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The cloud services stack
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 IaaS  |    PaaS  |     SaaS  |    FaaS  |   API virtualization

VMs  |  Containers  |  microVMs  |  Lambdas

OS & subsystems   |   Hypervisor   |   Unikernels    

Compute   Memory    Network   Storage  Accelerators

Multiplexing | Provisioning | Scheduling

H/w assisted |  Software-defined |  ISA

services and applications

runtime building blocks

abstraction enablers

cloud physical resources

Ballooning | Migration | Merging | Snapshots | Introspection …

Applications  | Cloud Services
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SymFlex: Elastic, Persistent and Symbiotic SSD 
Caching in Virtualization Environments

                                      Muhammed Unais P,  Purushottam Kulkarni  

ACM/SPEC International Conference on Performance Engineering (ICPE 2021)
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The (IO) caching hierarchy

The wishlist
Low latency, High bandwidth, Byte addressable, Persistence
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SSD caching options

● Multiple feasible configurations and usages with SSDs (as caches)
● Focus of this work,

○ SSD caches with virtualization based IaaS setups

6
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NO overcommitment, NO IaaS!

● Resource overcommitment a key motivation of IaaS based service provisioning
○ E.g., Four 8 GB VMs GB on a 16 GB machine, 16 vCPUs on a 4 CPU machine …

● The overcommitment secret sauce …
● Relies on statistical multiplexing of resources

● Requires dynamic resource provisioning/multiplexing mechanisms
○ CPU and IO scheduling, demand paging, memory ballooning, …
○ Employ temporal and spatial multiplexing of resources

○ Elastic resources are vital building blocks

● w.r.t SSDs used for caching
○ Cache sizes need to be dynamically resized to account for load, and performance and usage policies
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Elastic SSD in action 

● With change in load, change in SSD cache size maintains throughput levels

8



SynerG@CSE Indian Institute of Technology Bombay

The Symbiotic Game Plan

● Who resizes the SSD cache?

● Option 1: The hypervisor
○ Operates transparent to guest OSes

○ Cache usage semantics and load behaviour unknown to hypervisor

■ Metadata information, index of important objects, upcoming events, …

● Option 2: The guest OS
○ Guest level semantics can be incorporated for eviction decisions

○ Statically sized and pass-through assignment of SSD partition to virtual machine

■ Limits elasticity options, and consolidation options with SSD caching

● The symbiotic plan
○ Hypervisor manages sizing (based on performance, usage policies etc.)

○ Guest OS manages cache membership based on semantics of relevance

9
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Problem description

● The symbiotic plan

○ Hypervisor manages sizing (based on performance, usage policies etc.)

○ Guest OS manages cache membership based on semantics of relevance

● Missing mechanism: An elastic virtualized SSD device

● Design and engineer an elastic virtualized device for VMs

● Build a framework for symbiotic management of SSD caches across VMs

● Demonstrate efficacy of elasticity for IO caching in virtual machines

10
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SymFlex architecture
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Registration
<vm-id, size, current-size, persist flag>

Read/write operation via 

frontend and backend driver

Inflation/deflation of SSD 

triggered by SymFlex manager
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SymFlex IO operations

Front-end

sector# = 5000

Logical block number (lbn) = 2, offset = 4

Back-end

Physical block number (pbn) = 10

Physical sector number = 10 x 2048 + 4 = 20484
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Virtual block size = 1 MB

Sectors per virtual block = 2048

Each virtual block contiguous on disk

Block IO layer
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Resizing in action
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Where to place SSD management procedure?
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cgroups + block IO layer
Application layer
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Share-based cache allocation
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Cache allocation with proportionate throughput
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Catalyst: GPU-assisted rapid memory deduplication
 in virtualization environments

                                      Anshuj Garg, Debadatta Mishra, Purushottam Kulkarni  

 Virtual Execution Environments (VEE) 2017

17



SynerG@CSE Indian Institute of Technology Bombay

Cloud VMs and content redundancy

Several standardized software components inside cloud VMs

Memory contents across VMs can tend to be similar

Implications on memory efficiency and VM consolidation
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Memory deduplication

In-band and out-of-band techniques

Scan and de-duplicate same pages (to maintain) single copy

Need to access and assess each page for deduplication check

Scope of this work: Improve efficiency of out-of-band memory dedup techniques

19
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Out-of-band sharing inefficiency/challenges

CPU cost is non-trivial to share pages

Wasted CPU cycles high with low 

         sharing potential

20

Sharing characteristic determines time 

required to achieve sharing potential
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Free-riding the GPU

Basic idea

Hashing contents (of a page) and hash comparison are SIMD!

Opportunistically use GPU (to save CPU cycles)

Hash page contents, Sort hash values, Compare and increment

Challenges

Memory mappings in kernel & kernel does not have direct access to GPU

GPU cannot (could not) access physical memory directly 

Data transfer overheads to GPUs are non-trivial

21
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KSM --- Kernel Samepage Merging

Generates hints for pages with same 

hash values

KSM performs targeted scanning

Catalyst design
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Catalyst sequence of operations

23



SynerG@CSE Indian Institute of Technology Bombay

Catalyst performance

3 VMs

Fileserver, varmail, synthetic 

Memory sharing benefits

1.25x to 1.5x 

CPU cycles saved

18%
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DoubleDecker: a cooperative disk caching framework 
for derivative clouds

Debadatta Mishra, Prashanth and Purushottam Kulkarni

18th ACM/IFIP/USENIX Middleware Conference 2017

25



SynerG@CSE Indian Institute of Technology Bombay

 dynamism in derivative clouds

resource overcommitment is the name of the game!

IaaS provider multiplexes resources (paging, ballooning, eviction, scheduling…) 

to improve efficiency and performance requirements

challenges with derivative clouds

for IaaS, VM is a black box, semantic gap about resource importance

which resources to reclaim? … different hypervisor and VM views

derivative provider centric multiplexing policies (different from IaaS policies)

26
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Inclusive caching: Low memory efficiency

Direct IO: Low throughput

Exclusive caching: Additional (in-band or out-of-band) overhead

Disk caching and memory efficiency
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 background: hypervisor (disk) caching

cleancache interface part of Linux VFS

backend implementation extended to 

hypervisor --- the hypervisor cache

backend stores can be in-memory,

SSD, over the network ...

basic mechanism for disk caching --- 

hypervisor caching

no support for nesting and cgroups

28
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Integrated exclusive page cache management

Extend page cache and store only clean pages

Hypervisor caching: Have a cache and eat it to!
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 non-determinism of hypervisor cache provisioning

Filebench and webserver occupy cache based on workload characteristic and start times

No mechanism available to partition based on derivative end-points

30
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 application characteristics matter for cache distribution

application throughputs affected 

differently across splits of VM and 

hypervisor cache

webserver and mongoDB largely 

agnostic to split

Redis and MySQL prefer large 

in-VM cache

No mechanism to enforce these 

application-specific requirements
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 problem statement

efficiently manage hypervisor disk caching resources with flexible 
policy support across the two levels in a derivative setup

deterministic hypervisor cache partitioning
support for differentiated policy enforcement

contributions
mechanism for symbiotic disk caching between hypervisor and VM
KVM+Linux based implementation for memory and SSD caches
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doubledecker design

cache usage weight

● hypervisor level (across VMs)
● VM level (across containers)

two tuple <T,W> configuration

● T: Cache type (Mem/SSD)
● W: Weight

dynamic reconfiguration possible 

support for independent resource 
management at two level in multi-hosting 
setups

33
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 doubledecker implementation 

extension of cleancache interface

cgroup integration (instead of FS)
new hypercall+state 
(creation/deletion, updates to cache 

          parameters, usage statistics)

cgroup extensions 

policy interface & cleancache 
integration

DoubleDecker cache 

memory and SSD stores

dynamic policy enforcement
34
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 deterministic cache partitioning

initial weights C1: C2 is 60:40

at 900s, C1:C2:C3 adjusted to 
50:30:20

at around 1800s, C3 is move to SSD 
and C1:C2 re-configured at 60:40 

hypervisor can implement dynamic 
nesting-aware level policies in a 
deterministic manner

35
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 does mem+ssd backend benefit?

four application containers & with 
different policies

Cache usage ratios
DDMem: <30, 25, 25, 15>

DDMemEx: <40, 30, 30, 0>

DDHybrid: <40, 30, 30, 100>

<SSD,100> for Videoserver 

Policy alternatives provide better 
flexibility and performance

36
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 does nested partitioning help?

Doubledecker can use provisioning for in-memory and SSD 

to explore larger provisioning space to meet SLAs

37

Workload SLA requirement  Throughput (DD)  Throughput (Morai++)

MongoDB 15 ops/sec 25.1 ops/sec 16.9 ops/sec

MySQL 100 ops/sec 132.7 ops/sec 48.5 ops/sec

Redis 500 ops/sec 11186 ops/sec 13 ops/sec

Webserver 900 ops/sec 988 ops/sec 1289 ops/sec



Deterministic container resource management 
in derivative clouds

Chandra Prakash, Umesh Bellur, Purushottam Kulkarni

IEEE Conference on Cloud Engineering IC2E 2018
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Resource Management in Derivative Clouds 

39

examples of nesting agnostic resource management by hypervisor in derivative setups

memory and CPU 

mechanisms

ballooning: memory overcommitment handling

vcpu scaling: cpu-granularity multiplexing

both techniques are nesting agnostic
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 implications of nesting agnostic management

balloon inflation recovers pages from VM for hypervisor

balloon driver is VM-centric, 

not aware of nesting entities

40

Agnostic memory 
reclamation Desired reclamation 

1:1:4 desired CPU allocation 

ratio

CPU allocation ratios not 

maintained after scaling down
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 nesting-aware memory/cpu management

modified cgroup resource manager

proportionate memory provisioning and reclamation

flag nested entities for no-reclamation 

update cpu allocation of cgroups (combination of pinning+sharing)

41
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 evaluation of nesting-aware memory allocation

2:1 ratio between MongoDB and Redis instances maintained
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 nesting aware CPU provisioning

43

Scaling down 1 vCPU 
every 120 seconds
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Flyt: Software-defined elastic GPU endpoints 

Sameer Ahmad, Santhosh Kumar M, Armaan Chowfin, Purushottam Kulkarni
Anand Eswaran (IBM), Praveen Jayachandran (IBM)

(under submission) 
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GPU 101 (single instruction multiple threads architecture)

45

GPU RAM

DMA Engine DMA Engine

block

core/thread

shared memory per block

registers per block

GPU memory

Data Copy Engine

stream multiprocess - SMs
(group of blocks, schedulable by driver)

source: CUDA C++ Programming Guide. Retrieved April 1, 2024 from https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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GPU 101 (Compute Unified Device Architecture - CUDA)

46

source: CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

kernel function <<grid, block, thread per block >> (arguments)

CUDA compiler

nvidia GPU architecture SM-60

GPU with 4 SMs

SM 0 SM 1 SM 2 SM 3

Block 0 Block 1 Block 2 Block 3

Block 0 Block 1 Block 2 Block 3

cudaStream A

cudaMalloc

Kernel A << … >>

Kernel B << … >>

cudaFree

cudaStream B

cudaMalloc

Kernel C << … >>

Kernel D << … >>

cudaFree

Operations within cudaStream are sequential

Grid
Thread Block Thread Block Thread Block Thread Block

Thread Block Thread Block Thread Block Thread Block
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Context: GPU resources under utilization

47

Source: [1] Zhang, Yongkang, et al. "Workload consolidation in alibaba clusters: the good, the bad, and the ugly."  13th Symposium on Cloud Computing. 2022.

Analysis of a 6000+ GPU cluster running machine learning workloads over a 2-month period[1]

CPUs have higher utilization than GPUs More resources requested than used
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Application 
request/rate

Default GPU 
Allocation

Required GPU 
Allocation

Application dynamic load => 
Dynamic GPU requirement

Statically overprovisioned GPU 
resources by available tools

Elastic provisioning of GPU 
required for higher utilization

application execution lifetime

Context: Dynamic GPU usage by Virtual Machines
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GPU 
Memory

SM 
Cores

vGPU1 vGPU2 vGPU3

PCIe endpoints

Nvidia vGPUs

GPU 
Memory

SM 
Cores

MiG1 MiG2 MiG3

PCIe endpoints

Nvidia MiG

Spatially multiplexed memory
Temporally multiplexed cores

Spatially multiplexed 
memory and  cores

vGPU and MIG: hardware assisted GPU virtualization

49

GPU Cluster

Large

X-Large

medium

application GPU need over lifetime

Does not support runtime 
configuration changes

Application needs to manage 
Multi-GPU 
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GPU 
Memory

SM 
Cores

CUDA MPS Controller

Process 1 Process 2 Process 3

Fine control of compute and memory 
resources for each process.

Nvidia MPS

VM1

CUDA 
Application

Virtualized 
CUDA Library

Client

CUDA Virtualization 
Host

GPU

API Virtualization

VM2

CUDA 
Application

Virtualized 
CUDA Library

Client

VUDA Stream based spatial 
and temporal multiplexing

MPS and API: Software assisted GPU virtualization

50

Application GPU need over lifetime

Does not support runtime 
configuration changes
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VMVMVM

Flyt: software-defined elastic GPU endpoints 

51

Dynamic scaling of GPU resources per 
application/VM

(vertical scaling)

Transparent GPU server migration 
(horizontal scaling)

GPU resource management and isolation 
for critical applications within VMs 

Goal: Dynamically multiplex, scale, and migrate GPUs across VMs and 
applications to optimize utilization and meet SLAs
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CUDA ApplicationCUDA Application

User Virtual Machine

Flyt VM Agent

CUDA Application

Flyt-client.so

Flyt virtualization 
library

Flyt Control 
Plane

Server Node with GPU

Flyt GPU 
Agent

Flyt virtualization server

cuda library

GPU

Flyt Control Channel

Flyt Cuda Execution Channel

1 2

CUDA API transport
(TCP,  shmem, …)

Flyt Architecture

52
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Flyt Server 
(GPU 1) Flyt control planeFlyt Client

Flyt workflow (GPU migration)

53

scaling 
decision

Network storageFlyt Server 
(GPU 2) 

Pause client
Create GPU snapshot

Store client GPU data and context
Snapshot complete

Create client GPU server instance and load GPU snapshot
access GPU snapshot

GPU snapshot load complete

Resume client oh new GPU 

Remote cuda API call and responses

Send periodic 
Application metrics

Request GPU server 
metrics periodically

Remote cuda API call and responses

Scale type: vertical, horizontal
GPU resources size
New GPU server

Horizontal 
scaling
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Flyt in action (elastic GPU)

54

Vertical scaling overhead is under 250 milliseconds, while horizontal scaling overhead increases linearly with workload size.
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Flyt in action (GPU utilization)

55

VM’s GPU resources are not limited to a single GPU but can utilize the overall GPU cluster capacity

Number of applications on VM 2

Number of applications on VM 1
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Memory and IO efficiency related

56

Singleton: System-wide Page Cache Deduplication in Virtual Environments  
HPDC 2012

Share-o-meter: An empirical analysis of KSM based memory sharing in virtualized systems  
HiPC 2013

Comparative analysis of page cache provisioning in virtualized environments 
MASCOTS 2014

DRIVE: Using implicit caching hints to achieve disk I/O reduction in virtualized environments  
HiPC 2014

Per-VM page cache partitioning for cloud computing platforms  
Comsnets 2016

Synergy: A Hypervisor Managed Holistic Caching System 
TCC 2016
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 new virtualization mechanisms

dynamic reconfiguration of network endpoints
Vagabond: Dynamic network endpoint reconfiguration in virtualized environments 

SoCC 2014

elastic SSD devices for IO caching
SymFlex: Elastic, Persistent and Symbiotic IO Caching in Virtualization Environments

(under submission)

record-replay framework
InSight: A Framework for Application Diagnosis using Virtual Machine Record and Replay

nested migration
Portkey: Hypervisor-Assisted Container Migration in Nested Cloud Environments

57
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 capacity planning and provisioning

understanding/modeling the VM migration mechanism
Resource Availability Based Performance Benchmarking of Virtual Machine Migrations (ICPE 2013)

Towards a comprehensive performance model of virtual machine live migration (SoCC 2015)

On Selecting the Right Optimizations for Virtual Machine Migration (VEE 2016)

provisioning and placement heuristics
Affinity-aware modeling of CPU usage with communicating virtual machines    (JSS 2013, IEEE Cloud 2011)

Risk Aware Provisioning and Resource Aggregation based Consolidation of Virtual Machines (IEEE CLOUD 2012)

Dynamic Resource Management Using Virtual Machine Migrations (IEEE Communications Magazine, September 2012)

benchmarking tool 
VirtPerf: A Capacity Planning Tool for Virtualized Environments (IEEE CLOUD 2011)

58
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 OS & hypervisor intersection

VM introspection based file system metadata and disk IO prefetching optimizations

Stepahead: Rethinking filesystem namespace translations  (APSys 2016)

Prewarming of metadata caches of distributed file systems in virtualization environments (on-going)

59
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acceleration-as-a-service (on-going)

GPU multiplexing mechanisms
Empirical analysis of hardware-assisted GPU virtualization (HiPC 2019)

managing GPU memory to increasing size of trainable neural networks
Dynamic Memory Management for GPU-based training of Deep Neural Networks (IPDPS 2019)

offload hypervisor management tasks to GPU
Catalyst: GPU-assisted rapid memory deduplication in virtualization environments (VEE 2017)

FaaSter: Fast FaaS using heterogeneous GPUs
(HiPC 2021)

Optimizing Goodput of Real-time Serverless Functions using Dynamic Slicing with 

vGPUs (IC2E 2021)

60
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FaaS — function as a service

new abstraction from service provisioning 

further decouples service usage from provisioning/management etc.

multiplexing, scheduling

integration with GPUs

smartnic offload

data pipelines for FaaS workflows

serverless workflow application development infrastructure

tools, prototypes, solutions …

Serverless computing/FaaS (on-going)

61
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design-build-experiment-repeat

We are hiring!

puru@cse.iitb.ac.in

https://www.cse.iitb.ac.in/~puru
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Optimizing Goodput of Real-time Serverless 
Functions using Dynamic Slicing with vGPUs

Chandra Prakash, Anshuj Garg, Umesh Bellur, Purushottam Kulkarni

IEEE International Conference on Cloud Engineering (IC2E 2021)
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FaaS meets GPU

FaaS --- Function as a service

GPUs are candidates for parallelizing 

work and meet function execution 

deadlines

ML training using GPUs

Processing of images at scale
              (editing, resizing, transcoding,classification)

Hosting setup

VMs execute functions in 

containers

H/W assisted vGPU multiplexing
                 (NVIDIA Tesla series) 65

Hardware

Hypervisor

VM

vGPU

GPU

VM

vGPU

VM

vGPU

Host GPU driver

OS Guest  GPU driver

f1() f2() f3() fn()

Scheduler
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Problem description

In nested setups (containers in VM),

vGPU scheduler in VM supports round-robin and FCFS scheduling

vGPUs scheduled using fixed share, equal share or best-effort mechanisms

deadline agnostic!

Determine task size and scheduling order of functions to maximize number 

of functions that complete within deadline

Functions (tasks) are not arbitrarily preemptible on GPUs

vGPU capacity is based on work across VMs and is dynamic

66
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Solution components

1. Kernel slicing and scheduling mechanism
○ Smaller task sizes for generating scheduling events

2. GPU capacity estimator
○ Capacity of GPU is a function of load offered by all VMs

○ Dynamic loads, result in dynamic available capacity

3. Slice size selection + task scheduling 
○ Offline heuristic    (modified-EDF with adaptive slice sizes)

○ Online heuristic

○ Metrics:

i. #tasks completed before deadline

ii. Minimizing wasted work on GPUs 

work-in-progress

67
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FaaSter: Fast FaaS using heterogeneous GPUs

                                      Anshuj Garg,  Shahrukh Hussain, Sriram Y, Riya Baviskar
Purushottam Kulkarni, Umesh Bellur

IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC 2021)  

Acceleration-as-a-service

https://ieeexplore.ieee.org/xpl/conhome/9680324/proceeding
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Problem description

Context
Provide a library of functions to users via the Function-as-a-Service model

The FaaS services relies on GPU backends for compute (image processing, training, mathematical functions etc.)

Resource assumption: Heterogeneous GPU types

Goal
Build a FaaS framework for exploiting heterogeneous GPU backends

Map and schedule function requests to appropriate GPUs to minimize job completion 

times and maximize GPU resource utility

69
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FaaSter architecture

1. Function Library

⇒ Multi-API implementation of functions

2. Dispatch mechanism/logic

⇒ Multiplex an invocation to one of the many backends/hardwares

⇒ Decision for multiplexing

3. Notification mechanism

⇒ Events/Triggers

4. API Usage setup

⇒ how does user invoke the FaaS functionality?

70

User 
interface/API

Data
Store

Event
Monitor

Event
Source

Collect/
Store
Data

Accelerator Pool

dGPU HSA Jetson

Fun
ction
s

Dispatcher

Fun
ction
s
Function
Library

Task
slicer

Scheduler Mapper

Reverse
Dispatcher
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FaaSter solution components

1. Function profiling across multiple GPUs
a. At different slice and input sizes

2. Engineering the end-to-end runtime with all components

3. Design of dispatch logic for high throughput of completed tasks

Decision dependent on 

i. current and queued up load at GPUs

ii. function execution characteristics on GPUs

iii. function amenability to slicing

71
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Takeaways

Acceleration-as-a-service is a first-class service!

Several unique problems at the intersection of cloud systems and acceleration platforms 

Problems across the cloud stack

management systems, OS extensions, 

APIs for networked applications, building scalable applications,

           acceleration hardware usage and integration …

New and demanding workloads

IoT, ML, phone and mobile computing, robotics and automation, 

         virtual desktops with GPUs, …
         … set to to consume the acceleration services

72



Portkey: Hypervisor-Assisted Container Migration in Nested 
Cloud Environments

Chandra Prakash, Debadatta Mishra, Purushottam Kulkarni, Umesh Bellur

18th International Conference on Virtual Execution Environments 
VEE 2022
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Nested setup and migration

74

       Physical Machine

Application Application
. . .

        Physical Machine

Application Application
. . .

VM VM

             Physical Machine

Application Application

Container Container

VM

. . .

VMVM

             Physical Machine

Application Application

VM VM

VM

. . .

VM

Application on PM
Application in VM

Application in nested VM Application in nested container

➢ Nested containers in VMs employed by cloud providers such as VMware Tanzu, Google Application Engine,  Heroku, 
Amazon elastic containers.

➢ Migration is key for Load Balancing, Hotspot Mitigation And Server consolidation.
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Network I/O in virtualized environment

75

Network card

Bridge

TAP

Kernel

Network card

Bridge

QEMU

TAP

Kernel

Virtual 
  NIC

Virtio Vhost-net
SR-IOV

* Image source: Red-Hat

Virtual machine

QEMU

Virtual machine

vhost

Virtual machine

SR-IOV PCI device (NIC)

  Virtual 
Function

     Hypervisor

                 I/O MMU

Physical
Function

      Physical 
    NIC driver



SynerG@CSE Indian Institute of Technology Bombay

Motivation and Problem Definition

Goal
Develop a software defined framework to reduce CPU overheads without degrading network 
performance for nested container migration

76

#primes checked per second

Setup Source 
PM (~%)

Destination 
PM (~%)

Native 18 25

Nested 70 115

CPU utilization during quiescent container migration
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Diskless Migration using CRIU

➢ CRIU collects target process’ memory in several pipes and sends over the network

➢ Maximum size of data per send operation is 4 MB (size of pipe)

➢  With nested setups

○ Data transfer over the network is main cause for high CPU utilization

○ During migration, of ~70% CPU usage at source PM, ~58% is used by the hypervisor
77

Container . . . Container

  Target 
container     Pipes Network      Pipe

 Dump
memory

 Restore
container

    Send     Receive

Source host Destination host
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Possible Solution Approach

➢ Compression of migration data

○ Compression/decompression incurs high CPU overhead and decompression will increase the down 

time

➢ Hardware assisted solution (SR-IOV)

○ Additional hardware cost and restrictions such as movement and scalability

➢ Offload network operations of VM to the hypervisor (para-virtualization)

○ Flexible to use without restrictions and additional hardware cost

78
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Portkey: Hypervisor-Assisted Migration

Portkey CRIU 
Alternate implementation of network 
operations in user space of VM

Portkey VM Module 
Forwards operations initiated by Portkey 
CRIU to the hypervisor using custom 
hypercalls

Portkey Data Transfer Agent 
Performs network operations on behalf 
of CRIU

79
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Overview of send mechanism

80

Container memory

Hypervisor

Container memory

VM

Kernel space

User space

Guest Virtual Address 
               (GVA)

 Host Virtual Address 
               (HVA)

Address translation

External network

   Send 
operation

Hypercalls
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➢ Reduce address translation overheads

○ Pre-allocated contiguous memory in the guest OS is used as auxiliary memory

➢ Avoid I/O blocking at the hypervisor

○ Used non-blocking network operations and error handling inside VM

➢ Reduce VM-hypervisor interaction

○ Estimate and provide delay between send operations inside VM

○ Send maximum amount of data per hypercall without breaking CRIU protocol

Challenges
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Fixed Mapping and Adaptive Send Rate

 Adaptive send rate to reduce hypecall invocations

Portkey estimates available bandwidth at source PM
Adjusts delay between consecutive send operations

Available bandwidth = 1 Gbps, Data size = 4 MB, 
Empty space in send buffer = 3 MB

Estimated delay = (4-3) MB/ 1 Gbps = 7.8 ms
(for 1 MB to be added to send buffer)

GPA

HVA

Pipe

Hypervisor 
     (PM)

GVA

Kernel 
space

User 
space

Contiguous fixed mapping

Auxiliary 
memory

Contiguous fixed mapping requires single address translation 
(GVA→GPA→HVA)

Hypervisor 
     (PM)

GVA

GPA

HVA

Kernel 
space

User 
space

Pipe

Non-contiguous memory in pipe

VM VM
Pipe

GPA
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Portkey send mechanism
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Evaluation questions

➢ How effective is Portkey in reducing CPU utilization, compared to virtio (with 
vhost-net kernel module) and SR-IOV?

➢ Does Portkey allocates saved CPU to applications (work conserving)?

➢ How effective is proposed adaptive send mechanism?

➢ What is the extent of impact of Portkey on the migration metrics (Predump time, 
Dump time, and performance of application under migration)?
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Efficacy of Portkey in Ideal Condition

CPU utilization at source PM
CPU utilization at destination PM

➢ CPU utilization is close to native setup in case of Portkey without impacting migration time

➢ Ideal condition: Migrate a quiescent container without any resource constraint.
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 causes of memory usage inefficiency

multiple/redundant copies of content in memory

page/disk caches in VM and hypervisor

multiple VMs with same OS/applications

conflicting management mechanisms

ballooning vs. sharing

shared pages if ballooned have no effect

infact reduce sharing and decrease memory efficiency
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 examples of conflicting memory mgmt. actions

shared pages on reclamation allocate 

a new page!

no mechanism for system-wide deduplication
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 Synergy: A Hypervisor Managed Holistic Caching System
  TCC 2016

(exclusive) hypervisor caching

+

KSM (same page merging)

for 

- retaining shared pages on ballooning

- system-wide deduplication of all 

  memory

- system-wide memory provisioning
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 system-wide dedup with Synergy

balloon inflation/deflation across 

different VMs

memory utilization between 350 MB 

to 450 MB

Synergy resharing allows system-wide 

utilization to stay ~400 MB
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