
Profiling and Modeling Resource Usage of
Virtualized Applications

Timothy Wood1, Ludmila Cherkasova2, Kivanc Ozonat2, and Prashant Shenoy1

1 University of Massachusetts, Amherst, {twood,shenoy}@cs.umass.edu
2 HP Labs, Palo Alto, {lucy.cherkasova,kivanc.ozonat}@hp.com

Abstract

Next Generation Data Centers (NGDC) are transforming labor-intensive, hard-coded
systems into shared, virtualized, automated, and fully managed adaptive infrastruc-
tures. Virtualization technologies promise great opportunities for reducing energy and
hardware costs through server consolidation. Moreover, virtualization can optimize
resource sharing among applications hosted in different virtual machines to better
meet their resource needs. However, to safely transition an application running natively
on real hardware to a virtualized environment, one needs to estimate the additional
resource requirements incurred by virtualization overheads.

In this work, we design a general approach for estimating the resource requirements
of applications when they are transferred to a virtual environment. Our approach
has two key components: a set of microbenchmarks to profile the different types of
virtualization overhead on a given platform, and a regression-based model that maps
the native system usage profile into a virtualized one. This derived model can be used
for estimating resource requirements of any application to be virtualized on a given
platform. Our approach aims to eliminate error-prone manual processes and presents a
fully automated solution. We illustrate the effectiveness of our methodology using Xen
virtual machine monitor. Our evaluation shows that our automated model generation
procedure effectively characterizes the different virtualization overheads of two diverse
hardware platforms and that the models have median prediction error of less than 5%
for both the RUBiS and TPC-W benchmarks.

1 Introduction

Virtualization and automation are key capabilities of Next Generation Data
Centers (NGDC), promising to create a more agile and dynamic IT infrastruc-
ture. Virtualization separates the hardware owner from the application owner
– allowing system configuration, monitoring, and management to be homoge-
nized and automated across the data center. While masking the details of server
resources from users, virtualization can optimize resource sharing among appli-
cations hosted in different virtual machines via the ability to quickly repurpose
server capacity on demand, and hence better meet the needs of applications and
respond more effectively to changing business conditions.

In NGDC, where server virtualization provides the ability to slice larger,
underutilized physical servers into smaller, virtual ones, fast and accurate perfor-
mance models become instrumental for enabling applications to be consolidated,
optimally placed and provided with the necessary resources. In order to evaluate
which workloads can be consolidated to which servers, some capacity planning
and workload analysis must be done. In the simple naive case, the service
provider may estimate the peak resource requirements of each workload and then
evaluate the combined resource requirements of a group of workloads by using the

sum of their peak demands. However, such an approach can lead to significant
resource over-provisioning since it does not take into account the benefits of
resource sharing to accommodate the complementary workload patterns. A more
promising and accurate approach for the design of workload placement services
employs a trace-based approach that assesses permutations and combinations of
workload patterns in order to determine the optimal stacking functions [25, 27,
10]. Under this approach, a representative application resource usage profile is
gathered over some time period (typically 3-6 months). Then these traces are
used for capacity planning and workload placement in workload consolidation
exercises (see existing commercial tools [14, 34]). The general idea behind trace-
based methods is that the historic traces that capture past application demands
are representative of the future application behavior.

However, capacity planning when transitioning to a virtual environment
poses additional challenges due to overheads caused by the virtualization layer.
These overheads depend on the type and implementation specifics of the virtual-
ization solution [29, 37, 17, 5]. Often, the “amount” of CPU overhead is directly
proportional to the “amount” of performed I/O processing [7, 11]. Current trace-
based capacity planning and management solutions have the capability to scale
workload traces by a specified CPU-multiplier to account for hardware changes
between platforms, but this form of scaling may not be effective when moving
to a virtualized platform which can exhibit very different levels of overhead
depending on the rate and type of I/O being performed by an application.

In this work, we design a general approach for estimating the CPU require-
ments of applications when they are transferred to a virtual environment.

Our approach has the following key components:
– A selected set of microbenchmarks to profile the different types of virtualiza-

tion overhead on a given platform. This microbenchmark suite is executed on
the native hardware and in a virtualized environment to create two resource
usage profiles: i) native and ii) virtualized;

– Using a regression-based approach we create a model that maps the native
system usage profile into the virtualized one. This model helps to predict the
resource requirements of any application on that platform.
The correct execution phase of the microbenchmark suite is a prerequisite for

building an accurate model between native and virtualized platforms. If some
microbenchmarks have malfunctioned or collected data were corrupted then it
can inevitably impact the model outcome. We perform an additional analysis to
filter out microbenchmark data with high error against the obtained regression-
based model. Then, a more accurate model is created by using the reduced data
set. We also can rerun identified “failed” or “malfunctioned” microbenchmarks
and repeat the analysis phase. Such an approach aims to eliminate error-prone
manual processes in order to support a fully automated solution.

We illustrate the effectiveness of our methodology using Xen virtual machine
monitor [5]. The evaluation shows that our automated model generation proce-
dure effectively characterizes the different virtualization overheads of two diverse
hardware platforms and that the models have a median prediction error of less
than 5% for both the RUBiS [3] and TPC-W [31] benchmarks.

2 Problem Definition

Server consolidation is an approach to reduce the total number of servers in
response to the problem of server sprawl, a situation in which multiple, under-
utilized servers take up more space and consume more resources than can be
justified by their workloads. Virtual Machine Monitors (VMMs) enable diverse
applications to run in isolated environments on a shared hardware platform, and
provide a degree of fault and performance isolation between the applications.

A typical approach for evaluating which workloads can be efficiently con-
solidated together is based on multi-dimensional “binpacking” of resource usage
traces. Under such an approach, each application is characterized by its CPU, I/0
and memory usage over time. Then a binpacking algorithm finds a combination of
workloads with resource requirements which do not exceed the available server
resources. After the initial workload placement, specialized workload manage-
ment tools are used[15, 13] to dynamically adjust system resources to support
the required application performance.

In our work, we are concerned with the initial workload placement phase that
requires as an input the application resource usage traces in virtual environment.
Resource requirements (in particular, CPU requirements) can increase due to
virtualization overheads. It is important to know what an application’s resource
needs are going to be prior to transitioning it to the virtual environment. If these
overheads are not accounted for during initial planning, an application could
be deployed to a server with insufficient resources, resulting in unacceptable
application performance.

Xen and VMware ESX server demonstrate the two popular I/O models for
VMs. In ESX (and Xen in its original design [5]), the hypervisor itself con-
tains device driver code and provides safe, shared access for I/O hardware (see
Figure 1 a). Later, the Xen team proposed a new architecture [9] that allows
unmodified device drivers to be hosted and executed in isolated “driver domains”
(see Figure 1 b).

Virtual
Machine

Hypervisor

NIC Disk

Net Driver Disk Driver

(a) VMware I/O Model

Virtual
Machine

Hypervisor

NIC Disk

Domain-0

Net Driver

Disk Driver

(b) Xen I/O Model

Fig. 1. Two popular I/O models for VMs.

In Xen, the management domain Dom-0 hosts unmodified Linux device drivers
and plays the role of the driver domain. This I/O model results in a more complex
CPU usage model. For I/O intensive applications, CPU usage has two compo-
nents: CPU consumed by the guest virtual machine (VM) and CPU consumed
by Dom-0 which performs I/O processing on behalf of the guest domain.

In this work, without loss of generality, we demonstrate our approach using
Xen running paravirtualized VMs. We believe that our approach can be applied

to other virtualization platforms such as VMware ESX Server, but focus on Xen
in this work because it presents the additional challenge of modeling both the
virtualized application and the driver domain (Dom-0) separately.

Given resource utilization traces of an application running natively, we aim
to estimate what its resource requirements would be if the application were
transitioned to a virtual environment on a given hardware platform. For example,
let a collection of application resource usage profiles (over time) in native system
be provided as shown in Figure 2 (top): i) CPU utilization, ii) transferred and
received networking packets, iii) read and written disk blocks.

Time

CP
U

Time
Ne

t
Time

Di
sk

Time

VM
 C

PU

Time

Do
m

0
CP

U

Native App Traces

Virtual App Traces

Fig. 2. Using native application traces to predict resource needs in virtual environ-
ments.

The goal is to estimate the CPU requirements of the following two compo-
nents as shown in Figure 2 (bottom):
– virtual machine (VM) where the application is going to reside and execute;
– Dom-0 which performs I/O processing on behalf of the guest virtual machine.

Intuitively, we expect that CPU utilization of VM is highly correlated and pro-
portional to the native CPU usage profile of the application, while Dom-0 CPU
utilization is mostly determined by a combination of I/O profiles (both network
and disk).

We focus on estimating only CPU utilization since other metrics (such as
disk and network request rates) are not directly impacted by the virtualization
layer–running an application in a virtualizated environment will not cause more
packets to be sent over the network or more disk requests to be generated.
Instead, the virtualization layer incurs additional processing overheads when
I/O is performed; it is these overheads which our models seek to capture. 3

Our Approach: We present an automated model generation system which
determines the relationship between the native and virtual platforms being used.
The overhead of the virtual platform is characterized by running a series of
microbenchmarks on both platforms and building a model that relates the re-
source requirements on one platform to the other. Although it is created using

3 Virtualization also incurs a memory overhead. Both Xen and ESX Server require a
base allocation for Dom-0 or the Service Console, plus a variable amount per VM.

data from synthetic benchmarks, the result is a general model which can be
applied to traces from any other application in order to predict what its resource
requirements will be on the virtual platform.

3 Platform Profiling

In this section, we describe the collection of microbenchmarks that are selected
for profiling different types of virtualization overhead on a given platform. In
order to determine a general relationship between the application resource usage
in native and virtual platforms, we first accumulate the samples of such usage
profiles by executing a specially selected set of microbenchmarks in both native
and virtualized environments.

3.1 Microbenchmark Requirements

The microbenchmark selection for our suite is driven by the following objectives:
• Microbenchmarks must be able to apply a range of workload intensities.

There are a large number of benchmarks available which allow you to stress
test a system to see how it performs under maximum load. However, a typical
enterprise application exhibits variable workloads. A benchmark which simply
reports the maximum number of web requests or disk accesses that a system
can perform per second is not useful for us since it only provides information
about the maximum capacity and corresponding resource usage, not about the
utilization under different workloads. In consolidation scenarios, the considered
applications are likely to operate at a light or medium load. Therefore, we
concentrate on creating a suite of microbenchmarks that can be configured to
generate workloads of different intensities, i.e., capable of generating different
networking/disk access rates and consume different CPU amounts.

• Microbenchmarks should run nearly-identical in both native and virtual
environments. This requirement is very important for our approach. The appli-
cation behavior is represented via different resource usage traces over time. When
a workload performs a combination of CPU and I/O activities at time interval
T on a native system, we correlate it with the CPU usage profile (both VM
and Dom-0) observed at time interval T in the virtualized environment for the
same workload in order to build the model (relationship) between the native and
virtualized systems. Thus, the requirement for our microbenchmarks is that the
workloads must be nearly-identical in both the native and virtual environments
we test. While our benchmarks allow some non-determinism in the workload
traffic patterns, we carefully design our microbenchmarks to always execute the
same set of activities over the same period of time. We avoid benchmarks with
a strong feedback loop since virtualization overheads may increase latency and
distort the resource usage over time. While our models are primarily designed
for open loop applications, such as web servers where the user “think time” is
much higher than the average request processing time, they still provide a bound
on resource utilization for closed loop systems. 4

4 Sec. 6 provides a more detailed discussion on the issue of “applications with a
feedback loop”.

3.2 Microbenchmark Workloads
The selected microbenchmarks have to create a set of workloads that utilize
different system resources and have a different range of workload intensities.

We use a client-server style setup in our benchmarks. In general, a client
machine issues a set of requests to the benchmark server running on the system
being profiled. The clients adjust the rate and type of requests to control the
amount of CPU computation and I/O activities performed on the test system.
At a high level, our microbenchmarks are comprised of three basic workload
patterns that either cause the system to perform CPU intensive computation,
send/receive network packets, or read/write to disk.
– Our computation intensive workload calculates Fibonacci series when it re-

ceives a request. The number of terms in the series is varied to adjust the
computation time.

– The network intensive workload has two modes depending on the type of
request. In transmit mode, each incoming request results in a large file being
sent from the system being tested to the client. In receive mode, the clients
upload files to the benchmark application. The size of transferred files and
the rate of requests is varied to adjust the network utilization rate.

– The disk intensive workload has read and write modes. In both cases, a
random file is either read from or written to a multilevel directory structure.
File size and request rate can be adjusted to control the disk I/O rate.

Each workload is created by adjusting the request type sent to the server from
the client machines. We split each of the basic benchmark types, CPU-, network-
, and disk-intensive, into five different intensities ranging from 10% load to 90%
load. The maximum load that a server can handle is determined by increasing
the throughput of benchmark requests until either the virtual machine or Dom-
0 CPU becomes saturated during testing. To create more complex and realistic
scenarios, we use a combination workload that exercises all three of the above
components. The combination workload simultaneously sends requests of all
types to the benchmarked server. The relative intensity of each request type
is varied in order to provide more realistic training data which does not focus
exclusively on a single form of I/O.

The microbenchmarks are implemented as a set of PHP scripts running on
an Apache web server at the benchmarked server side. Basing the microbench-
marks on Apache and PHP has the benefit that they can be easily deployed
and executed on a wide range of hardware platforms within a software environ-
ment which data center administrators are already familiar with. The developed
microbenchmark suite allows us to generate a diverse set of simple and more
complex workloads that exercise different system components. The full set of
PHP scripts, as well as the scripts to create the file structure used in the disk
tests, comprise only a few hundred lines of code.

The client workloads are generated using httperf [22] and Apache JMeter [4].
These tools provide flexible facilities for generating variable and fixed rate HTTP
workloads. The workloads can then be easily “replayed” in different environ-
ments. Both tools can emulate an arbitrary number of clients accessing files on
a webserver.

3.3 Platform Resource Usage Profiles
We generate platform profiles by running a set of microbenchmarks on the sys-
tems being tested. While each microbenchmark is running, we gather resource
utilization traces to define the platform profile used as the training data for the
model. Within the native system, we currently gather information about eleven
different resource metrics related to CPU utilization, network activity, and disk
I/O. The full list of metrics is shown in Table 1. These statistics can all be
gathered easily in Linux with the sysstat monitoring package [30]. We focus on
this set of resource measurements since they can easily be gathered with low
overhead. Since these traces must also be gathered from the live application
being transitioned to the virtual environment, it is crucial that a lightweight
monitoring system can be used to gather data.

CPU Network Disk

User Space % Rx packets/sec Read req/sec
Kernel % Tx packets/sec Write req/sec
IO Wait % Rx bytes/sec Read blocks/sec

TX bytes/sec Write blocks/sec

Table 1. Resource Utilization Metrics

We monitor three CPU related metrics since different types of activities may
have different virtualization overheads. For example, user space processing such
as simple arithmetic operations performed by an application are unlikely to
have much overhead in current virtualization platforms. In contrast, tasks which
occur in kernel space, such as context switches, memory management, and I/O
processing, are likely to have a higher level of overhead since they can require
traps to the hypervisor.

We measure both the packet rates and byte rates of the network interfaces
since different platforms may handle I/O virtualization in different ways. For
example, prior to Xen version 3.0.3, incoming network packets were passed
between Dom-0 and the guest domain by flipping ownership of memory pages,
thus the overhead associated with receiving each packet was independent of its
size [11]. Newer versions of Xen directly copy packets from Dom-0 to the guest
domain rather than using page flipping, thus the overhead is also related to
the number of bytes received per second, not just the number of packets. We
differentiate between sending and receiving since these paths may have different
optimizations.

We split disk measurements into four categories based on similar reasoning.
A resource usage trace is gathered for each benchmark set containing values

for all metrics listed in Table 1, plus the time interval, and benchmark ID.
After the resource metrics have been gathered on the native system, the Dom-
0 and VM CPU utilizations are measured for the identical benchmark on the
virtualized platform.

4 Model Generation

This section describes how to create models which characterize the relationship
between a set of resource utilization metrics gathered from an application run-

ning natively on real hardware and the CPU requirements of the application if
it were run on a virtual platform. Two models are created: one which predicts
the CPU requirement of the virtual machine running the application, and one
which predicts the Dom0 CPU requirements when it performs I/O processing
on behalf of the guest domain.

The model creation employs the following three key components:
– A robust linear regression algorithm that is used to lessen the impact of

outliers.
– A stepwise regression approach that is employed to include only the most

statistically significant metrics in the final model.
– A model refinement algorithm that is used for post-processing the training

data to eliminate or rerun erroneous benchmarks and to rebuild a more
accurate model.

4.1 Model Creation
To find the relationship between the application resource usage in native and
virtualized systems we use the resource usage profile gathered from a set of
microbenchmarks run in both the virtual and native platforms of interest (see
Section 3.3).

Using values from the collected profile, we form a set of equations which
calculate the Dom-0 CPU utilization as a linear combination of the different
metrics:

U1
dom0 = c0 + c1 ∗ M1

1 + c2 ∗ M1
2 + ... + c11 ∗ M1

11

U2
dom0 = c0 + c1 ∗ M2

1 + c2 ∗ M2
2 + ... + c11 ∗ M2

11 (1)

....

where
– M j

i is a value of metric Mi collected during the time interval j for a bench-
mark executed in the native environment;

– U j
dom0 is a measured CPU utilization for a benchmark executed in virtualized

environment with the corresponding time interval j.
Let cdom0

0 , cdom0
1 , ..., cdom0

11 denote the approximated solution for the equation
set (1). Then, an approximated utilization Û j

dom0 can be calculated as

Û j
dom0 = cdom0

0 +

11∑
i=1

M j
i · cdom0

i (2)

To solve for cdom0
i (0 ≤ i ≤ 11), one can choose a regression method from a

variety of known methods in the literature. A popular method for solving such
a set of equations is Least Squares Regression that minimizes the error:

e =

√∑
j

(Û j
dom0 − U j

dom0)
2
j

The set of coefficients cdom0
0 , cdom0

1 , ..., cdom0
n is the model that describes the

relationship between the application resource usage in the native system and
application CPU usage in Dom-0.

We form a set of equations similar to Eq. 1 which characterize the CPU
utilization of the VM by replacing U i

dom0 with U i
vm. The solution cvm

0 , cvm
1 , ..., cvm

n

defines the model that relates the application resource usage in the native system
and application CPU usage in the VM running the application. To deal with
outliers and erroneous benchmark executions in collected data and to improve
the overall model accuracy, we apply a more advanced variant of the regression
technique as described below.

Robust Stepwise Linear Regression: To decrease the impact of occasional
bad measurements and outliers, we employ iteratively reweighted least squares [12]
from the Robust Regression family. The robust regression technique uses a
bisquare weighting function which lessens the weight and the impact of data
points with high error.

In order to create a model which utilizes only the statistically significant
metrics and avoids “overfitting” the data, we use stepwise linear regression to
determine which set of input metrics are the best predictors for the output
variable [8]. Step-wise regression starts with an empty model, and iteratively
selects a new metric to add based on a significance test. A complete description
of the stepwise and robust regression techniques we use is deffered to a separate
technical report [38].

Model Refinement: Our use of robust linear regression techniques helps lessen
the impact of occasional bad data points, but it may not be effective if all
measurements within a microbenchmark are corrupt (this can happen due to
unexpected background processes on the server, timing errors at the client, or
network issues). If some microbenchmarks have failed or collected data were
corrupted then it can inevitably impact the model outcome.

In order to automate the model generation process and eliminate the need
for manual analysis of these bad data points, we must automatically detect
erroneous microbenchmarks and either rerun them or remove their data points
from the training set. At runtime, it can be very difficult to determine whether a
benchmark is executed correctly, since the resource utilization cannot be known
ahead of time, particularly on the virtual platform which may have unpredictable
overheads. Instead, we wait until all benchmarks have been run and an initial
model has been created to post process the training set and determine if some
benchmarks have anomalous behavior.

First, we compute the mean squared error for all data points (i.e., all mi-
crobenchmarks): let us call it emean, as well as the standard deviation of the
squared errors: let us call it estd. Then the model created from the full benchmark
set is applied back to each microbenchmark i individually to calculate the mean
squared error for that benchmark: let us call it ei. Microbenchmarks with high
error values can then be easily separated so that they can either be rerun or
removed from the training set.

4.2 Model Application

Once a model has been created, it can then be applied to resource utilization
traces of other applications in order to predict what their CPU requirements

would be if transferred to the virtual environment. Resource usage traces of the
application are obtained by monitoring the application in its native environment
over time. The traces must contain the same resource metrics as presented in
Table 1, except that CPU utilizations of VM and Dom-0 are unknown and
need to be predicted. Applying the model coefficients cdom0

0 , cdom0
1 , ..., cdom0

11 and
cvm
0 , cvm

1 , ..., cvm
n to the application usage traces in native environment (using

Equation 1), we obtain two new CPU usage traces that estimate the application
CPU requirements in Dom-0 and the virtual machine.

5 Experimental Evaluation

In this section, we first try to justify a set of our choices presented in earlier
Sections 3 and 4: why these metrics? why these microbenchmarks? why this model
creation process? After that, we evaluate the effectiveness of our models under
several realistic web application workloads on two different hardware platforms.

5.1 Implementation Details

Our implementation and evaluation has centered on the Xen virtualization plat-
form. In our evaluation, both the native systems and virtual machines run the
Red Hat Enterprise Linux 5 operating system with Linux kernel 2.6.18-8. We
use paravirtualized Xen version 3.0.3-rc5.

Monitoring resource utilization in the native environment is done with the
sysstat package [30] commonly used in Linux environments. The virtual CPU
utilizations are measured using xentop and xenmon, standard resource moni-
toring tools included with the Xen distribution. Statistics are gathered for 30
second monitoring windows in both environments. We have experimented with
both finer grain and longer intervals and found similar results. The system is
configured that Dom-0 resides on a separate CPU.

We evaluate our approach using two realistic web applications:

– RUBiS [3] is an auction site prototype modeled after eBay.com. A client
workload generator emulates the behavior of users browsing and bidding on
items. We use the Apache/PHP implementation of RUBiS version 1.4.3 with
a MySQL database.

– TPC-W [31] represents an e-commerce site (modeled after Amazon.com)
implemented with Java servlets running on Tomcat with a MySQL database.

Both applications have an application and a database tier. We profile and predict
the resource requirements of the application server tier; the databases are hosted
on a separate server which is sufficiently provisioned so that it will not become
a bottleneck.

We have tested our approach on two different hardware platforms:

– HP ProLiant DL385, 2 processors: AMD Opteron model 252 2.6GHz with
1MB L2 single-core, 64-bit; 2 x 2GB memory; 2 x 1 Gbit/s NICs, 72 GB
15K U320 Disk.

– HP ProLiant DL580 G2, 4 processors: Intel Xeon 1.6 GHz with 1MB L2
cache, 32-bit; 3 x 2GB memory; 2 x 1 Gbit/s NICs, 72 GB 15K U320 Disk.

5.2 Importance of Modeling I/O

Our system generates models based on up to eleven different resource utilization
metrics, here we evaluate whether such complexity is warranted, or if a simple
model based solely on scaling CPU requirements is a viable approach. In the sim-
plified approach, a model is created using the same model generation techniques
as described in Section 4, except that instead of using all eleven metrics, only a
single Total CPU metric is used to predict the CPU needs in virtual environment.
We produce a model using each technique to predict the CPU requirements and
demonstrate it using the CPU needs of the guest domain, since, intuitively, it is
more likely that the simplified model will perform better when predicting VM
CPU needs than when predicting Dom-0 since the latter is scheduled almost
exclusively for handling I/O.

Since our models are created with stepwise regression, not all of the eleven
possible metrics are included in the final model. The Dom-0 model uses five
metrics: Kernel CPU, I/O Wait, Rx Packets/sec, Tx Packets/sec, and Disk Write
Req/sec. Dom-0’s CPU utilization is dominated by I/O costs, so a large number
of I/O related metrics are important for an accurate model. In contrast the
virtual machine model uses only three metrics: User Space CPU, Kernel CPU,
and RX Packets. We compare this multi-resource VM model to the CPU-Scaling
based model which uses only the Total CPU metric (equal to the sum of User
Space and Kernel CPU).

We evaluate the performance of these two models by training them on our
microbenchmark set and then comparing the error when the models are applied
back to the training data. Figure 3 (a) shows the error CDF for each model,
showing the probability that our predictions were within a certain degree of
accuracy for the virtual machine.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

CPU Scaling Only
Multi−resource

(a)

Test Set Median Error %
CPU Net Disk

CPU 0.36 670 13
Training Net 11 3.4 1

Set Disk 7.1 1798 1.2
All 0.66 1.1 2.1

(b)

Fig. 3. (a) Using CPU as the only prediction metric leads to high error. (b) Using a
subset of benchmarks leads to poor accuracy when applied to data sets with different
type of I/O.

Our multiple resource model performs significantly better than the CPU
scaling approach; the 90th error percentile using our approach is 5% while the
scaling approach is 65%. Without information about I/O activities, the simple
model cannot effectively distinguish between the different types of benchmarks,
each of which has different levels of overhead. Even though the VM model
only includes one I/O metric, splitting CPU into User and Kernel time acts
as a surrogate for detecting high levels of I/O. Our results suggest that I/O
activity can cause significant changes in the CPU requirements of both Dom-0

and the guest domain: Dom-0 since it must process the I/O requests, and the
guest because of the increased number of hypercalls required for I/O intensive
applications.

100 150 200 250 300
0

50

100

Request Rate

C
P

U
 U

til
iz

at
io

n

Native
Dom−0
VM

(a) CPU Intensive

200 300 400
0

50

100

Request Rate

C
P

U
 U

til
iz

at
io

n

Native
Dom−0
VM

(b) Network Intensive

Fig. 4. I/O intensive applications exhibit higher virtualization overheads.

Figure 4 presents profiles of some of our CPU and network intensive mi-
crobenchmarks. The CPU intensive application exhibits only a small virtual-
ization overhead occurring for the VM CPU requirements and Dom-0 also has
relatively low CPU needs. In contrast, the network intensive application has a
significantly higher requirement in Dom-0 as well as a much larger increase in VM
CPU requirements relative to the native CPU utilization. This further demon-
strates why creating a model using only the native CPU metric is incapable of
capturing the differences in overhead caused by I/O requests.

5.3 Benchmark Coverage

In this experiment we examine how the three different benchmark types each
add useful information and examine the training set error of our model. Figure 3
(b) illustrates how using only a single type of microbenchmark to build a model
can produce very high error rates when applied to applications with different
workload characteristics.

For example, training the model solely with the CPU intensive microbench-
marks provides accuracy within 1% when applied back to the same kind of
CPU intensive workloads, but the median error rises to 670% when applied to
the network intensive data. This happens because the CPU benchmark includes
only very low network rates. When a model based solely on that data tries to
predict the CPU needs of the network intensive applications, it must extrapolate
well beyond the range of data it was trained with, resulting in wildly inaccurate
numbers. The bottom row in the table corresponds to using all of the benchmark
data to create a model. This provides a high degree of accuracy in all cases –
while a specialized model may provide higher accuracy on data sets very similar
to it, we seek to build a general model which will be effective on workloads with
a range of characteristics.

Figure 5(a) shows the error CDF when all of our benchmark data is used to
create a model and then the model is validated by applying back to the training
set. The error is quite low, with 90% of the predictions being within 3% for
Dom-0 and 7% for the virtual machine. This confirms our hypothesis that a
single linear model can effectively model the full range of training data.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Domain0
VM

(a) Training Error

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

All Benchmarks
Reduced Set

(b) BM Elimination

Fig. 5. (a) CDF error of the training set on the Intel 4 -CPU machine. (b) Automatic
benchmark elimination can increase model accuracy

5.4 Benchmark Error Detection
Our profiling system runs a series of microbenchmarks with identical workloads
on both the native and virtual platforms. This experiment tests our anomalous
benchmark detection algorithm. To be effective, it should be able to detect which
benchmarks did not run correctly so that they can be either rerun or eliminated
from the training set. If the detection scheme is too rigorous, it may eliminate
too many data points, reducing the effectiveness of the model.

We first gather a set of training data where 10 percent of the benchmarks are
corrupted with additional background processes. Figure 5(b) shows the change
in model accuracy after the error detection algorithm eliminates the malfunc-
tioning microbenchmarks. We then gather a second training set with no failed
benchmarks and run the error detection algorithm on this clean data set. We
find that the model performance before and after the error detection algorithm
is identical since very few data points are eliminated.

While it is possible for these errors to be manually detected and corrected,
our goal is to automate the model creation procedure as much as possible. The
error detection algorithm reduces the human interaction required to create high
quality models.

5.5 Model Accuracy
To test the accuracy of a model, we use it to predict the CPU requirements
of a test application based on a trace of the application running natively. We
then run the test application within the virtual environment to determine the
prediction error. In this section we evaluate our models on both the RUBiS
and TPC-W web applications. These experiments were run on the Intel system
described previously.

We create a variable rate workload for RUBiS by incrementally spawning
clients over a thirty minute period. The system is loaded by between 150 and
700 simultaneous clients. This workload is repeated twice to evaluate the amount
of random variation between experiments. We record measurements and make
predictions for 30 second intervals. Figure 6 compares the actual CPU utilization
of the RUBiS application to the amount predicted by the model. Note that the
virtual machine running RUBiS is allocated two virtual CPUs, so the percent
utilization is out of 200.

Figure 7(a) shows a CDF of the models’ prediction error. We find that 90%
of our predictions for Dom-0 are within 4% accuracy, and within 11% for pre-

0 20 40 60 80 100 120
0

20

40

60

80

100

Time (30 second intervals)
%

 C
P

U
 U

til
iz

at
io

n

Predicted
Actual

(a) Dom-0

0 20 40 60 80 100 120
0

50

100

150

200

Time (30 second intervals)

%
 C

P
U

 U
til

iz
at

io
n

Predicted
Actual

(b) VM

Fig. 6. Prediction accuracy of the RUBiS web application.

dicting the virtual machine’s CPU utilization. Some of this error is due to model
inaccuracy, but it can also be due to irregularities in the data used as input to
the model. For example, there is a spike in the predicted CPU requirements of
both Dom-0 and the VM around time interval 10. This spike was caused by a
background process running for a short period when RUBiS was run in the native
environment. Since the predicted values are based on these native measurements,
they mistakenly predict the virtual CPU requirements to spike in the same way.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Domain0
VM

(a) RUBiS

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Domain0
VM

(b) TPC-W

Fig. 7. Error rates on the Intel platform.

We have also validated our model on the TPC-W application. We create a
changing workload by adjusting the number of emulated clients from 250 to 1100
in a random (but repeatable) pattern. Figure 7(b) presents the error distribution
for TPC-W. The error for this application is almost identical to RUBiS, with
90th percentile error rates of 5% and 10% for Dom-0 and the virtual machine
respectively.

5.6 Cross Platform Modeling

In many server consolidation scenarios, the transition from a native to a virtual
platform is accompanied by a change in the underlying hardware. However, using
a single model for multiple hardware platforms may be ineffective if they have
different overhead costs. Attempting to apply the model for the Intel system to
the AMD system results in high error rates as shown in Figure 9(a). To inves-
tigate why these two platforms exhibit such a large difference, we compare the
CPU required by the RUBiS application in the native and virtual environments
on both platforms in Figure 8. Not including the Dom-0 requirements, the Intel
system requires approximately 1.7 times as much CPU in the virtual case as it
does natively. On the AMD system, the increase is only about 1.4 times. The
different scaling between the native and virtual traces in each platform suggest
that a single model cannot be used for both platforms.

0 10 20 30 40 50 60 70
0

50

100

150

200

Time (30 second intervals)
C

P
U

 U
til

iz
at

io
n

Native
Virtual

(a) Intel

0 10 20 30 40 50
0

20

40

60

80

100

Time (30 second intervals)

C
P

U
 U

til
iz

at
io

n

Native
Virtual

(b) AMD

Fig. 8. Comparison of CPU overhead on different hardware platforms.

We test our modeling approach’s ability to determine the relationship be-
tween native and virtual systems running on different hardware platforms by
executing an identical set of microbenchmarks on the Intel and AMD platforms
in both the native and virtual environments. Using this data, we create two
models, one which relates a native usage profile of the Intel platform to a virtual
usage profile of the AMD system and one which relates the native AMD system
to the virtualized Intel system.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Domain0
VM

(a)

Dom−0

VM

 0

 5

 10

 15

 20

AMD>Intel Intel>AMD

9
0

th
 E

rr
o

r
P

e
rc

e
n

ti
le

(b)
Fig. 9. (a) Using a single model for different architectures is ineffective, (b) but cross
platform models are feasible.

Figure 9(b) presents the 90th error percentiles when these cross platform
models are used to predict the CPU needs of both the TPC-W and RUBiS
workloads. The cross platform models are very effective at predicting Dom-0
CPU needs, however the VM prediction error is higher, particularly for the AMD
to Intel model. We propose two factors which may cause this jump in error.
First, the AMD system has a significantly faster CPU than the Intel system,
so translating the CPU component from one platform to the other requires a
significant scale up factor. As a result, small variations in the CPU needs of
the AMD system can result in larger fluctuations in the predicted CPU for the
Intel system, leading to higher absolute error values. Secondly, cross platform
models for predicting virtual machine CPU are typically more difficult than
Dom-0 models. This is because Dom-0 models are predominantly based on I/O
metrics such as packet reception rates and disk operations, which have similar
costs on both platforms. In contrast, the VM model is primarily based on the
CPU related metrics which may not have a linear relationship between the two
platforms due to differences in the processor and cache architectures. However,
it should be noted that in many cases, the AMD to Intel model performs better
than the 90th error percentile indicates; the median error is only 5%, and all of
the points with high error occur at the peaks of the RUBiS workload where the
virtual CPU consumption exceeds 160%.

6 Discussion

In this section, we discuss the impact of the application behavior on the accuracy
of the prediction results and challenges introduced by dynamic frequency scaling.

• Impact of application behavior on resource use.
The timing for an application’s operations in the native and virtualized envi-
ronments may be slightly different if the application has a strong “feedback
loop” behavior. Figure 10 illustrates the difference between an application with

a
b

a

Re
qu

es
ts

b

Time

Open Loop Closed LoopOriginal
?or

Fig. 10. Resource requirements in different environments is influenced by the amount
of feedback in an application’s workload.

(closed loop) and without (open loop) feedback. In the original application trace,
a series of requests arrive, with their processing time indicated by the width of
the rectangles. The value of a represents the time from the start of one request
until the start of the next, while b is the time from the end of one request to the
start of the next. When the same application is run on a different platform, the
time to process a request may increase due to virtualization overhead. The two
figures on the right represent how the trace would appear if the application does
or does not exhibit feedback. With an open loop, the time between the start of
each request will remain a, even if the request processing time increases. This
would occur if the requests are being submitted by a client on another machine
sending at a regular rate. For an application with feedback, requests are pro-
cessed then a constant delay, b, occurs before the next request is processed. The
figure illustrates that when request processing times increase, applications with
feedback may process fewer requests in a given time interval (due to a slowdown),
i.e., its CPU overhead is “spread” across a longer time period, resulting in lower
average CPU utilization.

It is impossible to tell if an application’s workload has a feedback loop just by
looking at resource utilization traces of the original application. So the estimated
resource utilization produced by our model for the application with a “feedback
loop” might be higher than in reality since such an application might consume
CPU resources in virtualized environment “slower” than in native one due to
the increased latency on the application’s critical path.

• Understanding Application Performance.
While our models can accurately predict the changes in resource requirements
for a virtualized application, they cannot directly model how application perfor-
mance (ie. response time) will change. Unfortunately, this is a difficult challenge,
akin to making performance predictions under different hardware platforms. Our
approach tells system administrators the minimum amount of resources which
must be allocated to a VM in order to prevent significantly reduced performance
due to resource starvation. The application may still see some performance
penalty due to the longer code path as requests go through the virtualization

layer. To accurately predict this performance change would necessitate carefully
tailored, application specific models.

Our approach helps in estimating the resource requirements that are nec-
essary for the initial application placement in a virtualized environment. After
the initial workload placement, specialized workload management tools may be
used [15, 13] to dynamically adjust system resources to support the required
application performance.

7 Related Work

Virtualization Overheads: Virtualization is gaining popularity in enterprise
environments as a software-based solution for building shared hardware infras-
tructures. VMware and IBM have released benchmarks [33] for quantifying the
performance of virtualized environments. These benchmarks aim to provide some
basis for comparison of different hardware and virtualization platforms in server
consolidation exercises. However, they both are lacking the ability to characterize
virtualization overhead compared to a native platform.

Application performance and resource consumption in virtualized environ-
ments can be quite different from its performance and usage profile on native
hardware because of additional virtualization overheads (typically caused by
I/O processing) and interactions with the underlying virtual machine monitor
(VMM). Several earlier papers which describe various VMM implementations in-
clude performance results that measure the impact of virtualization overhead on
microbenchmark or macrobenchmark performance (e.g., [5, 19, 35, 29, 2, 37, 17,
29, 7, 23]). The reported virtualization overhead greatly depends on the hardware
platform that is used in such experiments. For example, previously published
papers [5, 9] evaluating Xen’s performance have used networking benchmarks in
systems with limited network bandwidth and high CPU capacity. However, there
are cases where throughput degrades because CPU processing is the bottleneck
instead of the network [21, 11]. In many virtualization platforms, the “amount”
of CPU overhead is directly proportional to the “amount” of performed I/O pro-
cessing [7, 11]. For example, it has been shown that networking packet rates are
highly correlated with the measured CPU overhead [11]. Recent work attempts
to reduce the performance penalty of network I/O by bypassing parts of the vir-
tualization layer [18, 36] or optimizing it [24]. However, since these optimizations
typically target only one source of virtualization overhead (network I/O), our
modeling system can still be employed to provide useful information about the
level of overhead incurred by a wider range of activities.

This extensive body of previous work has motivated us to select a set of mi-
crobenchmarks that “probe” system resource usage at different I/O traffic rates
(both networking and disk) and then employ these usage profiles for predicting
variable CPU overhead of virtualized environments.

Trace-based Approaches: In our work, we chose to represent application
behavior via resource usage traces. Many research groups have used a similar
approach to characterize application behavior and applied trace-based meth-
ods to support what-if analysis in the assignment of workloads to consolidated

servers [32, 25, 27, 10]. There are a few commercial tools [14, 34, 16] that employ
trace-based methods to support server consolidation exercises, load balancing,
ongoing capacity planning, and simulating placement of application workloads
to help IT administrators improve server utilization. Since many virtualization
platforms introduce additional virtualization overhead, the trace-based capacity
planning and management solutions provide a capability to scale the resource
usage traces of original workloads by a specified CPU-multiplier. For some appli-
cations it might be a reasonable approach, however, in general, additional CPU
overhead highly depends on system activities and operations performed by the
application. Simplistic trace-scaling may result in significant modeling error and
resource over-provisioning.

System Profiling: Finally, there is another body of work [20, 28, 6, 26] that
is closely related to our thinking and the approach presented in the paper. This
body of works goes back to 1995, when L. McVoy and C. Staelin have introduced
the lmbench – a suite of operating system microbenchmarks that provides a set of
portable programs for use in cross-platform comparisons. Each microbenchmark
was purposely created to capture some unique performance problem present in
one or more important applications. Although such microbenchmarks can be
useful in understanding the end-to-end behavior of a system, the results of these
microbenchmarks provide little information to indicate how well a particular
application will perform on a particular system. In [6, 26], the authors argue for
an application-specific approach to benchmarking. The authors suggest a vector-
based approach for characterizing an underlying system by a set of microbench-
marks (e.g., lmbench) that describe the behavior of the fundamental primitives of
the system. The results of these microbenchmarks constitute the system vector.
Then they suggest to construct an application vector that quantifies the way that
the application makes use of the various primitives supported by the system.
The product of these two vectors yields a relevant performance metric. There
is a similar logic in our design: we use a set of microbenchmarks to character-
ize underlying system and virtualization solution. Then we apply the derived
model (analogy to a system vector) to the application usage traces (analogy to
the application vector) and use it for predicting the resource requirements of
applications when they are transferred to a virtual environment.

8 Conclusions

Our work is motivated by the need for improved estimates of application resource
requirements when they are consolidated to virtual environments. To this end,
we designed an automated approach for profiling different types of virtualiza-
tion overhead on a given platform and a regression-based model that maps the
native system profile into a virtualized one. This model can then be used to
accurately assess the required resources and make workload placement decisions
in virtualized environments.

Although such a model is created using data from synthetic benchmarks,
the result is a general model which can be applied to traces from any other
application in order to predict what its resource requirements will be on the

virtual platform. We profile each platform using open source tools that can be
easily deployed and executed on a wide range of hardware platforms within
traditional or next generation data centers. We envision that each system in a
NGDC will be augmented with a model that reflects the relationship between
the native and virtualized usage profiles.

Our evaluation has shown that our automated model generation procedure
effectively characterizes the different virtualization overheads of two diverse
hardware platforms and that the models have median prediction error of less
than 5% for both RUBiS and TPC-W. In future work we plan to experiment
with more diverse application types and different virtualization platforms. We
are also interested in how these modeling techniques can be used to predict
the aggregate resource requirements of virtual machines collocated on a single
host and to determine when an application’s resource requirements are likely to
exceed the virtual system’s capacity.

Acknowledgements: Prashant Shenoy and Timothy Wood were supported
in part by NSF grants CNS-0325868, CNS-0720616, CNS-0720271

References
1. C. Agostinelli. Robust Stepwise Regression. In Journal of Applied Statistics, Vol-

ume 29, Number 6, 2002.
2. I. Ahmad, J. Anderson, A. Holler, R. Kambo, and V. Makhija. An Analysis of

Disk Performance in VMware ESX Server Virtual Machines. Proc. of the Sixth
Workshop on Workload Characterization (WWC’03), October 2003.

3. C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Marguerite,
K. Rajamani, and W. Zwaenepoel. Specification and implementation of dynamic
Web site benchmarks. Proc. of WWC-5: IEEE 5th Annual Workshop on Workload
Characterization, October 2002.

4. Apache JMeter. http://jakarta.apache.org/jmeter/.
5. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield. Xen and the art of virtualization. In SOSP 03.
6. A. Brown, M. Seltzer. Operating System Benchmarking in the Wake of Lmbench

In Sigmetrics 1997.
7. L. Cherkasova and R. Gardner. Measuring CPU overhead for I/O processing in

the Xen virtual machine monitor. Proc. of USENIX AT, Apr 2005.
8. N. R. Draper and H. Smith. Applied Regression Analysis. J. Wiley & Sons, 1998.
9. K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M. Williamson.

Reconstructing I/O. Technical report, 2004.
10. D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper: Capacity Management and

Demand Prediction for Next Generation Data Centers. Proc. of the International
IEEE Conference on Web Services, 2007.

11. D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat: Enforcing Performance
Isolation Across Virtual Machines in Xen. Proc. of the ACM/IFIP/USENIX 7th
Intl Middleware Conf. (Middleware), Melbourne, Australia, 2006.

12. P. W. Holland and R. E. Welsch. Robust regression using iteratively reweighted
least-squares. In Communications in Statistics - Theory and Methods 6.9. Oct. 07.

13. HP-UX Workload Manager. http://hp.com/products1/unix/operating/wlm/.
14. HP Integrity Essentials Capacity Advisor. http://h71036.www7.hp.com/

enterprise/cache/262379-0-0-0-121.html
15. IBM Enterprise Workload Manager. http://www.ibm.com/developerworks/

autonomic/ewlm/.

16. IBM Tivoli Performance Analyzer. http://www.ibm.com/software/tivoli/

products/performance-analyzer/
17. S. King, G. Dunlap, P. Chen. Operating system support for virtual machines. Proc.

of the USENIX Annual Technical Conference, San Antonio, Texas, 2003.
18. J. Liu, W. Huang, B. Abali, D. Panda. High Performance VMM-Bypass I/O in

Virtual Machines. Proc of Usenix AT 2006.
19. D. Magenheimer and T. Christian. vBlades: Optimized paravirtualization for the

Itanium processor family. Proc. of USENIX VM Research and Technology Sympo-
sium, May 2004.

20. L. McVoy and C. Staelin. lmbench: Portable tools for performance analysis. Proc.
of the 1996 Winter USENIX, San Diego, CA, Jan. 1996.

21. A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and W. Zwaenepoel.
Diagnosing performance overheads in the Xen virtual machine environment. Proc.
of Intl. Conf. on Virtual Execution Environments (VEE), June 2005.

22. D. Mosberger, T. Jin. Httperf—A Tool for Measuring Web Server Performance.
Proc. of Workshop on Internet Server Performance, 1998.

23. P. Padala, X. Zhu, Z. Wang, S. Singhal, K. Shin. Performance Evaluation of
Virtualization Technologies for Server Consolidation. HP Labs Tech Report HPL-
2007-59, 2007.

24. Jose Renato Santos, Yoshio Turner, and G. (John) Janakiraman, Ian Pratt: Bridg-
ing the Gap between Software and Hardware Techniques for I/O Virtualization.
Proc of Usenix 2008.

25. J. Rolia, L. Cherkasova, M. Arlitt, A. Andrzejak. A Capacity Management Service
for Resource Pools. Proc. of Intl. Workshop on Software and Performance 05.

26. M. Seltzer, D. Krinsky, K. Smith, X. Zhang. The Case for Appliction-Specific
Benchmarking. Proc. of the 1999 Workshop on Hot Topics in Operating Systems.

27. S. Seltzsam, D. Gmach, S. Krompass, A. Kemper. AutoGlobe: An Automatic
Administration Concept for Service-Oriented Database Applications. Proc. of the
22nd Intl. Conf. on Data Engineering (ICDE), 2006.

28. C. Staelin and L. McVoy. mhz: Anatomy of a microbenchmark. Proc. of the
USENIX Annual Technical Conference, New Orleans, LA, June 1998.

29. J. Sugerman, G. Venkitachalam, B.-H. Lim. Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor. Proc. of the USENIX AT 2001.

30. Sysstat-7.0.4. http://perso.orange.fr/sebastien.godard/
31. TPC-W Benchmark. http://www.tpc.org
32. B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource overbooking and application

profiling in shared hosting platforms. Proc. of Operating Systems Design and
Implementation (OSDI), Dec 2002.

33. VMmark: A Scalable Benchmark for Virtualized Systems. www.vmware.com/pdf/
vmmark intro.pdf

34. VMware Capacity Planner. www.vmware.com/products/capacity planner/
35. C. Waldspurger. Memory resource management in VMware ESX server. In Op-

erating Systems Design and Implementation. Proc. of Operating Systems Design
and Implementation (OSDI), Dec 2002.

36. J. Wang, K. Wright, and K. Gopalan, XenLoop : A Transparent High Performance
Inter-VM Network Loopback, Proc. of International Symposium on High Perfor-
mance Distributed Computing (HPDC), Boston, MA, June 2008.

37. A. Whitaker, M. Shaw, and S. Gribble. Scale and Performance in the Denali
isolation kernel. Proc. of Operating Systems Design and Implementation (OSDI),
Dec 2002.

38. T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy, Profiling and Modeling Re-
source Usage of Virtualized Applications. UMass Technical Report, September
2008.

