Keeping it Local: Functions as a
Service Resource Management

Prateek Sharma
Indiana University Bloomington

P

Infrastructure as a Service Pitfalls

Infrastructure is now software, but even that is too hard

* Developers configure and manage complete software stack
- OS and software upgrades, security patches
- Monitoring and logging
- Auto-scaling, redundancy, geo-replication

Resources

Allocated VMs

““
““
.

““
“‘
]

Functions as a Service

Many cloud applications are event-driven
 Events: HTTP requests, storage updates, publish-subscribe
 Event handlers:

- Web servers: generate html response

- Machine learning: model inference on input passed via HTTP

FaaS characteristics:
* Developers provide event-handling code as function source-code
* Functions are ‘pure functions’ and stateless
- All state is stored in cloud storage (S3, etc)
e Each function invocation runs in a sandbox (container/VM)
- Typically small resource limits (1 cpu core) and duration < 30 minutes
 Pricing: linear “scale-to-zero”. Per-invocation ($ 10e-7)

Overview and Themes

1. Functions as a Service: benefits for users and challenges for providers
2. Temporal locality to reduce cold-start overheads

3. Load-balancing

4. Queueing for GPU functions
5. Polymorphic function dispatch

Themes:

1. Look at resource management problems at various scales
(server, cluster level ; CPU, GPU, mixed,..)

2. Find similar problems in broader systems, and specialize and
apply classic solutions

3. Many interesting open problems “local” to your current
knowledge and expertise (the frontier is closer than you think)

FaaS Workflow From User Perspective

Source code uploaded to provider

#Initialization code
import numpy as np
import tensorflow as tf

m = download_model(’http://model_serve/
img_classify.pb’)
session = create_tensorflow graph(m)

def lambda_handler(event):
#This is called on every function invocation
picture = event[’data’]
prediction_output =
run_inference_on_image(picture)
return prediction_output

HTTP-trigger

PUT https://faas.com/img_recogn?input=photo.png @

D

A

Provider returns code results

GCloud Functions Demo

gcloud functions deploy hw ——gen2 ——runtime=python312
——region=us—eastl ——entry-point=hello_http ——trigger-
http ——allow—unauthenticated —source=hw

Execute the function with https://us-east1-
first-220321.cloudfunctions.net/hw/?name=f000

Hw directory contains main.py

- Some restrictions of the FaaS programming model:

- No local state (i.e., cannot use local variables, file-system to
maintain status, counters, etc.)

* No direct networking — all communication via cloud storage

https://us-east1-first-220321.cloudfunctions.net/hw/?name=fooo
https://us-east1-first-220321.cloudfunctions.net/hw/?name=fooo

FaaS Provider Perspective

* API consists of 2 main end-points:

- Register a function. Bind function name with event-trigger and
function-code. Results in creation of container sandbox

- Invoke a function. When triggered (e.g., HTTP), run function code
In its sandbox on some server

-

I
! Store
, Load
import ncmpy a6 1p alancer
import tensorflow as tf I
|

T omont Tl el e dessty S FaaS control plane

def lambda_handler(event):
#This is called on every function invocation
picture = event[’data’]
prediction_output = run_inference_on_image(picture)
return prediction_output

Worker

HTTP-based invocation, with inputs

PUT https://faas.com/img_recogn?input=face.png

FaaS Workloads

- FaaS is a common abstraction supporting a wide range of applications

» A workload is composed of a mix of many functions, each with different:
- Inter-arrival-time distribution (popularity): milliseconds to days
- Container size (cpu cores, memory): 0.1 to 10 GB
- Execution time: milliseconds to minutes

- Extremely skewed and heavy-tailed

Average Interval Between Invocations

1d12h 1h3015 5 1min 1s 1.00 e
1.0 — = 0.90 v atlk
0.8 - 0.75 -
* =Minimum

el e
O 0.4 - -+ LogNormal Fit

0.2 - ——— Applications 0-251

' ~ — - Functions R
0.0 -mmmmmm‘ 0‘00-—'.-:‘-‘;“1. - . . . r y r
10—2 100 102 104 106 108 1ms 100ms 1sTime(S1)Os im 10m 1h
Daily Invocations
20% of functions (red) are 99% of invocations Execution-duration

8

Function Latency

* Function latencies can be significantly higher than conventional

client-server architectures

* In figure below, the main function execution is 4.3 seconds, but
the end-to-end latency can be 5 + 8 seconds.

Controller

m = download_model(’http://model_serve/img_classify.pb’)
Load balancer session = create_tensorflow_graph(m)

Dist msg queue
Da.tabases import numpy as np

import tensorflow as tf

Docker \

def lambda_handler(event, context):
picture = event[’data’]
output = run_inference_on_image(picture)
return output

-« Inputs —

—_— Control Plane (OpenWh|3k) FaaS runtime | Lang runtime | Explicit init Function Execution
0.45s 1.5s 1s 1.9s 4.3s
+«—— (0.2-5 seconds > 8 seconds

Function Keep-Alive

e Each function invocation must run in a sandboxed environment

e Create and setup new container/VVM for each invocation

FaaS runtime | Lang runtime Explicit init Function Execution
ML Inference (CNN) 512 MB 6.5s 458
Video Encoding 500 MB 56s 3s
Matrix Multiply 256 MB 2.5s 2.2s
Disk-bench (dd) 256 MB 2.28 1.8s
Web-serving 64 MB 245 2s .
Floating Point 128 MB 2s 1.7's

Keep-alive: Keep container in memory.

Subsequent invocations don’t incur cold-start.

10

Keep-Alive Tradeoffs

e Keeping containers alive in memory can reduce latency by ~10x
 But increases server memory requirements

Keep-alive policy:

Which function containers to keep in memory, and for how long?

* Many tradeoffs:
* Frequently invoked functions?
 Small memory footprint functions?

e Largest (cold - warm) time?

FaaS Keep-alive === Caching

e Cold-start -> Cache Miss
e Warm-start -> Cache hit

 Keep-alive policy -> Cache eviction

e Cache eviction policies, analysis, etc can be used for
FaaS resource management!

e Current FaaS keep-alive: fixed Time-to-Live (TTL)

e OpenWhisk: 10 minutes TTL until eviction

Greedy-Dual Keep-Alive

* For functions, memory size is highly variable and crucial
* Other parameters: frequency, recency, cold-warm time
 Most caching is size-oblivious (LRU)

* Size-aware cache eviction: Greedy-Dual-Size-Frequency

Frequency * InitTime

KeepAlivePriority = Recency +
Memory

Warm Hits

FaasCache:
Our Greedy-Dual implementation

FaasCache

OpenWhisk

0 10000 20000 30000
Invocations

Better warm-hit performance

FaasCache: Keeping Serverless Computing Alive With Greedy-Dual Caching
ASPLOS 2021. A. Fuerst and P Sharma 13

FaaS Load-balancing Challenges

- Consider both server-load and locality (i.e., “sticky”)

- Improve cluster utilization and function latency

- Support horizontal scaling (change number of servers to meet
traffic needs)

-

L__________________

Consistent Hashing with Bounded Loads

Pl AN

1. If server is “full” we forward to
the next server

2. When under the load bound:
pure locality

3. Forwarding has a high but
decaying probability of warm hit '

@
@
|

Challenges: Function heterogeneity
and stale cluster information

Load bound =3
(max number of running functions per server)

I5

Our approach: CH-RLU
Consistent Hashing with Random Load Updates

* Key refinements to CH-BL.:
- Use system-load information

e Can be stale/inconsistent

* Estimate “load in flight” and add this random load to
observed (stale) load as a “buffer”

- Separate handling of highly popular, “bursty” functions

 Use SHARDS from caching for sampling-based popular
function detection

 More aggressive forwarding of bursty functions to prevent
overloaded servers

CH-RLU yields good locality, load-balancing, and function latency

(@)
o
1
o
o

B ul
o o
1

(o))

o

| N
o (@)
Load Variance
) IS
o o

Global Latency Increase %
W
o

o
l

CH-BL LL RLU oW 6 S 1'0 1'5 2‘0 215 3'0
LoadBalancing Policy Time (min)

* Increase in function latency e Variance in server loads over time
compared to best-case latency e LL: Least loaded. Not locality
(c\;l\lljlrl:r‘r;jtartsl:;c_ler no load) aware, but lowest load variance

(] - - -

o Wh.' <k’ ;(l)l:/crease, VS. e OpenWhisk: Not load aware, so can
PenvwhIsSK's ° result in some servers getting
overloaded while others are idle

Locality-aware Load-Balancing For Serverless CIusters
HPDC 2022, A. Fuerst and P. Sharma

General FaaS resource management principles

Recap:
* 2 main challenges: heterogeneity and locality (cold-time >> warm)

* Main opportunity: can predict/estimate function characteristics using
historical information (arrival rate and cold/warm times)

e Workload: treat as a mixture of individual functions with different
characteristics

* Invocation latency: execution (i.e., service) time + queueing time
- Both depend on server-load and overcommitment-level

GPU Functions

 GPUs: Very limited concurrent execution capability (2—25)
 GPU containers: high initialization/cold-start overheads

Function GPU [Warm] CPU [Warm] GPU [Cold] CPU [Cold]
cupy 0.89 11.76 2.12 12.69
imagenet 1.93 4.77 6.71 4.5
onnx-roberta 0.18 4.62 1.08 0.89
pyhpc-eos 0.01 0.04 3.53 0.05
pyhpc-isoneural 0.02 0.52 7.93 0.54
rodinia-lavamd 0.6 17.75 0.75 15.0
rodinia-lud 0.74 22.24 0.93 55.21
rodinia-myocyte 1.67 40.49 2.97 41.21
rodinia-needle 1.3 27.24 1.42 41.33
rodinia-pathfinder 0.35 31.75 0.5 34.12 GPU
rodinia-srad 2.57 53.49 2.72 52.99
squeezenet 0.98 1.16 4.88 2.19 RS
torch-rnn 0.03 0.02 2.02 0.38 !
A
GPU queue
» .| F|B|B|A|D|C]|AT—*
B

L d

GPU Queueing: Balancing Locality and Waiting

GPU queue

A A A : A

\

Fair queueing flow selector
>

 Multi-Queue Fair Queueing (MQFQ): each function represents a flow

- Originally from disk scheduling: preserve locality for different
application request streams

* Select next flow to dispatch based on function arrival and service time
* Flow run-ahead for locality: looser fairness bound

20

MQFQ Fairness

FCFS MQFQ-Sticky
0007 Init-Low Add-High
& I _Hi S
= | Init-High Add Start k= ~ 400
| -
.g 10 : —o— Add-Low | 8 g S; il<p ; Tj
> I | S O — - (D—1) (2T — = =
O ! ! O © 3004 IWi W wi W
% ! ! o & T ‘
O
9 20 ' ' & D . .
; E i{“méi = S 200 - —— Theoretical Limit (411.74 sec)
™ | ST : g B
T I I I I I s @
0 10 20 O 10 20 g .2 100 -
S g
(a) GPU service time as functions are added to > 0 -

the workload at the 5 minute mark. MQFQ is fair, Q %
and provides all functions similar service, unlike
popular functions dominating with FCFS.

ORI S S

Time Elapsed (minutes)

(b) The maximum difference in GPU execution
time among all functions is significantly smaller
than the theoretical upper-bound.

21

MQFQ Performance

2000 1
g —e— FCFS(AIll Functions)
8] 200 5’ —=— MQFQ(AIll Functions)
fq”i GC) 1500 -e FCFS(Large)
> 150 = -#- MQFQ(Large)
s 1
) o 1000
© 100 S
— <
. = _
<‘>? 50 - @ 500
0_ T T T T O_ ..___.._-‘===.:
n € © > U £ ©® > 0N £ © > T .
E-) S0 f‘_) t-) 29 {_‘) b el § 0.6 0.8 1.0 . 1.2 1.4 1.6
L 39 A" o O i S & Request arrivals per second
@4 o o
I L rd
o o o
= = =

(a) Average latency is 2 — 5X lower with MQFQ-
Sticky for different device-parallelism (D) levels.

5x lower latency compared to FCFS (due to cold-start reduction)
Open question: MQFQ performance modeling

- Latency depends on flow-queue state (number of functions of
different types), interference, etc.

- Offline optimal queueing policy to minimize expected latency?

22

Polymorphic Function Dispatch

 GPUs are highly congested resource

 Can we offload some invocations to the CPU?

* Many functions (ML inference etc) can be made polymorphic
- Select CPU or GPU container at run-time

* Tradeoffs: some functions see higher GPU speedup; locality; queue
wait times

e Can we treat the GPU as a smaller ‘cache’ for functions?

Landlord Cache

Active Functions

Function R

Dispatching Agent ——>

invocation Hit/ .
Admit/ Inactive
Insert rA B [C D E F
Miss
MQFQ 1ow Queues

cPUQueue GPU

23

GPU Function Performance Under Load

Time (sec.)

Cupy benchmark time: <1 s

Function GPU [Warm] CPU [Warm] GPU [Cold] CPU [Cold]

cupy 0.89 11.76 2.12 12.69

imagenet 1.93 4.77 6.71 4.5

onnx-roberta 0.18 4.62 1.08 0.89

pyhpc-eos 0.01 0.04 3.53 0.05

pyhpc-isoneural 0.02 0.52 7.93 0.54

rodinia-lavamd 0.6 17.75 0.75 15.0

rodinia-lud 0.74 22.24 0.93 55.21

rodinia-myocyte 1.67 40.49 2.97 41.21

rodinia-needle 1.3 27.24 1.42 41.33

rodinia-pathfinder 0.35 31.75 0.5 34.12] o]

rodinia-srad 2.57 53.49 2.72 52.99 Slgnlflcant queuelng de|ays

squeezenet 0.98 1.16 4.38 2.19

torch-rnn 0.03 0.02 202 038« Execution time also increases
B Execution o o High load |

401 mmm Queuing /\ . Low Load !

GPULandlord Dispatch

* Landlord caching: a meta-algorithm for size-aware caching
- Credit associated with each item
- Upon a hit, the item gets a credit equal to cost of cache miss

- For a miss, rents are charged from all residents (proportional to
their size). Lowest credit items evicted until room for new item

« GPULandlord intuition:

- To increase GPU warm starts, a small number of functions are
‘resident’

- Credits and rent proportional to opportunity cost.
m; = ElTcpyl = ElTgpyl
- E[T] is expected latency (queueing + service)
- Rent charged in proportion to size and popularity (enqueued items)

25

GPULandlord Algorithm

1: function GPULANDLORD(item) > [tem is function metadata:{fname, credits, Ng, 1, Tc, . . .}
2 if present(item) then

3 new_credit = OPPORTUNITYCOsT(item) >Te — T
4 if new credit < 0 then

5: ~ return Miss(item) > M1: Negative credit miss
6 else

7 ~ return Hit(item)

8 if ADMITFILTER(item) then

9 ~ Hirr(item)

10: else

11: | Miss(item)

12: function Hit(item)
13: L item.credit += OPPORTUNITYCoOST(item)

14: return GPU

15: function Miss(item)

16: CHARGERENTS(OPPORTUNITYCOST(item))

17: item.credit += OPPORTUNITYCOST(item) > Accumulate credit

18: return CPU

19: function ADMITFILTER(item)

20: return GPU with probability 1/1+item.Ng > A1: New function lottery
21: if GpuLoAD() < « then

22: t return OpPORTUNITYCoOsT(item) > 0 > A2: Positive credit criteria
23: item.credits += OPPORTUNITYCOsT(item) > Accumulate credits
24: if T /S > p then

25: _ return false > M2: Overload miss
26: return item.credits > victim.credits > A3: Cumulative opportunity cost displacement

26

Polymorphic Function Performance

6-30x reduction In latenc

>
0’500 5
g G
30
E 400 2
S E
© 300 <
5 20 ¥
o> 200 S
> ©
©)
100 10 &
4+ n
=
O_ I I I I I
1.0 1.5 2.0 2.5 3.0
Request Rate
Distribution of Iatency benefits to different functions
10° | | | | T : : |
~ 10° i | i i |
g : ' ™A : '
5 : |
36 100‘§ : :
_15 [AIwaysGPU - Landlord CPU) i i i
107 mmm Landlord s Landlord (GPU) | | |

0 2 3 4 5 6 7 8 9 10
Function ID

(b) High arrival rate.
27

Polymorphic dispatch open questions

Slow

Dispatch queue / (CPU)

> . F B B A D C A
\ Fast

(GPU)

* Classic [Lin+Kumar ‘84]: threshold-based dispatch to fast server (wait for certain
time for the fast server, based on the queue backlog).

» [Hyytia+Righter ’22]: ICE: faster server gets to choose the smaller jobs (skim the
icing on the cake)

- Different speedups of functions => these classic policies cannot be easily
applied

* Reinforcement Learning?
« What to optimize? Weighted avg latency? Throughput?
 What is fairness in this context?
- Skewed workloads => specialized heuristics can work great
* E.g., high frequency small functions always on CPU

28

Conclusions

 FaaS: de-facto programming model for modern cloud applications
* Locality and heterogeneity two central challenges for providers
« Keep-alive highly effective at combating cold-starts
* Load-balancing: Consistent hashing with bounded loads
 GPU functions: fair queueing principles to handle contention
- Modeling MQFQ performance? Lot of non-linearity

- Load balancing for GPU clusters? CH-BL induces “too much” locality
and gueueing for the popular functions. New techniques needed

* Polymorphic functions: run on either CPU or GPU.

- Dispatching policies: how to choose? Treat GPU as a cache?
Queueing-based approaches? Reinforcement Learning?

29

References et.al.

https://cqi.luddy.indiana.edu/~prateeks/

30

