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Background

- SIMD and it's applications
- CUDA Programming Framework




Single Instruction Multiple Data (SIMD)

SIMD architectureis primarily used for vector processing and matrix operations.
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Scalar Operations SIMD Operations

1. Multiple elements of a vector are
processed at one shot.

2. Multiplethreads performs the
same operation on multiple data
simultaneously.

1. Elements of a vector are processed
one atatimeinaloop.

2. One thread performs the same
operation on multipledata




SIMD Applications

Al/ML :erziz:)irr:;cessmg/B 0 Cryptography Audio processing
1. Involvesconsiderable 1. InvolvesRGB vector 1. Involvesbitwise 1. Arithmetic operationson
matrix computations computations. operationson vectors. audioframes, which are
2. Same instruction 2. Same instruction operating 2. SIMD paradigm stored in vectors.
operatingon multiple on multiple points/pixels accelerates vector 2. Same instruction on
data of the image. processing. multipleaudio frames

can be applied.
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architecture +

* Thousands of small cores CPU

e Streaming multiprocessors (SM System Bus
s) contain the cores

* SM — Group of cores with it's own —
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* Own device memory WECCI LT CET LT
BEEEFFEEE =T

e Mounted on a PCle bus AR
[ I O

W (T[T {[{[1]

] 5] ) Y ) T R ) 0

CUDA/OpenCL API for interfacing CPU



CUDA - Programming
N the GPUs

O

-  CUDA programming framework
- Vector addition example
- Demo




CUDA Programming Framework

SSSSSISSSSS
SSSSSISSSSS
SSSSSSSSSS
Thread Block

SSSSSSSSSS
SSSSSYSSSSS
SSSSSSSSSS

Grid

SSSSS
SSSSS

5SS 5,8

Thread

5SSSSS
55555

SSSSS

. Each thread runs on one GPU core
. Group of threads form a thread block.

. Allthe threads in a block run on one

Streaming multiprocessor.

. Group of thread Blocks is a Grid

. Grids are run parallellyacross many

Streaming multiprocessors.

. Each Streaming multiprocessorin a GPU

has it's own cache.
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CUDA vector addition — Single Block, Single thread

Kernel: On GPU _global__ void vector_add(float *out, float *a, float *b, int n) {

for(int 1 = 0; 1 < n; 1 ++){

out[i] = a[i] + b[i];

Kernel setup: On CPU

Eddﬂﬁﬂllﬂﬂ{{ﬁﬂid**?&d_a,JSiEEﬂf{flﬂat} * N):

cudaMalloc((void**)&ad b, sizeof(float) * N);

Allocate GPU memory L, - . ,. , \
cudaMalloc((void**)&a out, sizeof(float) * N)

transfer data,
Initiate GPU kernel

cudaMemcpy(d a, a, sizeof(float) * N, cudaMem
cudaMemcpy(d b, b, sizeof(float) * N, cudaMenm

cpyHostToDevice);
cpyHostToDevice);




CUDA vector addition — Single Block, Multiple threads

Kernel: On GPU

Kernel setup: On CPU

Allocate GPU memory
transfer data,
Initiate GPU kernel

| global  wvoid vector_add( fl)at *out, float *a,

int index threadIdx.:
int stride = blockDim.:

for(int 1 index; i = n; 1
out[i] a[i] + b[i];

/| Allocate device memory

cudaMalloc( (v

( of (float) * N);
cudaMalloc( (voi

izeof(float) * N);

ize
iz

chaHallgcii :‘:"";&:_3; . si Ltﬂfkflﬂdt; * N):

' Transfer data fr’m host to
LJddHENL:FEd_.ﬁ a, eof | fladt * L, cu
cudaMemcpy(d b, b

/[ Executing kernel

ue:tﬁr add<<<1,1024>>>(d out, d a, d b, N):

[/ Transfer data back to host memory

cudaMemcpy(out, d out, sizeof(float) * N, cudaMemcpyDeviceToHost);

float *b,

), :af (float) * N, cudaMencpyHo

int n) {




CUDA vector addition — Multiple Blocks and threads

~global  void vector add(float *out, float *a, float
int tid = blockIdx.x * blockDim.x + threadIdx.x;

Kernel: On GPU // Handling arbitrary vector size
if (tid < n){
out[tid] = a[tid] + b[tid];
}

// Allocate device memory
— cudaMalloc((vold**)&d a, sizeof(float) * N);
Kernel setup: On CPU —> cudaMalloc((void**)&d b, sizeof(float) * N);

- i

— cudaMalloc((voild**)&d out, sizeof(float) * N);

Allocate GPU memory // Transfer data from host to device memory
transfer data, cudaMemcpy(d_a, a, sizeof(float) * N, cudaMemcpyHostToDevice);
Initiate GPU kernel cudaMemcpy(d_b, b, sizeof(float) * N, cudaMemcpyHostToDevice);

// Executing kernel

int block size = 1024;

int grid size = ((N + block size) [/ block size);

vector add<<<grid size,block size>>=(d out, d a, d b, N);

// Transfer data back to host memory
cudaMemcpy(out, d out, sizeof(float) * N, cudaMemcpyDeviceToHost);
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Virtualization aspect of
GPUs

Why virtualize GPUs

Mechanismsto virtualize GPUs
Challenges




Why virtualize GPUs?

Image recognition application

GPU Utilization (%)
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GPU utilization with one application

Single user/application not
enough to fully utilize a GPU

This results in under-utilization
of a GPU

MAXIMIZE UTILIZATION

Different Varying
Sizes of Workloads
GPUs /

\ J

|

Different r/equirements

Multiple/requests/VMs can
have different GPU sizes

Varying workloads such as

compute/graphiccan be
optimjzed.

LEXIBILITY

=

First class resource in most
data centres

GPUs are nowadaysfoundin
almost all data centres.

Due to high cost of GPUs, we
want to maximise their usage.

FIRST CLASS RESOURCE

16



GPU virtualization software stack

Al/ML, 3-D rendering, Compression, Image

Applications processing, VDI etc.

N(‘ng APIs & Libraries CUDA | OpenCL | Virtual CUDA libraries ] Toal
Virtualization Managementlayer| Scheduling | Resource

é\@ management provisioning *

. Virtualization Passthrough| Para/Full/Hardware virtualization
Q\k | APl remoting | GPU Direct
Physical GPU GPUs
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Mechanisms to virtualize GPUs

Hardware assisted Software assisted Software + Developer
assisted

VGPUs, MiGs RCUDA, GPU manager, Kernel Slicing
vCUDA, MPS etc.

Multiplexing Temporal(vGPUs) and Temporaland Spatial (MPS) Temporal
Spatial (MiGs)

Control Plane Native Drivers Virtualization layer APls

App changes required No No Yes

Abstraction Device Device, APIs APIs

1. Virtualization mechanisms at different abstraction levels can be used together
2. The mentioned examples are the solutions that use these mechanisms to virtualize GPUs at
different abstraction levels.
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vGPU Profiles

GPU: NVIDIA RTX A5000 (24GB memory), 8192 cores

1q 24 1GB

24 12 2GB
& 4q 6 4GB
8 3 8GB

24q 1 24GB

e 4 6 4GB
6C 4 6GB

8C 3 8GB

24C 1 24GB

vGPU profile is configured by user via the (host) driver
Cannot have a mix of profiles on the host for the same GPU



vGPUs & MiGs

VMO vmo VM6
GPU Slice GPU Slice GPU Slice MiG
#O #® H6 Profiles
Physical GPU

Static and spatial Partitioning of Multi Instance GPUs

1 1 1
[ 1 1
Hypervisor i| GuestVM |i| GuestVM |i| GuestVM
] 1 1 1 1
i | || Applications || uhpplications i uhpplications
- : E :
I - | - I -
[} ] 1
[ ] 1
1 i 1
1 i 1
i 1 1
: , : ~, : ,
ﬁ R § SN N T O R 1
{} i : |
! | |
1 H 1
NVIDIA SR R R— 7
ph"j“SlEﬂ.l [dulll : Virtual GPU I Virtual GPU : Virtual GPU
: I :
vGPUs:

1. Eachvirtual GPU is assigned to a VM.

2. The host driver containsthe scheduler
through which work is assigned on a
physical GPU.

3. VvGPUs are temporallyshare the GPU

T

RA,

MiGs

1. Each partition of a MiG enabled GPU is
attachedtoa VM

2. Spatially multiplexing of cores and memory.

3. Maxof 7 slices of the GPU can be created.
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MG Profiles for A100

Config

GPC GPC GPC GPC GPC GPC GPC

Slice #0 Slice #1 Slice #2 Slice #3 Slice #4 Slice #5 Slice #6
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Combinations of different possible combinations

The numbers indicatethe
fraction of how the GPU can be
split

For example, for config no. 2
1. First slice will have 4/7 of
the GPUs resources
2. Second slice will have 3/7
of the GPUs resources



Challenges with vGPUs and MiGs

* Reserve-and-use service model limits resource usage efficiency

 Static partitioning of GPUs

Tight-coupling with control plane for access and management



API Virtualization
of GPUs

* Client CUDA calls arevirtualized

* Multiplexingand resource
management happenswith the
virtualization manager

* Clientneed notworry about
management of GPUs.

* CUDA callsare eitherintercepted, or
a virtualized CUDA libraryis
provided.

CLIENT
APP APP
CUDAAPI VIRTUAL
Interception CUDAAPIs

Remote CUDA
calls

\

=Client 1D, Process ID, APl Call, Parameters =

Y

Get/Set Request's

VIRTUALIZATION MANAGER

context

. [CUDA Context
Handler

R3 | R2

@ @ Pass context to
R1 Scheduler

R6 | RS

sC
R4

Request Queuss

HEDULER

Dispatch requests toffrom GPUs

VM

Dispatcher

CUDA APIs

GPU

VM

Dispatcher

CUDA APIs

GPU

24



Splwe

Vo
ﬂ—ﬂ)\ 9 « &M_\a
VWA ¥ -
| Ve T trerey % () A Coda
{ie ) vt o gt o ot
B | X Q{{%ugfiow
| Al wivhmsLasting K\m«h = @) (o
| C[/\Q,\k iy f&'WuCL %&AAO\
Paramdders | Safo. -
dotal  Contert

wmale Hﬁ A %@

vest\lt ¢
Chove (:ov\{’O“" ‘Y‘C/Q'\U\Vn ‘Y\i’/?v\“'f %®

\oco V)



Multi Process
Service (MPS)

MPS supports limited execution
resource provisioning for Quality
of Service (QoS)

Allows a max of 48 GPU
processes to execute
simultaneously.

Allows for different resource
limits to be set between
processes running on the GPU.

L1110

NVIDIA MPS CLIENT
CONTEXT

[
;

1
I

(_)F"l P1

GPU
SMsiCores

.-'--l-l--- _'.I
NVIDIA MPS SERVER
pa | p5 Process
Queue
il 1
1 |
: P2 || P2' P3
1
I [
P1L P1 |P2| P2 ! P3
| 1 1 |
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GPU
Processes

Physical
GPU
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Kernel Slicing

K2 ~ M Yoxdd

A GPU kernel is made up of thread blocks (Shown
previouslyin vector addition example)

Kernel slicing is a mechanism, by which, instead of
invokingall the thread blocks at once, we can invoke
parts of them.

This creates more scheduling opportunitiesfor other
Kernel slices to be executed on a GPU as thereis no
pre-emption on GPUs

Kernel slicing perform psuedo pre-emption of a
CUDA program

The CUDA program is responsible for
managing/deployingthe kernel slices
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Thread I Thread I Thread I Thread
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Thread I Thread I Thread I Thread
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GPU Kernel
— with thread
blocks

GPU Kernel
- Slices

scheduled

on the GPU
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Challenges with API virtualization

* Performance overhead added when a software virtualization layer is introduced.
* Maintaining context/state of every process being virtualized.

* Providing isolation between the workloads



Use cases for GPU virtualization

* Use of GPUs in serverless platforms

 (Serverless platforms are also a mechanism to virtualize GPUs at a function
abstraction level)

* High performance computing

* Virtual Desktop Infrastructure



What is FaaS? i | |5

* Developers focus only on business logic, Runtime A
rest is managed by the vendor. Execution
Environment
0S

* Scale up or down automatically
Virtualization

Managed by Vendor

Hardware







FaaS platform with GPUs

4 Serverless platform

\
Function request GPU
' | Scheduler
J

Request queue

-
[ Resource Manager (k8s, Apache Mesos)

_— 7

Vv VM VM
| GPUMANAGER | | GPUMANAGER | [ GPUMANAGER |
[ Container I Container ] [ Container I Container ] """"""""""""""" [ Container I Container ]
vGPU vGPU vGPU

Physical GPU




FaaS platform with GPUs

4 Serverless platform

~

Function request R { GPU }
Scheduler

J

|

Request queue

-
[ Resource Manager (k8s, Apache Mesos)

_— /N

Vv VM VM
| GPUMANAGER | | GPUMANAGER | [ GPUMANAGER |
[ Container I Container ] [ Container I Container ] """"""""""""""" [ Container I Container ]
vGPU vGPU vGPU

Physical GPU




FaaS platform with GPUs

4 Serverless platform

\
Function request GPU
' | Scheduler
/

Request queue

-
[ Resource Manager (k8s, Apache Mesos)

_— 7

Vv VM VM
| GPUMANAGER | | GPUMANAGER | [ GPUMANAGER |
[ Container I Container ] [ Container I Container ] """"""""""""""" [ Container I Container ]
vGPU vGPU vGPU

Physical GPU




FaaS platform with GPUs

4 Serverless platform

\
Function request GPU
' | Scheduler
/

Request queue

-
[ Resource Manager (k8s, Apache Mesos)

_— 7

Vv VM VM
| GPUMANAGER | | GPUMANAGER | [ GPUMANAGER |
[ Container I Container ] [ Container I Container ] """"""""""""""" [ Container I Container ]
vGPU vGPU vGPU

Physical GPU




Existing Ongoing
Projects

- Variants based scheduling of GPU functions

- Characterization and profiling for NVIDIA MPS
- MPS plugin for Kubernetes

- Orchestration of GPU kernel workflows

- Eureka:Share based vGPU Task Scheduling




Variants based scheduling of GPU functions

Multiple Solutions

N\

__ y»| ResNetd0
GPUNet

CIFAR-10

e

Images

Image classification ’)

Single Task

ResNetb0 |Pascal = | 7GB - 16GB
GPUNet |Volta= |~14GB
CIFAR-10 |Pascal = |1GB =

?ﬂkkg'ﬂ”\alv\i V¢, 60(\_
VG- e Coun 28

Different GPU requirements[1]

1. Eachfunctionality has multiplevariations,i.e
it’s variants

2. Function variantsprovide a resource v/s
performance trade off

“Warm functions metadata
Function ID

Function VID

Queue size

<Warm FIDs, Warm FVIDs, Load on warm funcs>

< FID, Quality metric, deadline>

Scheduling

Heuristic

Function
store

<vGPU ID: <Memory Utilization, Core Utilization>>

EObjecti\.|re functions of scheduler

Maximise throughput

< FID, FVID, GPU Type>

“ Function metadata

Function ID
Function Variant ID

GPU Types: <cpu/gpu
memory, cores>

Function image/code
Cold start time
Latency based on load
Workload size

Quiality metric

—_—

'(eg?"“‘“/ffc

Workload characterized
performance
profile

Problem overview for designing the FaaS GPU scheduling heuristic

Project by, Pramod S Rao (pramodrao@cse.iitb.ac.in)






Characterization and profiling for NVIDIA MPS

P1

P2

P3

P5

h 4

Y

Y

NVIDIA MPS CLIENT
CONTEXT

T

A

.-/"--

L J

NVIDIA MPS SERVER

P4

P5

(_) P1
GPU Pl
SMsiCores

)
.

e

P1

P1

P2

P2

P3

P3

Y

-
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MPS client/server architecture

Project by, Mitali Sunil Meratwal (190070033 @iitb.ac.in)

Performance of different workloads
under different setups:

I. MPS on bare metal

II. MPS on vGPUs

IIl. MPS on bare metal v/s vGPUs

Characterization of GPU workloads

Creating a performance model to feed
into inputs of GPU schedulers
|. Observation of interference
effects on co-location



Findings on NVIDIA MPS

70
60 [
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Throughput

o 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

# of colocated functions # of colocated functions

- Increase in latency between co- - Increase in throughput for co-
located functions via MPS due to located functions via MPS.
interference.



MPS plugin for Kubernetes

‘ Kubernetes Control Plane ‘

|

hJ

L

|

Worker Node

Worker Node

MPS Manager

MPS Manager

u Containers

u Containers

GPU

GPU

Worker Node

MPS Manager

u Containers

GPU

Project by, Rahul Shukla (rahul4shukla64@gmail.com)

Extension of existing GPU managerto
incorporate virtualization via NVIDIA MPS

Virtualization software which is spatially
multiplexingin nature

Device plugin for Kubernetes
This feature enables dynamic multiplexing

features of MPS for orchestrated containers
on Kubernetes



Eureka: Share based vGPU Task Scheduling

Best effort scheduling on

GPU

Incoming
Teisks |
Incoming { Task Dispatcher
|
Tasks - l J
vGPU 1 vGPU 2 ‘ vGPU 1 \ vGPU 2
1.r1 v2 1.r1 v2

28090 Jopeaa0s

Share based scheduling on
GPU

Project by, Sameer Ahmad (22m0789@iitb.ac.in)

In best-effort scheduling vGPUs are
scheduled in a Round Robin manner,
All vGPUs are given same priarity on
the GPU.

We are designing a task distributor that

will schedule tasks on different vGFUs

iINn some ratio.

Suppose there are two vGPUs vl and
vZ2, we will be able to schedule tasks
such that for every 100ms utilization of
GPU by vl, v2 uses GPU for 200ms.
We can provide QoS based GPU
allocation.



Orchestration of GPU kernel workflows

1. GPU memory operations are expensive
2. Same memory is often required by the next executing Kernel

3. This project aims at leaving behind output of the current kernel in
the GPU as the input to the next kernel

4. This helps reduce the transfers between CPU and GPU memory

Project by, Bhattad KrushnakantDilip (190100036®@iitb.ac.in) and Anshul Sanghi (22m0758@iitb.ac.in)
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