
CS695 (Spring 2024-25)
virtio inside-out

1. Introduction
The VirtIO Specification defines a communication framework that enables the creation of a direct
communication channel between a virtual device in a VM and a corresponding physical device on the
host system.

A functional VirtIO device must have two logical components:
Backend VirtIO Device: Implemented in the VMM (i.e. QEMU) in Host user-space.

- Passes the I/O request received from Front-End Driver to the Host Device and returns the results
back to the Guest.

- The QEMU implementation of the VirtIO Standard enables developers to define emulations
(virtual backends) using functions defined in <qemu/virtio.c>, <qemu/virtio-pci.c>,
<qemu/virtio-rng.c>

Front-End VirtIO Driver: A Kernel module loaded into the guest OS.

- Accepts I/O requests from guest user-space and passes them to the Backend VirtIO device.
Finally, it retrieves the results of the request and passes them back to user-space.

- The Linux implementation of the Virtio Standard enables developers to create drivers for
paravirtualized devices using the Virtio API, defined in <linux/virtio.c>, <linux/virtio-rng.c> in
kernel source.

 Fig 1. Logical Components of a VirtIO-based IO-virtualization solution.1

Central to the VirtIO Standard is the notion of a shared, managed memory region between a guest and
QEMU, represented by a data structure called the VirtQueue.

- The Linux Kernel and QEMU implement APIs for the management and updation of these queues
to implement the driver-device dataplane.

1 IBM VirtIO Reference https://developer.ibm.com/articles/l-virtio/

https://developer.ibm.com/articles/l-virtio/

2. Virtqueue Architecture
The VirtQueue is a nested data structure that implements a VRing, located in a shared page in guest
physical memory, used to transfer data between device-driver pair i.e. between QEMU (a host user
process) and driver (a guest kernel module/process). Many VirtIO devices initialize several VirtQueues.
The virtqueues and their semantics are highly device-specific.

VRings are of three kinds: Descriptor Ring (Descriptor Area), Available Ring (Driver Area), and Used
Ring (Device Area). The entries in the descriptor ring point to actual data buffers. Entries in the available
ring point to descriptor ring entries. Analogous to the available ring, used ring entries point to descriptors
whose data buffers have been accessed (read/written) by the backend device.

Usage
The VRing s can be thought of as metadata structs with flags that enforce read/write permissions for the
device and driver. The descriptor ring is fundamental as its entries contain references to the actual
shared data buffers in guest physical memory. The Available and Used Rings are more involved in the
metadata management.

- The front-end driver (in the guest kernel) is the only entity that can add (write) descriptor entries
and available ring entries to the descriptor and available rings respectively.

- The backend device (in QEMU) is allowed to read from and write to the data buffer pointed to by
a descriptor only if there is an entry in the available ring that points to that descriptor ring entry.

- Opposite to the available ring, only the backend device can configure and add entries to the used
ring while the corresponding FE driver can only read from it.

To make a request to a device, the front-end driver will first create a descriptor entry, write to its buffer,
add an entry to the available ring that references that descriptor entry, and finally notify the device of an
update (i.e. new i/o request) via a virtqueue kick, which is simply a write to a pre-registered mmio region.

- On adding a new entry in the available ring, the backend device can begin processing the request
by reading data written to the descriptor buffer by the driver. (Note that processing is done via
host hardware, triggered by the path: QEMU VirtIO device backend → host kernel device driver
→ host device path).

- On completion of request processing, the backend-device will write to the descriptor buffer, and
add an entry to the used ring that references the descriptor entry containing the device response,
and notifies the guest through a virtual interrupt.

- The driver then follows the used ring entry and this copies back the newly-written device
response back into the Guest kernel space (and subsequently into Guest User-Space).

The Linux and QEMU VirtIO APIs enable a developer to implement the above functionality. Writing
your own VirtIO device for QEMU requires an understanding of the QEMU and Linux VirtIO APIs, the
QEMU Object Model and the QEMU build system.

3. QEMU Build-System Architecture
“The QEMU build system has two stages; first the developer runs the configure script to
determine the local build environment characteristics, then they run “make” to build the project”

In-Tree vs Out-of-Tree Build: The main difference is the location that the various generated/compiled
QEMU files are stored once the build procedure has run successfully. Out-of-tree builds are
recommended because they reduce clutter in the main QEMU source, and also allow for several flavours
of QEMU to be built (i.e. with/without optional features, etc.)

- Create a new directory in the QEMU root directory, and call the QEMU configure script from
there. Calling the configure script from the root directory will generate an in-tree build.

The configure script both detects your systems characteristics and also allow the developer to specify
certain build options (i.e. configure your build). ./configure --help prints a long list of options, but the
most crucial one is setting the target-list which informs the QEMU build system which architectures must
be emulated by the built QEMU executable.

- Note that a single QEMU executable can emulate a single architecture only. Therefore the
target-list configuration effectively limits the number of executables that are generated by the
build process.

The configure script also generates Makefile fragments (config-host.mk) etc that specify the GCC
compiler to be used. Since the QEMU build procedure also uses Meson, a python-based build system
comparable to CMake, the configuration step also creates a virtual Python environment for the Meson
code. Meson is invoked to perform the actual configuration step for the emulator build.
The ./configure --help option displays two kinds of targets, namely <arch>-linux-user and
<arch>-softmmu, referring to user-mode and full-system emulation executables respectively.

- Note that QEMU can be built on platforms with KVM and without KVM. On non-hardware
accelerated platforms, QEMU performs binary translation of every instruction encountered, via its
TCG (Tiny Code Generator) subsystem. TCG ensures that even sensitive instructions are
translated to appropriate host architecture instructions without a VM exit. When built with
KVM-enabled configuration, the default VM-Exit to KVM path is taken.

User-Mode Emulation: In this mode, QEMU can launch processes compiled for one CPU on another
CPU. The emulation is performed using TCG only. The user-mode emulator is of the type qemu-<arch>.
Full-System Emulation: QEMU’s system emulation provides a virtual model of a machine (CPU, memory
and emulated devices) to run a guest OS. It supports a number of hardware accelerators as well as a JIT
through the Tiny Code Generator (TCG) capable of emulating many CPUs. The system emulator is of the
type qemu-system-<arch>.

https://www.qemu.org/docs/master/user/index.html#user-mode-emulation
https://www.qemu.org/docs/master/user/index.html#user-mode-emulation
https://www.qemu.org/docs/master/system/index.html#system-emulation

4. QEMU Execution Model
QEMU is invoked from the command-line with various options that define characteristics of the desired
virtual machine. A minimal QEMU command-line would have options specifying Machine model, RAM,
CPUs, NIC, Boot Disk, and possibly SSH port forwarding.

- Available options can be discovered through the --help suffix

Fig 2. A minimal QEMU command-line invocation.

Upon successful invocation, QEMU runs as a user process on the host machine. The source code entry
point is qemu_init() defined in <qemu/vl.c>. As part of initialization, QEMU parses the command line
options and performs a set of actions, leading to the creation of a massive state object associated with
the MachineClass. This machine state contains references to heap structs that represent emulated
buses, virtual devices, and sets of MemoryRegion objects to represent various physical memory
mappings visible to the guest. (ex. MMIO regions for PCIe devices).

Fig 3. Components of a QEMU process (2016)2
Besides initializing MemoryRegions and their read/write callbacks, the initialization procedure also
performs several KVM ioctl calls to register relevant machine state (MMIO address ranges, interrupt
number mappings) with the KVM kernel module. This procedure terminates with the creation of
pthreads that represent KVM vCPU threads.

- Each vCPU thread is blocked on the ioctl(KVM_RUN)while the CPU executes guest
instructions.

At this stage, machine initialization is complete, and QEMU enters its main event loop. The QEMU Main
Loop is generally blocked polling sets of file descriptors for events, and triggers pre-registered event
callbacks. The guest machine is now running.

Depending on the current guest instruction and the QEMU-KVM initial configuration, a VM-Exit to KVM
may lead either to:

2 See blog by QEMU maintainer for the most recent (2024) design.
https://blog.vmsplice.net/2024/01/qemu-aiocontext-removal-and-how-it-was.html

https://blog.vmsplice.net/2024/01/qemu-aiocontext-removal-and-how-it-was.html

a. Return from KVM_RUN with EXIT_REASON_MMIO or EXIT_REASON_IO to vCPU thread
handler.

b. A signal to a file-descriptor monitored by the QEMU main loop, while the vCPU thread is still
blocked on KVM_RUN. This mechanism is used to implement virtual interrupts and is referred to
as the irqfd/ioeventfd mechanism.

5. QEMU VirtIO Devices
The QEMU hypervisor is responsible for providing a view of every device to the guest. QEMU comes
with several virtual devices (accessible via $QEMU --device help) already implemented using
specific QEMU APIs and semantics. Therefore, for a new virtual device to be exposed to a QEMU guest,
it is necessary to first ensure that the QEMU hypervisor itself is aware of this device.
QEMU devices come in two parts:

a. a backend which does the actual work (blk, net, etc)
b. a transport which handles how that is exposed to the guest (pci, mmio, s390 channel

controller, etc).

Usage
Upon successful addition of a new device backend to QEMU (followed by a recompilation), a device can
be attached to the Virtual Machine in two ways:

- At VM boot time via the `-device` option during the `$QEMU` invocation.
- Via "hot-plugging" after boot using the QEMU Monitor via the `device_attach

<device-tag>` command.
The result is that the guest now has a view of the device using the lspci command. Subsequent
accesses from the guest are driven by a frontend-driver that is bound to a particular device.

Note on the QEMU Object Model
Every QEMU device consists of a backend and a transport (bus). QEMU represents each through a
hierarchy of classes and drives the recursive instantiation of this hierarchy during qemu_init(). The
call order is [[#.class_init() -> #.instance_init()]] -> #.realize()

Each QEMU entity (devices and buses are entities) has a .c file that defines a struct TypeInfo. The
struct TypeInfo of the current entity also contains the string name of its #.parent, thus defining
an inheritance hierarchy spread across several source files. Methods of a parent class are inherited by
every child.

Besides the inheritance hierarchy, the .c file also defines the #.class_init(),
#.instance_init(), and #.realize() methods for that entity. Each of these methods has a
specific purpose in the QEMU device creation procedure.

- The class_init() method of each struct TypeInfo is recursively called at the very start of
$QEMU invocation, through the type_init() function which is really a constructor. This
effectively converts an unusable QEMU entity (TypeInfo struct) to a OOP-like Class definition.

- The instance_init() method is called when device creation is requested via device_add or via
command-line argument.

Fig 11. QEMU’s TypeInfo hierarchy for Buses. The Bus hierarchy for VirtIO devices over PCI is
highlighted. Unless your device uses the virtio-mmio bus (only available on the microvm machine), it is
necessary to be attached to the VIRTIO_PCI_BUS.

Fig 12. QEMU’s TypeInfo hierarchy of Device backends and PCI bindings. The PCI bindings .c file
is used to define a “has-a” relationship between the TYPE_VIRTIO_DEMO_PCI and the
TYPE_VIRTIO_DEMO_DEVICE classes.

Fig 13. Linkage between the PCI bindings and the virtio device. VirtIODemo is an instance of the
TYPE_VIRTIO_DEMO_DEVICE class. VirtIODemoPCI is an instance of the TYPE_VIRTIO_DEMO_PCI
class. Every VirtIO PCI device must define this struct in its PCI-bindings file.

6. Writing a VirtIO Backend (After applying the helper patches)

(a) Build System Changes
qemu/hw/virtio/Kconfig: VirtIO KConfig
qemu/hw/virtio/meson.build: VirtIO subsystem build rules
In general, Kconfig files are used to assign boolean values (true/false) to Makefile variables by
defining several dependencies. In QEMU, the meson build system uses the truth of these CONFIG_*
variables to conditionally generate Make targets.

- select sets a variable to True.
- depends on defines a dependency - the default value is overridden by the truth value of the

dependency.

Fig 9. VIRTIO_DEMO device depends on Fig 10. CONFIG_VIRTIO is always set.

 the target built by meson when
CONFIG_VIRTIO is set.

Once it is established that CONFIG_VIRTIO_DEMO will evaluate to true, we add meson build rules to
conditionally compile device-specific targets.

Fig 11. Adding two new targets to the qemu build.

(b) Defining core device functionality
qemu/hw/virtio/virtio-demo-pci.c: PCI bindings file
hw/virtio/virtio-demo.c: Device file
include/hw/virtio/virtio-demo.h, Device file header
include/standard-headers/linux/virtio_demo.h Device features header

Step 1: Get QEMU to recognize the name of your PCI device.

Fig 7. Creating a TypeInfo struct for your new virtio device. Added to a type-table.
$QEMU –device help queries this table.

Step 2: Define a struct to represent your device backend
Changes to: virtio-<device_name>.h

Step 3: Setup a PCI-bindings struct to allow your device to attach to the Virtio-PCI bus

Step 4. Define a set of properties for your device

Fig 17. Defining a set of properties for the virtio bindings class. Every VirtIOPCIProxy object will
have these properties

Step 5: Define #.class_init() method to create a useable OOP class from TypeInfo struct
The class_init() defines the attributes and methods that this upcoming OOP class has. In effect, it is a
C++ class definition.

Fig 15. The class_init() of any custom virtio device will always have direct access to the
class definitions of parent classes. This allows the class_init() of the pci-bindings file to assign values
to attributes of parent classes, and also add new properties to classes.

Step 6: Enable successful device “attach” to the Virtio-PCI bus
Successful device attach requires two key steps: Creating an instance of the device backend, and
qdev_realize() of the device backend. Since our entry point to device creation is the -pci binding, we
must ensure that the #.instance_init() of the pci binding triggers the creation of an instance of the
associated virtio backend.

Fig 18. Step 1 of device attach - #.instance_init(). Any additional properties that were assigned
during class_init will be a part of the dev->vdev instance.

Fig 19. Step 2 of device attach - #.realize() -> qdev_realize(). The bus type was linked to the
VirtIOPCIProxy device after #.instance_init() but before #.realize(). The #.realize() was called by
qdev_realize() in main QEMU code.

While the above sequence sets up the pci-bindings framework correctly, it is still incomplete. The reason
is simple - we have not defined a class to represent our backend device yet. Therefore, the device_add
procedure will fail when it tries to init an instance of device backend. To fix, we must create a secondary
source file, virtio-xblk.c

(c) Implement control and data-planes

(d) Miscellaneous Actions
Add device name to the virtio names list

Add features to qmp-monitor to be able to query virtio-device status

virtio_queue_notify_vq (
Virtio_pci_notify (called on virtio_notify in guest)

Each entity in the QEMU hypervisor - cpu, devices, buses is implemented as a hierarchy of
related/dependent classes (structs), each with class_init(), instance_init() and realize()
methods. Every entity in QEMU is derived from the TYPE_OBJECT class - and the classes representing
a virtual device entity are no different.

The pattern is simple: Each source defines a QEMU class via a TypeInfo struct. The developer
specifies inheritance via the .parent attribute. The base Object class itself is defined as a TypeInfo
struct.

All modern devices should be represented as a derived QOM class of TYPE_DEVICE. The QEMU
device API introduces the additional methods of @realize and @unrealize to represent additional stages
in a device object’s life cycle.

To implement a custom device backend for QEMU, one must override the default TYPE_DEVICE init
methods. Our goal is to implement a VirtIO device over the PCIe bus. QEMU provides two helper classes
for this purpose - the virtio-device and pci-device classes.

1. Register the TypeInfo with TypeImpl.
2. Instantiate the ObjectClass. (class_init)

3. Instantiate the Object.: Using object_new(typename) a new Object derivative will be
instantiated from the type. (intance_init)

4. Add properties.

Mechanics of VirtIO Device Emulation

Fig 5. Mechanics of a QEMU VirtIO device emulation.
(i) The KVM_IOEVENTFD ioctl is called during QEMU initialization to associate guest physical address
ranges (MMIO addresses) with KVM eventfd_ctx in the kernel as part of the ioeventfd setup.
(ii) QEMU spawns pthreads that are blocked in the KVM_RUN ioctl until a VM-Exit occurs due to a
non-ioeventfd event.
(iii) (at this stage, the backend has been created, device has been attached, driver probe has completed)
To send a message over the virtqueue, the FE driver uses virtqueue_add_sgs() specifying in_bufs and
out_bufs as scatter-gather lists in guest kernel space.
(iv) The virtual machine requests I/O through the VirtIO Device Driver. The VirtIO Device Driver triggers
exit to KVM through: virtqueue_kick() -> virtqueue_notify() ->
iowrite16(vq->index, (void __iomem *)vq->priv)

(iii) KVM wakes up QEMU's Main Loop again using the `ioeventfd` mechanism.
(iv, v) The woken up QEMU enters device emulation and writes I/O data in the VirtQueue to the actual
I/O Device and writes the response back to Virtqueue.
(vi, vii, viii) After that, QEMU tells the KVM Module to inject a Virtual IRQ to the Guest (at some vCPU
thread) through `irqfd`, thereby completing the virtual machine's I/O processing. The irqfd virtual interrupt
will be visible through `cat /proc/interrupts` in the guest.

a. QEMU declares a memory region(but does not allocate ram or commit it to kvm)
b. Guest’s first access the MMIO address, cause an exit to KVM with

EXIT_REASON_EPT_VIOLATION
c. KVM constructs the EPT page table and marks the page table entry with a special flag (110b).

(see kvm_mmu_set_ept_masks())
d. Later the guest access these MMIO, will also cause an exit to KVM, but with

EXIT_REASON_EPT_MISCONFIG
i. The handler for EXIT_REASON_EPT_MISCONFIG at the guestPA will result in an

`eventfd_signal()` on a fd that was previously registered by QEMU.

6. VirtIO API Descriptions

Talk about in_sg, out_sg description

DRIVER_SIDE

sg_init_one():
- Given a kernel-allocated physically contiguous region (storing custom struct, array of ints etc.),

create a scatter-gather list containing 1 scatter-gather (sg) entry. Each sg entry is now linked to a
fixed mem region in kernel space.

virtqueue_add_sgs():

- Given a list of sg entries for outgoing data (outbufs) and empty buffers to store any device-written
data (inbufs), and an associated `token`, this function creates descriptor chains, stored in the
descriptor ring of the specified virtqueue and updates the available ring according to virtio spec.

- A single sg entry would create a single descriptor.

virtqueue_get_buf():

- Looks up the used ring, updates metadata. Finally, returns a pointer to the updated driver `token`
that was registered via _add_sgs().

Virtio spec asserts that a descriptor entry must have a GPA to some buffer. This "buffer" is really just the
struct that was previously contained in the sg entry.

DEVICE-SIDE
The `VirtqueueElement` is the representation of a message in the virtqueue. It contains references to the
actual sg_in and sg_out, i.e. driver-initialized sg buffers meant to be written to and read from resp. by the
device.

iov_from_buf():

- adds a device buffer to the specified sg-entry. The device backend will have written directly to the
memory location of guest response inbuf through the DMA mapping created by the virtio
subsystem.

https://elixir.bootlin.com/linux/v6.8.1/C/ident/kvm_mmu_set_ept_masks

virtqueue_push() :
- Writes descriptor metadata to the used ring. A virtqueue_get_buf() in driver will consume this.

Appendix

Downloading And Building QEMU
We choose the latest QEMU 9.2.1 (Feb 2025)
QEMU can be built with a vast set of optional features that can be configured at build time by the
developer. These features require additional sudo apt install-able libraries that are subsequently
linked with the built QEMU executable.

- Example: sudo apt-get install libnfs-dev libiscsi-dev for newer versions of
debian/ubuntu.

Besides these optional features, QEMU also relies on several other open-source projects that are
referenced via git submodules.

- Some modules (e.g. ui/keycodemapdb) are compulsory for all builds, while other modules
(e.g. dtc) are optional depending on build config & host system. When ./configure runs it
will determine which submodules are to be used and print a list of them in the summary output.

Legacy v/s Modern Devices
QEMU devices are identified by a <PCI_VENDOR_ID, DEVICE_ID> pair. `pci-ids.rst` provides a list of
reserved device-ids. The device-ids are the mechanism by which the guest drivers are chosen for a
particular device.

a. For example, the 1000 -> 10ff device ID range is used for virtio-pci devices. The guest kernel is
aware of this range and during boot, the driver-devices are bound to the `virtio-pci` kernel
module. In the demo kernel image, virtio-pci is compiled into the kernel itself.

b. For an experimental device, the 1af4:10f0 to 1a4f:10ff range is recommended. These device ids
are not bound to any driver by default. Therefore it is necessary to implement a new front-end
driver as well.

In practice, ids for modern devices are computed and assigned by QEMU.

virtio_legacy_allowed()

- set device to legacy, then specify the device-id using a #define.
- exposes both PIO and MMIO region to guest.

If the disable-legacy=on option is passed to qemu monitor, the device-id is calc by qemu itself.

- Modern devices only expose MMIO regions to guest

Useful Monitor Commands
From QEMU monitor
`info virtio`, followed by
`info virtio-status <device_machine_str>`
`info virtio-queue-status <device_machine_str> <queue_index>`
`info mtree -f`: To tell if an MemoryRegion is registered in KVM (see kvm_int.h)

https://wiki.qemu.org/Documentation/GitSubmodules

QEMU Object Model

Each entity in the QEMU hypervisor - cpu, devices, buses is implemented as a hierarchy of
related/dependent classes (structs), each with class_init(), instance_init() and realize()
methods. Every entity in qemu is derived from the Object class - and the classes representing a virtual
device entity are no different.

Fig 3. Definition of the TYPE_OBJECT base class.
The pattern is simple: Each file defines a class via a
TypeInfo struct. The developer specifies inheritance
via the .parent attribute. The Object class itself is
defined as a TypeInfo struct.

Fig 4. Definition of the QEMU
TYPE_DEVICE class. Every qemu virtual
device is represented as a hierarchy of
classes that are derived from the Device
class. Similar to the Object class, the Device
class has its own definition as well.

QEMU emulates a variety of devices - each class
derives from the `TYPE_DEVICE` class.

Usually, devices that conform to a standard (PCIe,
SCSI, etc) also have their own buses (which
themselves are represented as a hierarchy of
subclasses of `TYPE_BUS`)

Therefore, a QEMU virtual device is defined by its
`<device_info, bus_info>` pair. Note that depending on
the device, the `device_info` and `bus_info` class
hierarchy may be defined across several source files.

Fig 5. QEMU code snippet showing the bus-device TypeInfo

heirarchy for all QEMU PCI devices.

All modern devices should be represented as a derived QOM class of TYPE_DEVICE. The device API
introduces the additional methods of @realize and @unrealize to represent additional stages in a device
object’s life cycle.

To implement a custom device backend for QEMU, one must override the default TYPE_DEVICE init
methods. Our goal is to implement a VirtIO device over the PCIe bus. QEMU provides two helper classes
for this purpose - the virtio-device and pci-device classes.

5. Register the TypeInfo with TypeImpl.
6. Instantiate the ObjectClass. (class_init)
7. Instantiate the Object.: Using object_new(typename) a new Object derivative will be

instantiated from the type. (intance_init)
8. Add properties.

At QEMU startup, all TypeInfo structs are registered as TypeInfo structs in a map via the
type_register() constructor. Therefore the class_init(), instance_init() and _realize() methods are
associated with each class, indexed by the class name. Every TypeInfo must have a class_init()
method defined.

Each class has an associated hash table of properties (attributes) with getters and setters, specified in
the class_init() function. These can be set via helper macros and device_class_set_props().
Most classes also have a _realize() method. At QEMU initialization time, the class_init() method of every
Type is called. (starting with object_class_init(), device_class_init(), etc.

References
https://web.archive.org/web/20210921171542/http://blog.vmsplice.net/2011/03/qemu-internals-overall-arc
hitecture-and.html
https://web.archive.org/web/20210923215006/https://ssup2.github.io/theory_analysis/IO_Virtualization_S
oftware/
https://insujang.github.io/2021-03-10/virtio-and-vhost-architecture-part-1/
https://www.redhat.com/en/blog/virtqueues-and-virtio-ring-how-data-travels
https://stackoverflow.com/questions/65194712/in-which-conditions-the-ioctl-kvm-run-returns
https://docs.kernel.org/virt/kvm/api.html
https://fosdem.org/2025/events/attachments/fosdem-2025-5100-can-qemu-and-vhost-user-devices-be-us
ed-on-macos-and-bsd-/slides/238480/FOSDEM_20_O6dJsKR.pdf
https://lists.endsoftwarepatents.org/archive/html/qemu-discuss/2023-07/msg00019.html
https://blog.vmsplice.net/2024/01/qemu-aiocontext-removal-and-how-it-was.html

Diagram:
https://docs.google.com/presentation/d/1XVj3-xTipVv0eLgL2QUTKFFFvLZDilmTyUxpT2rFZpg/edit?usp=
sharing

https://web.archive.org/web/20210921171542/http://blog.vmsplice.net/2011/03/qemu-internals-overall-architecture-and.html
https://web.archive.org/web/20210921171542/http://blog.vmsplice.net/2011/03/qemu-internals-overall-architecture-and.html
https://web.archive.org/web/20210923215006/https://ssup2.github.io/theory_analysis/IO_Virtualization_Software/
https://web.archive.org/web/20210923215006/https://ssup2.github.io/theory_analysis/IO_Virtualization_Software/
https://insujang.github.io/2021-03-10/virtio-and-vhost-architecture-part-1/
https://www.redhat.com/en/blog/virtqueues-and-virtio-ring-how-data-travels
https://stackoverflow.com/questions/65194712/in-which-conditions-the-ioctl-kvm-run-returns
https://docs.kernel.org/virt/kvm/api.html
https://fosdem.org/2025/events/attachments/fosdem-2025-5100-can-qemu-and-vhost-user-devices-be-used-on-macos-and-bsd-/slides/238480/FOSDEM_20_O6dJsKR.pdf
https://fosdem.org/2025/events/attachments/fosdem-2025-5100-can-qemu-and-vhost-user-devices-be-used-on-macos-and-bsd-/slides/238480/FOSDEM_20_O6dJsKR.pdf
https://lists.endsoftwarepatents.org/archive/html/qemu-discuss/2023-07/msg00019.html
https://blog.vmsplice.net/2024/01/qemu-aiocontext-removal-and-how-it-was.html
https://docs.google.com/presentation/d/1XVj3-xTipVv0eLgL2QUTKFFFvLZDilmTyUxpT2rFZpg/edit?usp=sharing
https://docs.google.com/presentation/d/1XVj3-xTipVv0eLgL2QUTKFFFvLZDilmTyUxpT2rFZpg/edit?usp=sharing

	CS695 (Spring 2024-25)virtio inside-out
	1. Introduction
	2. Virtqueue Architecture
	Usage

	3. QEMU Build-System Architecture
	4. QEMU Execution Model
	5. QEMU VirtIO Devices
	Usage
	Note on the QEMU Object Model
	(a) Build System Changes
	(b) Defining core device functionality
	Step 1: Get QEMU to recognize the name of your PCI device.
	Step 2: Define a struct to represent your device backend
	Step 3: Setup a PCI-bindings struct to allow your device to attach to the Virtio-PCI bus
	Step 4. Define a set of properties for your device
	Step 5: Define #.class_init() method to create a useable OOP class from TypeInfo struct
	Step 6: Enable successful device “attach” to the Virtio-PCI bus

	(c) Implement control and data-planes
	(d) Miscellaneous Actions

	
	
	Mechanics of VirtIO Device Emulation
	6. VirtIO API Descriptions

	Appendix
	Downloading And Building QEMU
	Legacy v/s Modern Devices
	Useful Monitor Commands
	QEMU Object Model
	QEMU emulates a variety of devices - each class derives from the `TYPE_DEVICE` class.Usually, devices that conform to a standard (PCIe, SCSI, etc) also have their own buses (which themselves are represented as a hierarchy of subclasses of `TYPE_BUS`)Therefore, a QEMU virtual device is defined by its `<device_info, bus_info>` pair. Note that depending on the device, the `device_info` and `bus_info` class hierarchy may be defined across several source files.

	References

