to resource contention and interference.
Per-function latency. In Figure 6b, we show the per-function
latency (averaged across all its invocations). FCFS has the worst

global inter-function latency variance (752), and the highest average
latency. MQFQ-Sticky reduces latency in the range of 2 � 10⇥, and
has only one-third the inter-function latency variance of FCFS. Also,
the invocation latency variance for each function (the error bars) is
3 � 4⇥ lower compared with FCFS and Batch.
Result: MQFQ-Sticky reduces average latency by 5⇥ across all func-
tions, and also reduces their jitter and tail latency by 3⇥–4⇥.

6.3 MPS, MIG, and Multi-GPU
We now examine the e�ectiveness of MQFQ with MPS and MIG
on the A30 GPU. Figure 7a compares the latency across di�erent
Azure-sampled workloads, with the weighted average latency nor-
malized to MQFQ-Sticky without any of these features. We create
two MIG slices, and MQFQ+MIG schedules functions across these
two “vGPUs”. Surprisingly, this increases latency, and primarily
occurs because of higher execution times for certain functions run-
ning on the smaller MIG slices, shown in Figure 7b. Note that the
same unmodi�ed functions run on the MIG slices without account-
ing for the reduced resource availability. This causes some functions
such as RNN and FFT to see a large slowdownwithMIG—increasing
the average latency.

Turning back to Figure 7a, we now look at theMPS performance.
With pure MPS without MQFQ, the latency increases by 3 to 240%
compared toMQFQ-Sticky. However, whenMPS is usedwithMQFQ,
we can get the best of both worlds: MPS can schedule the individual
kernels and thread launches to improve low-level throughput, and
MQFQ provides the higher-level scheduling.
Result:MQFQ+MPS reduces latency by up to 80%, showing the versa-
tility of our design: it can provide low latencies both with and without
hardware multiplexing support.
Multiple GPUs. Our system easily scales to orchestrating and
dispatching across multiple physical GPUs. We run a high-load
trace and show the comparison in Figure 7c after we add a second,
identical, V100 GPU to the server. Two GPUs not only allows us to
runD⇥2 invocations, but also do on-the-�y load balancing between
them to avoid compute contention with higher D. As a baseline,
the multi-GPU blue dashed line has 2.3⇥ lower latency at D=1.
At higher device parallelism, the multi-GPU case sees a latency
reduction of 4⇥ vs. the single GPU setting. Device parallelism also

9

future function containers to it, allowing MPS to manage device
concurrency. In the case of Multi-Instance GPUs (MIG), each in-
stance is treated as a separate virtual GPU, and we dispatch only
one function per vGPU.
Per-function Fairness. Each queue holds requests of di�erent
sizes, which is based on the function execution times. We track
the historical average execution time g: of each function : , and
when an item is dispatched, increment its queue’s VT by g: . Thus,
shorter functions are allowed more invocations than their long
counterparts, but both get equivalent wall-clock time on the GPU.
After an invocation is dispatched, Global_VT is updated if necessary
to a potentially new global minima across queue VTs.
Container Warm-pool.We maintain a small pool of warm GPU
containers. Since GPU memory is limited, we use the queue states
for proactive memory management. Queues that become active
have their data moved onto the device in anticipation of use (if space
is available). When a container is about to execute, we proactively
move all its data to the GPU. Conversely, throttled and inactive
queues have their containers marked for eviction from the container
pool, and are asynchronously moved to CPU memory using an
LRU eviction scheme. More details about the data monitoring and
movement are described in Section 4.3.
Anticipatory Scheduling. Function performance is impacted by
the availability of a warm container and data in GPU memory.
We introduce anticipatory scheduling to MQFQ to maximize the
use of both. Anticipatory scheduling for disks [43] boosts locality
by keeping request streams “active” even if they are empty, in
anticipation of future requests, which is especially bene�cial for
interactive applications. If a queue is empty (i.e., it has no pending
invocations), then instead of immediately marking it inactive, we
provide a grace period. Without this grace period, because of the
proactive memory management described above, functions would
see their warm containers immediately removed fromGPUmemory.
Instead, we keep empty queues active for a con�gurable TTL (time
to live), based on the function’s inter-arrival-times. Speci�cally,
we set the queue TTL to U ⇥ IAT, where U is a tunable parameter.
This policy is guided by the observation that reuse-distance is long-
tailed [33], so a single global TTL is not ideal for both popular and
rare functions.
Batching. Our second technique for improving warm starts is to
allow the queues to dispatch invocations in small “mini-batches”.
An active queue’s start time is allowed to be up to T units ahead
of Global_VT. T is the second main con�gurable parameter: larger
values will result in larger batches and more locality, but more
“out of order dispatch”. T is thus the ’queue over-run’ parameter.
If @D4D4 .VT + T � Global_VT, then the queue is throttled. It may
return to the active state only after other queues get to run and the
Global_VT increases.
Device Concurrency and Load Control. Because each function
uses di�erent amounts of compute and memory during execution,
a �xed level of device parallelism (D) like in disk scheduling may
be sub-optimal. We therefore track memory usage of running con-
tainers and GPU utilization to adjust D dynamically, to minimize
contention and execution overhead. This utilization-based feedback
permits di�erent scheduling rates based on the dynamic workload
characteristics. We take two input parameters: the device utiliza-
tion threshold (such as 90%), and the maximum parallelism level

(irrespective of utilization). A thread monitors real-time utilization
and changes the D level dynamically to ensure the utilization is
under the threshold. Higher thresholds increase utilization and
reduce queuing, but risk performance interference. More details of
memory usage and GPU monitoring are described in Section 4.3
and Section 4.4 respectively.
Preferential Queue Dispatch. Our insight behind MQFQ-Sticky’s
fair queueing policy is that the queue over-run parameter) provides
additional opportunities for out-of-order execution and improves local-
ity and end-to-end latency. In classic fair queueing and even MQFQ,
the queue with the lowest VT is always chosen. However, we can
select the next queue for dispatch based on locality, as long as
@D4D4 .VT < Global_VT + T.

Because FaaS workloads can be very heavy-tailed, there is high
likelihood of unpopular and rare functions to face excessive queue-
ing delays. Note that fair queueing only guarantees that each func-
tion gets an equal share of GPU service time, and not the total
end-to-end latency. Thus, MQFQ-Sticky’s heuristic (described next
and in Algorithm 1) is designed to improve locality as well as reduce
the tail latency of functions.

We �rst �lter based on the over-run threshold) to get the can-
didate queues (line 6). Next, we prioritize functions with longer
queues, which provides more batching opportunities and reduces
their larger backlog. Ties are broken in favor of the queue with
the least number of currently executing invocations (Line 9). This
encourages multiple queues to progress and reduces the chance of
a cold start caused by concurrent execution of the same function.
Queue stickiness from this heuristic provides su�cient temporal
locality between active queues to maximize throughput. This com-
pletes the description of the key attributes of our MQFQ-Sticky
algorithm.
Fairness Guarantees. Through our careful adaptation of MQFQ,
we are able to retain its fairness properties, which provide an upper-
bound on the di�erence in GPU service times across any two func-
tions. Speci�cally, let (be the total GPU execution time of back-
logged function during the time-span (C1, C2). Recall that a queue is
backlogged if it is non-empty. Based on the main theorem in [40],
for all backlogged functions 8 and 9 , we get:���� (8F8

�
(9
F 9

���� (⇡ � 1)
✓
2) + g8

F8
�

g 9
F 9

◆
. (1)

Here,F is the priority weight of the function, and g is it’s average
execution time in the interval. For simplicity of design and analysis,
we assume all functions have the same weight (F = 1).

The proof of this property hinges on the assumption that@D4D4 .VT <
Global_VT+ T, which we meet in line 6. The original MQFQ picks a
random arbitrary queue meeting this criteria, whereas our MQFQ-
Sticky adds an additional sorting criteria. Thus the possible space
of dispatch decisions of MQFQ-Sticky is a subset of MQFQ, and we
retain its theoretical fairness properties. Because we select based
on longest queues (and lowest in-�ight), a tighter bound may be
possible for MQFQ-Sticky, but that is beyond the scope of this work.

4.3 Integrated Memory Management and
Scheduling

We use MQFQ queue states to guide memory movement. When
some queue becomes active, all its CUDA-malloc’ed regions are

5

• 5x lower latency compared to FCFS (due to cold-start reduction)

• Open question: MQFQ performance modeling

- Latency depends on flow-queue state (number of functions of
different types), interference, etc.

- Offline optimal queueing policy to minimize expected latency?

MQFQ Performance

22

� 	�
�

�� ��� �!��

�

��

�

�
�
�$
�
�
��
�
#
&
��
�
��
�
�

����

� 	�
�

�� ��� �!��

������%���(

�!�%��"'

�!�%�����

�����"'

��������

�����%�#%

(a) GPU service time as functions are added to
the workload at the 5 minute mark. MQFQ is fair,
and provides all functions similar service, unlike
popular functions dominating with FCFS.

� � �� �� 	� 	�
�

�����������������! ���

�

���

	��

��

���

�
�#

��
!�

��
���

��
��

��
���

�
��

�"
��

��
 ��

��
��

��
��

��

������ ��������� ������������

(b) The maximum di�erence in GPU execution
time among all functions is signi�cantly smaller
than the theoretical upper-bound.

��� �� ��� ��	 ��
 ���
��!%�#$��""�&��#� �"�#�����

�

���

����

����

	���

�
$�
��
�&
��
��
$�
��
' ����������%��$���#�

����������%��$���#�
�������"���
�������"���

(c) MQFQ provides lower end-to-end latency
across a range of workloads.

Figure 5: MQFQ-Sticky provides fair GPU access to functions, and also signi�cantly reduces end-to-end latency.

��
��

��
'�
!

��
�$
$�

�
��

��
�'
"�
#)

��
��

��
'�
!

��
�$
$�

�
��

��
�'
"�
#)

��
��

��
'�
!

��
�$
$�

�
��

��
�'
"�
#)

�

�

	��

	�

��

�(
 �
��
�'
�%
�)
��&
��
��

	
��

�
��

��
�

		
����

��

	

��

	�
��

���

��
��

	�
��

���

	
�

����	 ����
 �����

(a) Average latency is 2 � 5⇥ lower with MQFQ-
Sticky for di�erent device-parallelism (D) levels.

� 	
 � � � � � � 	�			
	�	�		�	�	�
�+&�*"'&��+%��(

�

	��

��

���

���

��

�,
�(
�
��
��
*�
&�
-�
�)
��
�� ������*"�#-

����
��*�!
���$$�

(b) The average and variance of per-function latency is
much lower with MQFQ-Sticky.

	
 �
��)�"("��$#�(&&�#�*����

��

�

��

��

��

��
��
�'
�!�
+�
'�$

#�
�

������'�� *
�$"%('���

����
��"$&*��

��'��

(c) Device utilization for the medium-load trace.

Figure 6: Latency, fairness, and utilization for a medium-intensity FaaS workload.

results in average GPU utilization of around 70% (Figure 6c), and
represents the average case.
Average Latency. The latency across all invocations is shown in
Figure 6a. Not shown in the �gure is the current baseline FCFS

Naïve scheduling with nvidia-docker, which does not have a con-
tainer pool and su�ers from excessive cold-starts.The FCFS Naïve av-
erage latency is close to 3,000 seconds—a 300⇥ overhead. The
high latency is because of every invocation results in a cold-start,
causing a large queue buildup. Note that our workload trace is open-
loop—with invocations generated at pre-determined timestamps.
Because the standard GPU-container overhead is so high, in this rest
of this section, we will retain our memory-management optimizations
when comparing MQFQ-Sticky with other queueing policies.

A D=1, when only one function is serviced at a time, MQFQ
approximates classic SFQ [36], and outperforms FCFS by 5⇥ with a
11.8 vs 51.8-second average respective latency thanks to its locality
and fairness oriented design. Paella’s SJF encourages locality at the
expense of long functions that experience head-of-line blocking,
resulting in a 8⇥ to 20⇥ higher latency. Batch has middle of the
road performance, lacking fairness and advanced locality policies.
At higher concurrency levels, MQFQ-Sticky improves latency by
an additional 25% to an average of 8.9-seconds per invocation.

Most policies bene�t from higher GPU concurrency (D) which
decreases the queue wait times. However for Paella, it degrades
performance, because its SJF dispatching results in concurrent in-
vocations of the same function, increasing the number of cold
starts [65]. When D is set too high (D=3), the device cannot handle
the higher concurrency, and all policies su�er varying degrees of
degradation due to resource contention and interference.
Per-function latency. In Figure 6b, we show the per-function
latency (averaged across all its invocations). FCFS has the worst
global inter-function latency variance (752), and the highest average
latency. MQFQ-Sticky reduces latency in the range of 2 � 10⇥, and
has only one-third the inter-function latency variance of FCFS. Also,
the invocation latency variance for each function (the error bars) is
3 � 4⇥ lower compared with FCFS and Batch.
Result: MQFQ-Sticky reduces average latency by 5⇥ across all func-
tions, and also reduces their jitter and tail latency by 3⇥–4⇥.

6.3 MPS, MIG, and Multi-GPU
We now examine the e�ectiveness of MQFQ with MPS and MIG
on the A30 GPU. Figure 7a compares the latency across di�erent
Azure-sampled workloads, with the weighted average latency nor-
malized to MQFQ-Sticky without any of these features. We create
two MIG slices, and MQFQ+MIG schedules functions across these

9

� 	�
�

�� ��� �!��

�

��

�

�
�
�$
�
�
��
�
#
&
��
�
��
�
�

����

� 	�
�

�� ��� �!��

������%���(

�!�%��"'

�!�%�����

�����"'

��������

�����%�#%

(a) GPU service time as functions are added to
the workload at the 5 minute mark. MQFQ is fair,
and provides all functions similar service, unlike
popular functions dominating with FCFS.

� � �� �� 	� 	�
�

�����������������! ���

�

���

	��

��

���

�
�#

��
!�

��
���

��
��

��
���

�
��

�"
��

��
 ��

��
��

��
��

��

������ ��������� ������������

(b) The maximum di�erence in GPU execution
time among all functions is signi�cantly smaller
than the theoretical upper-bound.

��� �� ��� ��	 ��
 ���
��!%�#$��""�&��#� �"�#�����

�

���

����

����

	���

�
$�
��
�&
��
��
$�
��
' ����������%��$���#�

����������%��$���#�
�������"���
�������"���

(c) MQFQ provides lower end-to-end latency
across a range of workloads.

Figure 5: MQFQ-Sticky provides fair GPU access to functions, and also signi�cantly reduces end-to-end latency.

��
��

��
'�
!

��
�$
$�

�
��

��
�'
"�
#)

��
��

��
'�
!

��
�$
$�

�
��

��
�'
"�
#)

��
��

��
'�
!

��
�$
$�

�
��

��
�'
"�
#)

�

�

	��

	�

��

�(
 �
��
�'
�%
�)
��&
��
��

	
��

�
��

��
�

		
����

��

	

��

	�
��

���

��
��

	�
��

���

	
�

����	 ����
 �����

(a) Average latency is 2 � 5⇥ lower with MQFQ-
Sticky for di�erent device-parallelism (D) levels.

� 	
 � � � � � � 	�			
	�	�		�	�	�
�+&�*"'&��+%��(

�

	��

��

���

���

��

�,
�(
�
��
��
*�
&�
-�
�)
��
�� ������*"�#-

����
��*�!
���$$�

(b) The average and variance of per-function latency is
much lower with MQFQ-Sticky.

	
 �
��)�"("��$#�(&&�#�*����

��

�

��

��

��

��
��
�'
�!�
+�
'�$

#�
�

������'�� *
�$"%('���

����
��"$&*��

��'��

(c) Device utilization for the medium-load trace.

Figure 6: Latency, fairness, and utilization for a medium-intensity FaaS workload.

results in average GPU utilization of around 70% (Figure 6c), and
represents the average case.
Average Latency. The latency across all invocations is shown in
Figure 6a. Not shown in the �gure is the current baseline FCFS

Naïve scheduling with nvidia-docker, which does not have a con-
tainer pool and su�ers from excessive cold-starts.The FCFS Naïve av-
erage latency is close to 3,000 seconds—a 300⇥ overhead. The
high latency is because of every invocation results in a cold-start,
causing a large queue buildup. Note that our workload trace is open-
loop—with invocations generated at pre-determined timestamps.
Because the standard GPU-container overhead is so high, in this rest
of this section, we will retain our memory-management optimizations
when comparing MQFQ-Sticky with other queueing policies.

A D=1, when only one function is serviced at a time, MQFQ
approximates classic SFQ [36], and outperforms FCFS by 5⇥ with a
11.8 vs 51.8-second average respective latency thanks to its locality
and fairness oriented design. Paella’s SJF encourages locality at the
expense of long functions that experience head-of-line blocking,
resulting in a 8⇥ to 20⇥ higher latency. Batch has middle of the
road performance, lacking fairness and advanced locality policies.
At higher concurrency levels, MQFQ-Sticky improves latency by
an additional 25% to an average of 8.9-seconds per invocation.

Most policies bene�t from higher GPU concurrency (D) which
decreases the queue wait times. However for Paella, it degrades
performance, because its SJF dispatching results in concurrent in-
vocations of the same function, increasing the number of cold
starts [65]. When D is set too high (D=3), the device cannot handle
the higher concurrency, and all policies su�er varying degrees of
degradation due to resource contention and interference.
Per-function latency. In Figure 6b, we show the per-function
latency (averaged across all its invocations). FCFS has the worst
global inter-function latency variance (752), and the highest average
latency. MQFQ-Sticky reduces latency in the range of 2 � 10⇥, and
has only one-third the inter-function latency variance of FCFS. Also,
the invocation latency variance for each function (the error bars) is
3 � 4⇥ lower compared with FCFS and Batch.
Result: MQFQ-Sticky reduces average latency by 5⇥ across all func-
tions, and also reduces their jitter and tail latency by 3⇥–4⇥.

6.3 MPS, MIG, and Multi-GPU
We now examine the e�ectiveness of MQFQ with MPS and MIG
on the A30 GPU. Figure 7a compares the latency across di�erent
Azure-sampled workloads, with the weighted average latency nor-
malized to MQFQ-Sticky without any of these features. We create
two MIG slices, and MQFQ+MIG schedules functions across these

9

• GPUs are highly congested resource

• Can we offload some invocations to the CPU?
• Many functions (ML inference etc) can be made polymorphic

- Select CPU or GPU container at run-time

• Tradeoffs: some functions see higher GPU speedup; locality; queue

wait times

• Can we treat the GPU as a smaller ‘cache’ for functions?

Polymorphic Function Dispatch

23

6

A B C D E F

MQFQ Flow Queues

Active Functions

Inactive

GPU

Landlord Cache

Dispatching Agent

CPU Queue

Miss

Hit/
Admit/
Insert

Function
invocation

Fig. 3. Dispatching flow for polymorphic functions. We treat the GPU as a bypassable cache to increase
locality.

the evaluation (Section 6). However, it is clear from the above �gure that if GPU functions become
ubiquitous, their popularity will lead to increased contention and queueing.

3 Architecture
In this section, we describe the design and architecture of our systemwhich implements polymorphic
serverless functions. We also present the key performance tradeo�s for dispatching policies, which
is the focus of this paper.

3.1 Polymorphic FaaS Abstraction
In conventional FaaS, when functions are registered, the user provides the function code (and list of
dependencies such as a Python requirements.txt �le) which gets converted by the FaaS provider
into a container or a VM image. Our polymorphic functions abstractions extends this, and when
functions are registered, users can provide CPU and GPU code, which are converted into their
respective container images.

When a polymorphic function is invoked, we can then execute the function code in either of its
CPU or GPU containers. Thus we extend the conventional serverless abstraction by decoupling
the code further from the server, and do a late-binding of the function to its execution device. Of
course, polymorphic functions co-exist with conventional serverless functions which are registered
to run only one hardware device type.
To implement this abstraction, we introduce a function dispatch agent within the FaaS control

plane which decides where to route the function to (Figure 3). The dispatch agent is on top of
the CPU and GPU sub-systems—each device has its own queue, concurrency control mechanisms
(how many containers can simultaneously run), keep-alive cache, etc. The dispatch agent forwards
invocations to either the CPU or the GPU queue, and implements policies for polymorphic function
dispatch (conventional functions are routed to their default hardware device).

Dispatch policies are online and based on the function service times and device loads. E�ective
dispatch agent policies must also be cognizant of the CPU and GPU queueing policies since they
determine the function waiting time and performance. For example, for CPU functions, policies
such as FCFS, SJF, and EEVDF [30] are often used, which provide di�erent tradeo�s.

3.2 GPU �eueing and Multiplexing
GPU queueing policies are critical to the performance of GPU functions and dispatch policies. The
hardware concurrency level provided by GPUs is low (⇠ 5), and is further constrained by limited
GPUmemory. To reduce the queueing delays for GPU functions and to make them practical, we have
developed a new GPU queueing policy. This policy is modeled after multi-queue fair-queueing [34]
(MQFQ), and balances the load, locality, and fairness.

, Vol. 1, No. 1, Article . Publication date: January 2025.

GPU Function Performance Under Load

24

4

Fn-id Function GPU [Warm] CPU [Warm] GPU [Cold] CPU [Cold]

0 cupy 0.89 11.76 2.12 12.69
1 imagenet 1.93 4.77 6.71 4.5
2 onnx-roberta 0.18 4.62 1.08 0.89
3 pyhpc-eos 0.01 0.04 3.53 0.05
4 pyhpc-isoneural 0.02 0.52 7.93 0.54
5 rodinia-lavamd 0.6 17.75 0.75 15.0
6 rodinia-lud 0.74 22.24 0.93 55.21
7 rodinia-myocyte 1.67 40.49 2.97 41.21
8 rodinia-needle 1.3 27.24 1.42 41.33
9 rodinia-path�nder 0.35 31.75 0.5 34.12
10 rodinia-srad 2.57 53.49 2.72 52.99
11 squeezenet 0.98 1.16 4.88 2.19
12 torch-rnn 0.03 0.02 2.02 0.38
Table 1. Service times (in seconds) for GPU and CPU warm and cold function invocations.

when the container state can be located in device memory. Cold-starts are signi�cantly higher
latency due to container, function, and device-runtime (e.g., CUDA) initialization.
Most functions in Table 1 have signi�cantly lower GPU warm times compared to the CPU, by

2⇥ –70⇥. Cold-starts on GPU can add several seconds of additional latency, a fact also observed
for Alibaba GPU functions [5]. Because of this overhead, temporal locality becomes a prominent
desideratum for GPU functions.

2.3 Black-box GPU multiplexing
A typical FaaS server runs 10–50 functions concurrently, and thus even if a small fraction of them can
bene�t from GPU acceleration, an immediate need arises for multiplexing the GPU to run multiple
functions concurrently. We also desire black-box multiplexing and retain container isolation. That
is, functions cannot share their containers with other functions, and we want multiple function
containers to run concurrently on the GPU. We require general-purpose functions and do not
modify the function code in any way, unlike recent “specialized serverless GPUs” which exclusively
target ML inference workloads [33, 60].

The GPU programming model makes this challenging, since GPUs are designed for high through-
put computation by a single long-running application. Hardware support for GPU multiplexing can
increase concurrency. Multi-Process Service [48] (MPS) allows multiple processes to make share
the device concurrently and has been proposed for FaaS [33]. Nvidia MIG [49] (Multi-Instance
GPU) pre-partitions device resources at manufacturing time, and one or more of these virtualized
GPU partitions can be assigned to a VM or container via direct device assignment. Even with the
hardware multiplexing support, the maximum concurrency is typically small, and is limited by
memory availability and performance interference.

2.4 Can GPUs Help Serverless Workloads?
GPUs can provide signi�cant speedup, but the limited concurrency results in a large queueing time
for GPU containers. This can increase the overall end-to-end latency (aka sojourn time) which is
the primary metric of interest. In the ideal case, functions can obtain signi�cant speedup and have
small execution (i.e., service) times , but this requires a “warm” invocation, and availability of GPU

, Vol. 1, No. 1, Article . Publication date: January 2025.

GPULandlord: Caching-based Dispatching of Polymorphic Serverless Functions 5

�!�
%

���
$���

���
 �

����
����

��"�
��

����
����

�!�

����
����

�%��
% �

����
����

���
���

����
����

�� �
����

��

����
����

����

��!
��&

���

 ���
����

�

�!�� ���������

���

���

��	

��

�
�#

��
#�

�
���

��
 �"

��
 �

��
��

��
�

��
��

#�
��

� �
�

��

Fig. 1. Due to GPU contention and queueing, function latencies can be significantly higher compared to their
best-case benchmark time (measured in isolation). In some cases, the slowdown can exceed 1000⇥.

�
&
!
*

�
�
)
�#

�
�
#%
�

�
��
��
��
�
'
�
�
�

�
��
��
��
&
�

�
��
��
��
*

�
*
%�

�
��
��
��
�
�
�
��

�
��
��
�!
�
%�
��
�
�
�
#

�
��
��
�$
#�
�

$
"
&
�
�
+
�
�
�
%

%
#�
�
�#
�
�

�&��%� �

�

	�

�

��

��

�
��

�
��
$
�
�
��

)��&%� �

�&�&���

������ ��

� (�� ��

Fig. 2. �eueing delays dominate the end-to-end latency, especially at higher arrival rates—the high-load
workload has 50% higher arrival rate.

resources. Due to this tradeo�, it is not obvious whether FaaS providers can support GPU functions
with low average latency.

To empirically investigate this, we run an open-loop workload trace comprising of di�erent
functions (from Table 1 and other similar GPU functions). Each function has exponentially dis-
tributed inter-arrival-times (IAT), and popularities are Zip�an. Figure 1 shows the slowdown of
di�erent functions relative to their service times. The slowdown ranges from 10⇥–100⇥, and is
primarily a result of queueing, although interference and contention for GPU compute and memory
resources also increases service time. This is illustrated in Figure 2, which shows the breakdown
of execution and queueing time when the arrival rate of the functions is increased by 50%. The
slowdown naturally depends on the input load, and a further detailed analysis is presented later in

, Vol. 1, No. 1, Article . Publication date: January 2025.

• Significant queueing delays

• Execution time also increases

Cupy benchmark time: <1 s

• Landlord caching: a meta-algorithm for size-aware caching

- Credit associated with each item

- Upon a hit, the item gets a credit equal to cost of cache miss

- For a miss, rents are charged from all residents (proportional to

their size). Lowest credit items evicted until room for new item

• GPULandlord intuition:

- To increase GPU warm starts, a small number of functions are
‘resident’

- Credits and rent proportional to opportunity cost.

- E[T] is expected latency (queueing + service)

- Rent charged in proportion to size and popularity (enqueued items)

πi = E[TCPU] − E[TGPU]

GPULandlord Dispatch

25

GPULandlord Algorithm

26

8

1: function G��L�������(item) ù Item is function metadata:{fname, credits, #⌧ ,)⌧ ,)⇠ , . . .}
2: if present(item) then
3: new_credit = O����������C���(item) ù)⇠ �)⌧
4: if new_credit < 0 then
5: return M���(item) ù M1: Negative credit miss
6: else
7: return H��(item)
8: if A����F�����(item) then
9: H��(item)
10: else
11: M���(item)

12: function H��(item)
13: item.credit += O����������C���(item)
14: return GPU

15: functionM���(item)
16: C�����R����(O����������C���(item))
17: item.credit += O����������C���(item) ù Accumulate credit
18: return CPU

19: function A����F�����(item)
20: return GPU with probability 1/1+item.#⌧ ù A1: New function lottery
21: if G��L���() < U then
22: return O����������C���(item) > 0 ù A2: Positive credit criteria
23: item.credits += O����������C���(item) ù Accumulate credits
24: if)⌧/(⌧ > V then
25: return false ù M2: Overload miss
26: return item.credits > victim.credits ù A3: Cumulative opportunity cost displacement

Fig. 4. GPULandlord algorithm.

However, e�ectively using the caching analogy requires us to address a few subtle di�erences
between it and the dispatch problem. Unlike conventional read-through caches, running on GPUs
is optional, so admission control plays a key role in controlling GPU queueing. In caching, eviction
plays a key role, which in our case entails moving a function from GPU to CPU. We do not use
function preemption, and evictions are “delayed”, i.e., an evicted function will see the subsequent
invocation miss the GPU.

4.2 GPULandlord Dispatching Algorithm
Before presenting our dispatching policy, we provide a brief overview of the Landlord algorithm [62]
for object caching, which serves as our foundation. Landlord is a size and cost aware cache eviction
algorithm. The cost represents an item’s miss latency. On each access, objects are given a credit
which is equal to their cost. One each cache miss, rents are charged from all residents, and their
credits are decreased in proportion to their size.
Since functions are extremely heterogeneous in their runtime and memory requirement, we

require size-aware techniques, and Landlord’s cost and size aspects can be neatly mapped to
polymorphic dispatch. Our algorithm, GPULandlord, adapts the core ideas and terminology from
Landlord to provide an intuitive, understandable, and practical algorithm (Figure 4).

, Vol. 1, No. 1, Article . Publication date: January 2025.

Polymorphic Function Performance

27

GPULandlord: Caching-based Dispatching of Polymorphic Serverless Functions 13

��� ��
 ��� ��
 ���
��� ��������

�

���

���

���

	��

��

�
��
��
�!
��
�
��

��
��
�
��
��
�#

��

��

��

��
��
�

��
!�
��
�"
�#
��

��

(a) Zipf.

��� ��
 ��� ��

���!�� ��� �

�

���

	��

���

�
 �

��
�"

��
��

��
��

��
��

�
��

�$

��

�

��

�

��

��
��

�!
��

"�
��

�#
�$

�
��

(b) Azure.

��
 ��� ��
 ��� ��
 ���
���"� !���!�

�

	

�

�

��

�
!�
��
�#

��
��

��
��
��
��
�!
��

�%

�

���

�
�

���

�
�

��
��

�"
��

�
�$

�%
 �

��

(c) Small.

��� ��
 ���
��� ��������

�

���

���

���

	��

�
��
��
�!
��
�
��

��
��
�
��
��
�#

��

�

��

��
��
�

��
!�
��
�"
�#
��

��

(d) Large

Fig. 7. Weighted average latency (le� axis) generally increases with increasing request rate. Compared to
the default policy of running all functions on the GPU, our Landlord policy can provide significant speedup
(2⇥–200⇥).

• Weighted average latency=
Õ
#8!8Õ
#8

. This accounts for the relative popularities of the

functions.
• Speedup=

Õ
#8!⇤8Õ
#8!8

, where !⇤ is the baseline latency with the AlwaysGPU policy.

6.2 Latency benefits of Polymorphic Functions
In this subsection, we compare the latency with the default policy which always runs functions on
the GPU (i.e., without polymorphism).

6.2.1 Latency vs. Load. We start with the high-level analysis of the average latencies of di�erent
workloads. The results are summarized in Figure 7, which shows the weighted average latency
metric of our Landlord policy on the left axis, and the speedup relative to the AlwaysGPU policy on
the right y-axis. For each workload class, we scale the load as described in the previous subsection,
which yields di�erent request rates (x-axis).

For the realistic workload classes (Zipf and Azure), we see similar trends. With GPULandlord,
the latency increase is minimal till 1.5 requests/second, after which the GPU contention naturally
increases the latency due to queueing delays. However the extremely high loads in the graphs do
not represent steady-state behavior (i.e., the arrival rate is higher than the service rate). Restricting

, Vol. 1, No. 1, Article . Publication date: January 2025.

14

� 	
 � � � � � �� �� �	
�% �$�! ���

��(�

���

���

��	

��

��
$�
 �
'�
�#
��
��

��&�'#���
�� ��!"�

�� ��!"�������
�� ��!"�������

(a) Low arrival rate.

� 	
 � � � � � �� �� �	
�% �$�! ���

��(�

���

���

��	

��

��
$�
 �
'�
�#
��
��

��&�'#���
�� ��!"�

�� ��!"�������
�� ��!"�������

(b) High arrival rate.

Fig. 8. Latency distribution for Zipf workload.

our focus to workloads in the stable operating region (rate < 1.5), the speedup compared to the
AlwaysGPU policy is signi�cant: between 25⇥–35⇥ for Zipf and Azure workloads.

For the workload with only small functions (Figure 7c), we see an interesting behavior at
extremely low load. Because the functions are of such small duration, the GPU containers get
evicted by the GPU memory manager with its �xed TTL. We thus see a higher number of cold-starts
and higher latency at the lowest arrival rates (< 1 req/s). Because these small functions can also run
on the CPU with similar performance, Landlord is able to provide an extremely high speedup of
more than 200⇥. This is primarily due to reduced queueing and switching overheads.

Finally, the large functions all have an extremely high GPU speedup ((⌧/(⇠), and thus Landlord
also runs them on the GPU, obtaining similar latencies as the default policy. We see a more
modest speedup of around 2⇥ for the low loads (< 1 req/s). At higher arrival rates, GPU contention
signi�cantly increases latency, and we see a speedup approaching 20⇥. At unsustainable arrival
rates (above 2.25), the contention causes Landlord latency to increase by more than 40⇥.
Result: For a wide variety of workload classes, GPULandlord can reduce latency by 2⇥–200⇥.
6.2.2 Per-function Latency Distribution. For each workload type, we present the per-function
log-scale latency violin plots for the highest and lowest request rates. The function ids correspond
to function names as listed in Table 1.
The 35⇥ weighted average speedup of the Zipf low-load trace is examined in Figure 8. Here

we see that Landlord runs certain functions (like 3 and 4) on the CPU and gets lower latency. For
all functions, the reduction in the latency range is also signi�cant and exceeds 10⇥, which has
important rami�cations on the tail-latency and fairness. As we increase the load (bottom �gure), we
see similar outcomes. For the Azure trace with the highly popular functions 6 and 8, we see from
Figure 9 that Landlord is able to signi�cantly reduce their latency (by 100⇥), especially at higher

, Vol. 1, No. 1, Article . Publication date: January 2025.

6-30x reduction in latency

Distribution of latency benefits to different functions

• Classic [Lin+Kumar ‘84]: threshold-based dispatch to fast server (wait for certain
time for the fast server, based on the queue backlog).

• [Hyytia+Righter ’22]: ICE: faster server gets to choose the smaller jobs (skim the
icing on the cake)

- Different speedups of functions => these classic policies cannot be easily

applied

• Reinforcement Learning?

• What to optimize? Weighted avg latency? Throughput?

• What is fairness in this context?

- Skewed workloads => specialized heuristics can work great

• E.g., high frequency small functions always on CPU

Polymorphic dispatch open questions

28

.. F B B A D C A

Slow
(CPU)

Fast
(GPU)

Dispatch queue

28

• FaaS: de-facto programming model for modern cloud applications

• Locality and heterogeneity two central challenges for providers

• Keep-alive highly effective at combating cold-starts

• Load-balancing: Consistent hashing with bounded loads

• GPU functions: fair queueing principles to handle contention

- Modeling MQFQ performance? Lot of non-linearity

- Load balancing for GPU clusters? CH-BL induces “too much” locality

and queueing for the popular functions. New techniques needed

• Polymorphic functions: run on either CPU or GPU.

- Dispatching policies: how to choose? Treat GPU as a cache?
Queueing-based approaches? Reinforcement Learning?

Conclusions

29

References et.al.

30

https://cgi.luddy.indiana.edu/~prateeks/

