
1

virtualization and cloud computing
@ synerg.cse.iitb

www.cse.iitb.ac.in/synerg
Systems and Networks Research Group

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

SynerG@CSE Indian Institute of Technology Bombay

100s of students and some faculty

SynerG@ CSE IIT Bombay

2

Kameswari BhaskaranVarsha

Umesh Puru

Mythili

Vinay

SynerG@CSE Indian Institute of Technology Bombay

The cloud services stack

3

 IaaS | PaaS | SaaS | FaaS | API virtualization

VMs | Containers | microVMs | Lambdas

OS & subsystems | Hypervisor | Unikernels

Compute Memory Network Storage Accelerators

Multiplexing | Provisioning | Scheduling

H/w assisted | Software-defined | ISA

services and applications

runtime building blocks

abstraction enablers

cloud physical resources

Ballooning | Migration | Merging | Snapshots | Introspection …

Applications | Cloud Services

4

SymFlex: Elastic, Persistent and Symbiotic SSD
Caching in Virtualization Environments

 Muhammed Unais P, Purushottam Kulkarni

ACM/SPEC International Conference on Performance Engineering (ICPE 2021)

SynerG@CSE Indian Institute of Technology Bombay

The (IO) caching hierarchy

The wishlist
Low latency, High bandwidth, Byte addressable, Persistence

5

SynerG@CSE Indian Institute of Technology Bombay

SSD caching options

● Multiple feasible configurations and usages with SSDs (as caches)
● Focus of this work,

○ SSD caches with virtualization based IaaS setups

6

SynerG@CSE Indian Institute of Technology Bombay

NO overcommitment, NO IaaS!

● Resource overcommitment a key motivation of IaaS based service provisioning
○ E.g., Four 8 GB VMs GB on a 16 GB machine, 16 vCPUs on a 4 CPU machine …

● The overcommitment secret sauce …
● Relies on statistical multiplexing of resources

● Requires dynamic resource provisioning/multiplexing mechanisms
○ CPU and IO scheduling, demand paging, memory ballooning, …
○ Employ temporal and spatial multiplexing of resources

○ Elastic resources are vital building blocks

● w.r.t SSDs used for caching
○ Cache sizes need to be dynamically resized to account for load, and performance and usage policies

7

SynerG@CSE Indian Institute of Technology Bombay

Elastic SSD in action

● With change in load, change in SSD cache size maintains throughput levels

8

SynerG@CSE Indian Institute of Technology Bombay

The Symbiotic Game Plan

● Who resizes the SSD cache?

● Option 1: The hypervisor
○ Operates transparent to guest OSes

○ Cache usage semantics and load behaviour unknown to hypervisor

■ Metadata information, index of important objects, upcoming events, …

● Option 2: The guest OS
○ Guest level semantics can be incorporated for eviction decisions

○ Statically sized and pass-through assignment of SSD partition to virtual machine

■ Limits elasticity options, and consolidation options with SSD caching

● The symbiotic plan
○ Hypervisor manages sizing (based on performance, usage policies etc.)

○ Guest OS manages cache membership based on semantics of relevance

9

SynerG@CSE Indian Institute of Technology Bombay

Problem description

● The symbiotic plan

○ Hypervisor manages sizing (based on performance, usage policies etc.)

○ Guest OS manages cache membership based on semantics of relevance

● Missing mechanism: An elastic virtualized SSD device

● Design and engineer an elastic virtualized device for VMs

● Build a framework for symbiotic management of SSD caches across VMs

● Demonstrate efficacy of elasticity for IO caching in virtual machines

10

SynerG@CSE Indian Institute of Technology Bombay

SymFlex architecture

11

Registration
<vm-id, size, current-size, persist flag>

Read/write operation via

frontend and backend driver

Inflation/deflation of SSD

triggered by SymFlex manager

SynerG@CSE Indian Institute of Technology Bombay

SymFlex IO operations

Front-end

sector# = 5000

Logical block number (lbn) = 2, offset = 4

Back-end

Physical block number (pbn) = 10

Physical sector number = 10 x 2048 + 4 = 20484

12

Virtual block size = 1 MB

Sectors per virtual block = 2048

Each virtual block contiguous on disk

Block IO layer

SynerG@CSE Indian Institute of Technology Bombay

Resizing in action

13

SynerG@CSE Indian Institute of Technology Bombay

Where to place SSD management procedure?

14

cgroups + block IO layer
Application layer

SynerG@CSE Indian Institute of Technology Bombay

Share-based cache allocation

15

SynerG@CSE Indian Institute of Technology Bombay

Cache allocation with proportionate throughput

16

1:2:3:3 4:2:3:3 4:2:1:1 4:2:1:1

Catalyst: GPU-assisted rapid memory deduplication
 in virtualization environments

 Anshuj Garg, Debadatta Mishra, Purushottam Kulkarni

 Virtual Execution Environments (VEE) 2017

17

SynerG@CSE Indian Institute of Technology Bombay

Cloud VMs and content redundancy

Several standardized software components inside cloud VMs

Memory contents across VMs can tend to be similar

Implications on memory efficiency and VM consolidation

18

SynerG@CSE Indian Institute of Technology Bombay

Memory deduplication

In-band and out-of-band techniques

Scan and de-duplicate same pages (to maintain) single copy

Need to access and assess each page for deduplication check

Scope of this work: Improve efficiency of out-of-band memory dedup techniques

19

SynerG@CSE Indian Institute of Technology Bombay

Out-of-band sharing inefficiency/challenges

CPU cost is non-trivial to share pages

Wasted CPU cycles high with low

 sharing potential

20

Sharing characteristic determines time

required to achieve sharing potential

SynerG@CSE Indian Institute of Technology Bombay

Free-riding the GPU

Basic idea

Hashing contents (of a page) and hash comparison are SIMD!

Opportunistically use GPU (to save CPU cycles)

Hash page contents, Sort hash values, Compare and increment

Challenges

Memory mappings in kernel & kernel does not have direct access to GPU

GPU cannot (could not) access physical memory directly

Data transfer overheads to GPUs are non-trivial

21

SynerG@CSE Indian Institute of Technology Bombay

KSM --- Kernel Samepage Merging

Generates hints for pages with same

hash values

KSM performs targeted scanning

Catalyst design

22

SynerG@CSE Indian Institute of Technology Bombay

Catalyst sequence of operations

23

SynerG@CSE Indian Institute of Technology Bombay

Catalyst performance

3 VMs

Fileserver, varmail, synthetic

Memory sharing benefits

1.25x to 1.5x

CPU cycles saved

18%

24

DoubleDecker: a cooperative disk caching framework
for derivative clouds

Debadatta Mishra, Prashanth and Purushottam Kulkarni

18th ACM/IFIP/USENIX Middleware Conference 2017

25

SynerG@CSE Indian Institute of Technology Bombay

 dynamism in derivative clouds

resource overcommitment is the name of the game!

IaaS provider multiplexes resources (paging, ballooning, eviction, scheduling…)

to improve efficiency and performance requirements

challenges with derivative clouds

for IaaS, VM is a black box, semantic gap about resource importance

which resources to reclaim? … different hypervisor and VM views

derivative provider centric multiplexing policies (different from IaaS policies)

26

SynerG@CSE Indian Institute of Technology Bombay 27

Inclusive caching: Low memory efficiency

Direct IO: Low throughput

Exclusive caching: Additional (in-band or out-of-band) overhead

Disk caching and memory efficiency

SynerG@CSE Indian Institute of Technology Bombay

 background: hypervisor (disk) caching

cleancache interface part of Linux VFS

backend implementation extended to

hypervisor --- the hypervisor cache

backend stores can be in-memory,

SSD, over the network ...

basic mechanism for disk caching ---

hypervisor caching

no support for nesting and cgroups

28

SynerG@CSE Indian Institute of Technology Bombay 29

Integrated exclusive page cache management

Extend page cache and store only clean pages

Hypervisor caching: Have a cache and eat it to!

SynerG@CSE Indian Institute of Technology Bombay

 non-determinism of hypervisor cache provisioning

Filebench and webserver occupy cache based on workload characteristic and start times

No mechanism available to partition based on derivative end-points

30

SynerG@CSE Indian Institute of Technology Bombay

 application characteristics matter for cache distribution

application throughputs affected

differently across splits of VM and

hypervisor cache

webserver and mongoDB largely

agnostic to split

Redis and MySQL prefer large

in-VM cache

No mechanism to enforce these

application-specific requirements

31

SynerG@CSE Indian Institute of Technology Bombay

 problem statement

efficiently manage hypervisor disk caching resources with flexible
policy support across the two levels in a derivative setup

deterministic hypervisor cache partitioning
support for differentiated policy enforcement

contributions
mechanism for symbiotic disk caching between hypervisor and VM
KVM+Linux based implementation for memory and SSD caches

32

SynerG@CSE Indian Institute of Technology Bombay

doubledecker design

cache usage weight

● hypervisor level (across VMs)
● VM level (across containers)

two tuple <T,W> configuration

● T: Cache type (Mem/SSD)
● W: Weight

dynamic reconfiguration possible

support for independent resource
management at two level in multi-hosting
setups

33

SynerG@CSE Indian Institute of Technology Bombay

 doubledecker implementation

extension of cleancache interface

cgroup integration (instead of FS)
new hypercall+state
(creation/deletion, updates to cache

 parameters, usage statistics)

cgroup extensions

policy interface & cleancache
integration

DoubleDecker cache

memory and SSD stores

dynamic policy enforcement
34

SynerG@CSE Indian Institute of Technology Bombay

 deterministic cache partitioning

initial weights C1: C2 is 60:40

at 900s, C1:C2:C3 adjusted to
50:30:20

at around 1800s, C3 is move to SSD
and C1:C2 re-configured at 60:40

hypervisor can implement dynamic
nesting-aware level policies in a
deterministic manner

35

SynerG@CSE Indian Institute of Technology Bombay

 does mem+ssd backend benefit?

four application containers & with
different policies

Cache usage ratios
DDMem: <30, 25, 25, 15>

DDMemEx: <40, 30, 30, 0>

DDHybrid: <40, 30, 30, 100>

<SSD,100> for Videoserver

Policy alternatives provide better
flexibility and performance

36

SynerG@CSE Indian Institute of Technology Bombay

 does nested partitioning help?

Doubledecker can use provisioning for in-memory and SSD

to explore larger provisioning space to meet SLAs

37

Workload SLA requirement Throughput (DD) Throughput (Morai++)

MongoDB 15 ops/sec 25.1 ops/sec 16.9 ops/sec

MySQL 100 ops/sec 132.7 ops/sec 48.5 ops/sec

Redis 500 ops/sec 11186 ops/sec 13 ops/sec

Webserver 900 ops/sec 988 ops/sec 1289 ops/sec

Deterministic container resource management
in derivative clouds

Chandra Prakash, Umesh Bellur, Purushottam Kulkarni

IEEE Conference on Cloud Engineering IC2E 2018

38

SynerG@CSE Indian Institute of Technology Bombay

Resource Management in Derivative Clouds

39

examples of nesting agnostic resource management by hypervisor in derivative setups

memory and CPU

mechanisms

ballooning: memory overcommitment handling

vcpu scaling: cpu-granularity multiplexing

both techniques are nesting agnostic

SynerG@CSE Indian Institute of Technology Bombay

 implications of nesting agnostic management

balloon inflation recovers pages from VM for hypervisor

balloon driver is VM-centric,

not aware of nesting entities

40

Agnostic memory
reclamation Desired reclamation

1:1:4 desired CPU allocation

ratio

CPU allocation ratios not

maintained after scaling down

SynerG@CSE Indian Institute of Technology Bombay

 nesting-aware memory/cpu management

modified cgroup resource manager

proportionate memory provisioning and reclamation

flag nested entities for no-reclamation

update cpu allocation of cgroups (combination of pinning+sharing)

41

SynerG@CSE Indian Institute of Technology Bombay

 evaluation of nesting-aware memory allocation

2:1 ratio between MongoDB and Redis instances maintained

42

SynerG@CSE Indian Institute of Technology Bombay

 nesting aware CPU provisioning

43

Scaling down 1 vCPU
every 120 seconds

44

Flyt: Software-defined elastic GPU endpoints

Sameer Ahmad, Santhosh Kumar M, Armaan Chowfin, Purushottam Kulkarni
Anand Eswaran (IBM), Praveen Jayachandran (IBM)

(under submission)

SynerG@CSE Indian Institute of Technology Bombay

GPU 101 (single instruction multiple threads architecture)

45

GPU RAM

DMA Engine DMA Engine

block

core/thread

shared memory per block

registers per block

GPU memory

Data Copy Engine

stream multiprocess - SMs
(group of blocks, schedulable by driver)

source: CUDA C++ Programming Guide. Retrieved April 1, 2024 from https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

SynerG@CSE Indian Institute of Technology Bombay

GPU 101 (Compute Unified Device Architecture - CUDA)

46

source: CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

kernel function <<grid, block, thread per block >> (arguments)

CUDA compiler

nvidia GPU architecture SM-60

GPU with 4 SMs

SM 0 SM 1 SM 2 SM 3

Block 0 Block 1 Block 2 Block 3

Block 0 Block 1 Block 2 Block 3

cudaStream A

cudaMalloc

Kernel A << … >>

Kernel B << … >>

cudaFree

cudaStream B

cudaMalloc

Kernel C << … >>

Kernel D << … >>

cudaFree

Operations within cudaStream are sequential

Grid
Thread Block Thread Block Thread Block Thread Block

Thread Block Thread Block Thread Block Thread Block

SynerG@CSE Indian Institute of Technology Bombay

Context: GPU resources under utilization

47

Source: [1] Zhang, Yongkang, et al. "Workload consolidation in alibaba clusters: the good, the bad, and the ugly." 13th Symposium on Cloud Computing. 2022.

Analysis of a 6000+ GPU cluster running machine learning workloads over a 2-month period[1]

CPUs have higher utilization than GPUs More resources requested than used

SynerG@CSE Indian Institute of Technology Bombay

Application
request/rate

Default GPU
Allocation

Required GPU
Allocation

Application dynamic load =>
Dynamic GPU requirement

Statically overprovisioned GPU
resources by available tools

Elastic provisioning of GPU
required for higher utilization

application execution lifetime

Context: Dynamic GPU usage by Virtual Machines

48

SynerG@CSE Indian Institute of Technology Bombay
49

GPU
Memory

SM
Cores

vGPU1 vGPU2 vGPU3

PCIe endpoints

Nvidia vGPUs

GPU
Memory

SM
Cores

MiG1 MiG2 MiG3

PCIe endpoints

Nvidia MiG

Spatially multiplexed memory
Temporally multiplexed cores

Spatially multiplexed
memory and cores

vGPU and MIG: hardware assisted GPU virtualization

49

GPU Cluster

Large

X-Large

medium

application GPU need over lifetime

Does not support runtime
configuration changes

Application needs to manage
Multi-GPU

SynerG@CSE Indian Institute of Technology Bombay

GPU
Memory

SM
Cores

CUDA MPS Controller

Process 1 Process 2 Process 3

Fine control of compute and memory
resources for each process.

Nvidia MPS

VM1

CUDA
Application

Virtualized
CUDA Library

Client

CUDA Virtualization
Host

GPU

API Virtualization

VM2

CUDA
Application

Virtualized
CUDA Library

Client

VUDA Stream based spatial
and temporal multiplexing

MPS and API: Software assisted GPU virtualization

50

Application GPU need over lifetime

Does not support runtime
configuration changes

SynerG@CSE Indian Institute of Technology Bombay

VMVMVM

Flyt: software-defined elastic GPU endpoints

51

Dynamic scaling of GPU resources per
application/VM

(vertical scaling)

Transparent GPU server migration
(horizontal scaling)

GPU resource management and isolation
for critical applications within VMs

Goal: Dynamically multiplex, scale, and migrate GPUs across VMs and
applications to optimize utilization and meet SLAs

SynerG@CSE Indian Institute of Technology Bombay

CUDA ApplicationCUDA Application

User Virtual Machine

Flyt VM Agent

CUDA Application

Flyt-client.so

Flyt virtualization
library

Flyt Control
Plane

Server Node with GPU

Flyt GPU
Agent

Flyt virtualization server

cuda library

GPU

Flyt Control Channel

Flyt Cuda Execution Channel

1 2

CUDA API transport
(TCP, shmem, …)

Flyt Architecture

52

3

SynerG@CSE Indian Institute of Technology Bombay

Flyt Server
(GPU 1) Flyt control planeFlyt Client

Flyt workflow (GPU migration)

53

scaling
decision

Network storageFlyt Server
(GPU 2)

Pause client
Create GPU snapshot

Store client GPU data and context
Snapshot complete

Create client GPU server instance and load GPU snapshot
access GPU snapshot

GPU snapshot load complete

Resume client oh new GPU

Remote cuda API call and responses

Send periodic
Application metrics

Request GPU server
metrics periodically

Remote cuda API call and responses

Scale type: vertical, horizontal
GPU resources size
New GPU server

Horizontal
scaling

SynerG@CSE Indian Institute of Technology Bombay

Flyt in action (elastic GPU)

54

Vertical scaling overhead is under 250 milliseconds, while horizontal scaling overhead increases linearly with workload size.

SynerG@CSE Indian Institute of Technology Bombay

Flyt in action (GPU utilization)

55

VM’s GPU resources are not limited to a single GPU but can utilize the overall GPU cluster capacity

Number of applications on VM 2

Number of applications on VM 1

SynerG@CSE Indian Institute of Technology Bombay

Memory and IO efficiency related

56

Singleton: System-wide Page Cache Deduplication in Virtual Environments
HPDC 2012

Share-o-meter: An empirical analysis of KSM based memory sharing in virtualized systems
HiPC 2013

Comparative analysis of page cache provisioning in virtualized environments
MASCOTS 2014

DRIVE: Using implicit caching hints to achieve disk I/O reduction in virtualized environments
HiPC 2014

Per-VM page cache partitioning for cloud computing platforms
Comsnets 2016

Synergy: A Hypervisor Managed Holistic Caching System
TCC 2016

SynerG@CSE Indian Institute of Technology Bombay

 new virtualization mechanisms

dynamic reconfiguration of network endpoints
Vagabond: Dynamic network endpoint reconfiguration in virtualized environments

SoCC 2014

elastic SSD devices for IO caching
SymFlex: Elastic, Persistent and Symbiotic IO Caching in Virtualization Environments

(under submission)

record-replay framework
InSight: A Framework for Application Diagnosis using Virtual Machine Record and Replay

nested migration
Portkey: Hypervisor-Assisted Container Migration in Nested Cloud Environments

57

SynerG@CSE Indian Institute of Technology Bombay

 capacity planning and provisioning

understanding/modeling the VM migration mechanism
Resource Availability Based Performance Benchmarking of Virtual Machine Migrations (ICPE 2013)

Towards a comprehensive performance model of virtual machine live migration (SoCC 2015)

On Selecting the Right Optimizations for Virtual Machine Migration (VEE 2016)

provisioning and placement heuristics
Affinity-aware modeling of CPU usage with communicating virtual machines (JSS 2013, IEEE Cloud 2011)

Risk Aware Provisioning and Resource Aggregation based Consolidation of Virtual Machines (IEEE CLOUD 2012)

Dynamic Resource Management Using Virtual Machine Migrations (IEEE Communications Magazine, September 2012)

benchmarking tool
VirtPerf: A Capacity Planning Tool for Virtualized Environments (IEEE CLOUD 2011)

58

SynerG@CSE Indian Institute of Technology Bombay

 OS & hypervisor intersection

VM introspection based file system metadata and disk IO prefetching optimizations

Stepahead: Rethinking filesystem namespace translations (APSys 2016)

Prewarming of metadata caches of distributed file systems in virtualization environments (on-going)

59

SynerG@CSE Indian Institute of Technology Bombay

acceleration-as-a-service (on-going)

GPU multiplexing mechanisms
Empirical analysis of hardware-assisted GPU virtualization (HiPC 2019)

managing GPU memory to increasing size of trainable neural networks
Dynamic Memory Management for GPU-based training of Deep Neural Networks (IPDPS 2019)

offload hypervisor management tasks to GPU
Catalyst: GPU-assisted rapid memory deduplication in virtualization environments (VEE 2017)

FaaSter: Fast FaaS using heterogeneous GPUs
(HiPC 2021)

Optimizing Goodput of Real-time Serverless Functions using Dynamic Slicing with

vGPUs (IC2E 2021)

60

SynerG@CSE Indian Institute of Technology Bombay

FaaS — function as a service

new abstraction from service provisioning

further decouples service usage from provisioning/management etc.

multiplexing, scheduling

integration with GPUs

smartnic offload

data pipelines for FaaS workflows

serverless workflow application development infrastructure

tools, prototypes, solutions …

Serverless computing/FaaS (on-going)

61

SynerG@CSE Indian Institute of Technology Bombay

design-build-experiment-repeat

We are hiring!

puru@cse.iitb.ac.in

https://www.cse.iitb.ac.in/~puru

62

mailto:puru@cse.iitb.ac.in
https://www.cse.iitb.ac.in/~puru

SynerG@CSE Indian Institute of Technology Bombay 63

64

Optimizing Goodput of Real-time Serverless
Functions using Dynamic Slicing with vGPUs

Chandra Prakash, Anshuj Garg, Umesh Bellur, Purushottam Kulkarni

IEEE International Conference on Cloud Engineering (IC2E 2021)

SynerG@CSE Indian Institute of Technology Bombay

FaaS meets GPU

FaaS --- Function as a service

GPUs are candidates for parallelizing

work and meet function execution

deadlines

ML training using GPUs

Processing of images at scale
 (editing, resizing, transcoding,classification)

Hosting setup

VMs execute functions in

containers

H/W assisted vGPU multiplexing
 (NVIDIA Tesla series) 65

Hardware

Hypervisor

VM

vGPU

GPU

VM

vGPU

VM

vGPU

Host GPU driver

OS Guest GPU driver

f1() f2() f3() fn()

Scheduler

SynerG@CSE Indian Institute of Technology Bombay

Problem description

In nested setups (containers in VM),

vGPU scheduler in VM supports round-robin and FCFS scheduling

vGPUs scheduled using fixed share, equal share or best-effort mechanisms

deadline agnostic!

Determine task size and scheduling order of functions to maximize number

of functions that complete within deadline

Functions (tasks) are not arbitrarily preemptible on GPUs

vGPU capacity is based on work across VMs and is dynamic

66

SynerG@CSE Indian Institute of Technology Bombay

Solution components

1. Kernel slicing and scheduling mechanism
○ Smaller task sizes for generating scheduling events

2. GPU capacity estimator
○ Capacity of GPU is a function of load offered by all VMs

○ Dynamic loads, result in dynamic available capacity

3. Slice size selection + task scheduling
○ Offline heuristic (modified-EDF with adaptive slice sizes)

○ Online heuristic

○ Metrics:

i. #tasks completed before deadline

ii. Minimizing wasted work on GPUs

work-in-progress

67

SynerG@CSE Indian Institute of Technology Bombay 68

FaaSter: Fast FaaS using heterogeneous GPUs

 Anshuj Garg, Shahrukh Hussain, Sriram Y, Riya Baviskar
Purushottam Kulkarni, Umesh Bellur

IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC 2021)

Acceleration-as-a-service

https://ieeexplore.ieee.org/xpl/conhome/9680324/proceeding

SynerG@CSE Indian Institute of Technology Bombay

Problem description

Context
Provide a library of functions to users via the Function-as-a-Service model

The FaaS services relies on GPU backends for compute (image processing, training, mathematical functions etc.)

Resource assumption: Heterogeneous GPU types

Goal
Build a FaaS framework for exploiting heterogeneous GPU backends

Map and schedule function requests to appropriate GPUs to minimize job completion

times and maximize GPU resource utility

69

SynerG@CSE Indian Institute of Technology Bombay

FaaSter architecture

1. Function Library

⇒ Multi-API implementation of functions

2. Dispatch mechanism/logic

⇒ Multiplex an invocation to one of the many backends/hardwares

⇒ Decision for multiplexing

3. Notification mechanism

⇒ Events/Triggers

4. API Usage setup

⇒ how does user invoke the FaaS functionality?

70

User
interface/API

Data
Store

Event
Monitor

Event
Source

Collect/
Store
Data

Accelerator Pool

dGPU HSA Jetson

Fun
ction
s

Dispatcher

Fun
ction
s
Function
Library

Task
slicer

Scheduler Mapper

Reverse
Dispatcher

SynerG@CSE Indian Institute of Technology Bombay

FaaSter solution components

1. Function profiling across multiple GPUs
a. At different slice and input sizes

2. Engineering the end-to-end runtime with all components

3. Design of dispatch logic for high throughput of completed tasks

Decision dependent on

i. current and queued up load at GPUs

ii. function execution characteristics on GPUs

iii. function amenability to slicing

71

SynerG@CSE Indian Institute of Technology Bombay

Takeaways

Acceleration-as-a-service is a first-class service!

Several unique problems at the intersection of cloud systems and acceleration platforms

Problems across the cloud stack

management systems, OS extensions,

APIs for networked applications, building scalable applications,

 acceleration hardware usage and integration …

New and demanding workloads

IoT, ML, phone and mobile computing, robotics and automation,

 virtual desktops with GPUs, …
 … set to to consume the acceleration services

72

Portkey: Hypervisor-Assisted Container Migration in Nested
Cloud Environments

Chandra Prakash, Debadatta Mishra, Purushottam Kulkarni, Umesh Bellur

18th International Conference on Virtual Execution Environments
VEE 2022

73

SynerG@CSE Indian Institute of Technology Bombay

Nested setup and migration

74

 Physical Machine

Application Application
. . .

 Physical Machine

Application Application
. . .

VM VM

 Physical Machine

Application Application

Container Container

VM

. . .

VMVM

 Physical Machine

Application Application

VM VM

VM

. . .

VM

Application on PM
Application in VM

Application in nested VM Application in nested container

➢ Nested containers in VMs employed by cloud providers such as VMware Tanzu, Google Application Engine, Heroku,
Amazon elastic containers.

➢ Migration is key for Load Balancing, Hotspot Mitigation And Server consolidation.

SynerG@CSE Indian Institute of Technology Bombay

Network I/O in virtualized environment

75

Network card

Bridge

TAP

Kernel

Network card

Bridge

QEMU

TAP

Kernel

Virtual
 NIC

Virtio Vhost-net
SR-IOV

* Image source: Red-Hat

Virtual machine

QEMU

Virtual machine

vhost

Virtual machine

SR-IOV PCI device (NIC)

 Virtual
Function

 Hypervisor

 I/O MMU

Physical
Function

 Physical
 NIC driver

SynerG@CSE Indian Institute of Technology Bombay

Motivation and Problem Definition

Goal
Develop a software defined framework to reduce CPU overheads without degrading network
performance for nested container migration

76

#primes checked per second

Setup Source
PM (~%)

Destination
PM (~%)

Native 18 25

Nested 70 115

CPU utilization during quiescent container migration

SynerG@CSE Indian Institute of Technology Bombay

Diskless Migration using CRIU

➢ CRIU collects target process’ memory in several pipes and sends over the network

➢ Maximum size of data per send operation is 4 MB (size of pipe)

➢ With nested setups

○ Data transfer over the network is main cause for high CPU utilization

○ During migration, of ~70% CPU usage at source PM, ~58% is used by the hypervisor
77

Container . . . Container

 Target
container Pipes Network Pipe

 Dump
memory

 Restore
container

 Send Receive

Source host Destination host

SynerG@CSE Indian Institute of Technology Bombay

Possible Solution Approach

➢ Compression of migration data

○ Compression/decompression incurs high CPU overhead and decompression will increase the down

time

➢ Hardware assisted solution (SR-IOV)

○ Additional hardware cost and restrictions such as movement and scalability

➢ Offload network operations of VM to the hypervisor (para-virtualization)

○ Flexible to use without restrictions and additional hardware cost

78

SynerG@CSE Indian Institute of Technology Bombay

Portkey: Hypervisor-Assisted Migration

Portkey CRIU
Alternate implementation of network
operations in user space of VM

Portkey VM Module
Forwards operations initiated by Portkey
CRIU to the hypervisor using custom
hypercalls

Portkey Data Transfer Agent
Performs network operations on behalf
of CRIU

79

SynerG@CSE Indian Institute of Technology Bombay

Overview of send mechanism

80

Container memory

Hypervisor

Container memory

VM

Kernel space

User space

Guest Virtual Address
 (GVA)

 Host Virtual Address
 (HVA)

Address translation

External network

 Send
operation

Hypercalls

SynerG@CSE Indian Institute of Technology Bombay

➢ Reduce address translation overheads

○ Pre-allocated contiguous memory in the guest OS is used as auxiliary memory

➢ Avoid I/O blocking at the hypervisor

○ Used non-blocking network operations and error handling inside VM

➢ Reduce VM-hypervisor interaction

○ Estimate and provide delay between send operations inside VM

○ Send maximum amount of data per hypercall without breaking CRIU protocol

Challenges

81

SynerG@CSE Indian Institute of Technology Bombay

Fixed Mapping and Adaptive Send Rate

 Adaptive send rate to reduce hypecall invocations

Portkey estimates available bandwidth at source PM
Adjusts delay between consecutive send operations

Available bandwidth = 1 Gbps, Data size = 4 MB,
Empty space in send buffer = 3 MB

Estimated delay = (4-3) MB/ 1 Gbps = 7.8 ms
(for 1 MB to be added to send buffer)

GPA

HVA

Pipe

Hypervisor
 (PM)

GVA

Kernel
space

User
space

Contiguous fixed mapping

Auxiliary
memory

Contiguous fixed mapping requires single address translation
(GVA→GPA→HVA)

Hypervisor
 (PM)

GVA

GPA

HVA

Kernel
space

User
space

Pipe

Non-contiguous memory in pipe

VM VM
Pipe

GPA

82

SynerG@CSE Indian Institute of Technology Bombay

Portkey send mechanism

83

Fixed mapping

Non-blocking
 send.

Adaptive
send rate

SynerG@CSE Indian Institute of Technology Bombay

Evaluation questions

➢ How effective is Portkey in reducing CPU utilization, compared to virtio (with
vhost-net kernel module) and SR-IOV?

➢ Does Portkey allocates saved CPU to applications (work conserving)?

➢ How effective is proposed adaptive send mechanism?

➢ What is the extent of impact of Portkey on the migration metrics (Predump time,
Dump time, and performance of application under migration)?

84

SynerG@CSE Indian Institute of Technology Bombay

Efficacy of Portkey in Ideal Condition

CPU utilization at source PM
CPU utilization at destination PM

➢ CPU utilization is close to native setup in case of Portkey without impacting migration time

➢ Ideal condition: Migrate a quiescent container without any resource constraint.

85

Synergy: A Hypervisor Managed Holistic Caching System

Debadatta Misha, Purushottam Kulkarni

IEEE Transactions on Cloud Computing 2016

86

SynerG@CSE Indian Institute of Technology Bombay

 causes of memory usage inefficiency

multiple/redundant copies of content in memory

page/disk caches in VM and hypervisor

multiple VMs with same OS/applications

conflicting management mechanisms

ballooning vs. sharing

shared pages if ballooned have no effect

infact reduce sharing and decrease memory efficiency

87

SynerG@CSE Indian Institute of Technology Bombay

 examples of conflicting memory mgmt. actions

shared pages on reclamation allocate

a new page!

no mechanism for system-wide deduplication

88

SynerG@CSE Indian Institute of Technology Bombay

 Synergy: A Hypervisor Managed Holistic Caching System
 TCC 2016

(exclusive) hypervisor caching

+

KSM (same page merging)

for

- retaining shared pages on ballooning

- system-wide deduplication of all

 memory

- system-wide memory provisioning

89

SynerG@CSE Indian Institute of Technology Bombay

 system-wide dedup with Synergy

balloon inflation/deflation across

different VMs

memory utilization between 350 MB

to 450 MB

Synergy resharing allows system-wide

utilization to stay ~400 MB

90

