
Intro to GPU programming

and GPU virtualization
(CS695)

- Pramod under the
guidance of Prof.
Puru

1

Outline • Background

• CUDA Programming Framework

• Why virtualize GPUs?

• Mechanisms to virtualize GPUs

• Existing problem formulations and setups

2

Background

4

- SIMD and it's applications
- CUDA Programming Framework

Single Instruction Multiple Data (SIMD)

A0

A1

A2

A3

B0

B1

B2

B3

A0

A1

A2

A3

B0

B1

B2

B3

Scalar Operations SIMD Operations

1. Elements of a vector are processed
one at a time in a loop.

2. One thread performs the same
operation on multiple data

1. Multiple elements of a vector are
processed at one shot.

2. Multiple threads performs the
same operation on multiple data
simultaneously.

M
u

lt
ip

le
 th

re
a

d
s

Si
n

gl
e

Th
re

a
d

SIMD architecture is primarily used for vector processing and matrix operations.

SIMD Applications

AI/ML

1. Involves considerable
matrix computations

2. Same instruction
operating on multiple
data

Image processing/3-D
Rendering

1. Involves RGB vector
computations.

2. Same instruction operating
on multiple points/pixels
of the image.

Cryptography

1. Involves bitwise
operations on vectors.

2. SIMD paradigm
accelerates vector
processing.

1. Arithmetic operations on
audio frames, which are
stored in vectors.

2. Same instruction on
multiple audio frames
can be applied.

Audio processing

High level GPU
architecture

• Thousands of small cores

• Streaming multiprocessors (SM
s) contain the cores

• SM – Group of cores with it's own
cache

• Own device memory

• Mounted on a PCIe bus

• CUDA/OpenCL API for interfacing

CUDA - Programming
on the GPUs

9

- CUDA programming framework
- Vector addition example
- Demo

CUDA Programming Framework

10

ThreadThread Block
Grid

1. Each thread runs on one GPU core

2. Group of threads form a thread block.

3. All the threads in a block run on one
Streaming multiprocessor.

4. Group of thread Blocks is a Grid

5. Grids are run parallelly across many
Streaming multiprocessors.

6. Each Streaming multiprocessor in a GPU
has it's own cache.

CUDA vector addition – Single Block, Single thread

11

Kernel: On GPU

Kernel setup: On CPU

Allocate GPU memory
transfer data,

Initiate GPU kernel

CUDA vector addition – Single Block, Multiple threads

12

Kernel: On GPU

Kernel setup: On CPU

Allocate GPU memory
transfer data,

Initiate GPU kernel

CUDA vector addition – Multiple Blocks and threads

13

Kernel: On GPU

Kernel setup: On CPU

Allocate GPU memory
transfer data,

Initiate GPU kernel

Virtualization aspect of
GPUs

14

- Why virtualize GPUs

- Mechanisms to virtualize GPUs

- Challenges

Why virtualize GPUs?

16

GPU utilization with one application

1. Single user/application not
enough to fully utilize a GPU

2. This results in under-utilization
of a GPU

MAXIMIZE UTILIZATION

Different
Sizes of
GPUs

Varying
Workloads

Different requirements

1. Multiple requests/VMs can
have different GPU sizes

2. Varying workloads such as
compute/graphic can be
optimized.

FLEXIBILITY

1. GPUs are nowadays found in
almost all data centres.

2. Due to high cost of GPUs, we
want to maximise their usage.

First class resource in most
data centres

FIRST CLASS RESOURCE

GPU virtualization software stack

17

GPUs

Passthrough| Para/Full/Hardware virtualization
| API remoting | GPU Direct

CUDA | OpenCL | Virtual CUDA libraries

AI/ML, 3-D rendering, Compression, Image
processing, VDI etc.

Applications

APIs & Libraries

Virtualization

Physical GPU

Management layer| Scheduling | Resource
provisioning

Virtualization
management

Mechanisms to virtualize GPUs

19

Hardware assisted Software assisted Software + Developer
assisted

Examples VGPUs, MiGs RCUDA, GPU manager,
vCUDA, MPS etc.

Kernel Slicing

Multiplexing Temporal(vGPUs) and
Spatial (MiGs)

Temporal and Spatial (MPS) Temporal

Control Plane Native Drivers Virtualization layer APIs

App changes required No No Yes

Abstraction Device Device, APIs APIs

1. Virtualization mechanisms at different abstraction levels can be used together
2. The mentioned examples are the solutions that use these mechanisms to virtualize GPUs at

different abstraction levels.

vGPU Profiles

Profile Num of vGPUs Memory per vGPU

1q 24 1GB

2q 12 2GB

4q 6 4GB

8q 3 8GB

24q 1 24GB

4C 6 4GB

6C 4 6GB

8C 3 8GB

24C 1 24GB

GPU: NVIDIA RTX A5000 (24GB memory), 8192 cores

vGPU profile is configured by user via the (host) driver
Cannot have a mix of profiles on the host for the same GPU

vGPUs & MiGs

21

vGPUs:

1. Each virtual GPU is assigned to a VM.
2. The host driver contains the scheduler

through which work is assigned on a
physical GPU.

3. vGPUs are temporally share the GPU

Static and spatial Partitioning of Multi Instance GPUs

MiGs

1. Each partition of a MiG enabled GPU is
attached to a VM

2. Spatially multiplexing of cores and memory.
3. Max of 7 slices of the GPU can be created.

Physical GPU

GPU Slice
#0

GPU Slice
#1

GPU Slice
#6

VM0 VM0 VM6

MiG
Profiles

MiG Profiles for A100

Combinations of different possible combinations

1. The numbers indicate the
fraction of how the GPU can be
split

2. For example, for config no. 2
1. First slice will have 4/7 of

the GPUs resources
2. Second slice will have 3/7

of the GPUs resources

Challenges with vGPUs and MiGs

• Reserve-and-use service model limits resource usage efficiency

• Static partitioning of GPUs

• Tight-coupling with control plane for access and management

API Virtualization
of GPUs

• Client CUDA calls are virtualized

• Multiplexing and resource
management happens with the
virtualization manager

• Client need not worry about
management of GPUs.

• CUDA calls are either intercepted, or
a virtualized CUDA library is
provided.

24

Multi Process
Service (MPS)

• MPS supports limited execution
resource provisioning for Quality
of Service (QoS)

• Allows a max of 48 GPU
processes to execute
simultaneously.

• Allows for different resource
limits to be set between
processes running on the GPU.

Kernel Slicing

1. A GPU kernel is made up of thread blocks (Shown
previously in vector addition example)

2. Kernel slicing is a mechanism, by which, instead of
invoking all the thread blocks at once, we can invoke
parts of them.

3. This creates more scheduling opportunities for other
Kernel slices to be executed on a GPU as there is no
pre-emption on GPUs

4. Kernel slicing perform psuedo pre-emption of a
CUDA program

5. The CUDA program is responsible for
managing/deploying the kernel slices

Thread
Block

Thread
Block

Thread
Block

Thread
Block

Thread
Block

Thread
Block

Thread
Block

Thread
Block

Thread
Block

Thread
Block

Thread
Block

Thread
Block

Kernel
Slice

Kernel
Slice

Kernel
Slice

Kernel
Slice

GPU Kernel
with thread
blocks

GPU

GPU Kernel
Slices
scheduled
on the GPU

Challenges with API virtualization

• Performance overhead added when a software virtualization layer is introduced.

• Maintaining context/state of every process being virtualized.

• Providing isolation between the workloads

Use cases for GPU virtualization

30

• Use of GPUs in serverless platforms
• (Serverless platforms are also a mechanism to virtualize GPUs at a function

abstraction level)

• High performance computing

• Virtual Desktop Infrastructure

What is FaaS?

• Developers focus only on business logic,
rest is managed by the vendor.

• Scale up or down automatically

31

FaaS platform with GPUs

Serverless platform

Request queue

GPU
Scheduler

Resource Manager (k8s, Apache Mesos)

VM

Physical GPU

vGPU

Container Container

Container

VM

vGPU

Container Container

Container

VM

vGPU

Container Container

Container

GPU MANAGER GPU MANAGER GPU MANAGER

Function request

FaaS platform with GPUs

Serverless platform

Request queue

GPU
Scheduler

Resource Manager (k8s, Apache Mesos)

VM

Physical GPU

vGPU

Container Container

Container

VM

vGPU

Container Container

Container

VM

vGPU

Container Container

Container

GPU MANAGER GPU MANAGER GPU MANAGER

Function request

FaaS platform with GPUs

Serverless platform

Request queue

GPU
Scheduler

Resource Manager (k8s, Apache Mesos)

VM

Physical GPU

vGPU

Container Container

Container

VM

vGPU

Container Container

Container

VM

vGPU

Container Container

Container

GPU MANAGER GPU MANAGER GPU MANAGER

Function request

FaaS platform with GPUs

Serverless platform

Request queue

GPU
Scheduler

Resource Manager (k8s, Apache Mesos)

VM

Physical GPU

vGPU

Container Container

Container

VM

vGPU

Container Container

Container

VM

vGPU

Container Container

Container

GPU MANAGER GPU MANAGER GPU MANAGER

Function request

Existing Ongoing
Projects

37

- Variants based scheduling of GPU functions

- Characterization and profiling for NVIDIA MPS

- MPS plugin for Kubernetes

- Orchestration of GPU kernel workflows

- Eureka: Share based vGPU Task Scheduling

Variants based scheduling of GPU functions

1. Each functionality has multiple variations, i.e
it’s variants

2. Function variants provide a resource v/s
performance trade off

Problem overview for designing the FaaS GPU scheduling heuristic

Project by, Pramod S Rao (pramodrao@cse.iitb.ac.in)

Characterization and profiling for NVIDIA MPS

1. Performance of different workloads
under different setups:

I. MPS on bare metal
II. MPS on vGPUs
III. MPS on bare metal v/s vGPUs

2. Characterization of GPU workloads

3. Creating a performance model to feed
into inputs of GPU schedulers

I. Observation of interference
effects on co-location

MPS client/server architecture

Project by, Mitali Sunil Meratwal (190070033@iitb.ac.in)

Findings on NVIDIA MPS

- Increase in latency between co-
located functions via MPS due to
interference.

- Increase in throughput for co-
located functions via MPS.

MPS plugin for Kubernetes

Project by, Rahul Shukla (rahul4shukla64@gmail.com)

1. Extension of existing GPU manager to
incorporate virtualization via NVIDIA MPS

2. Virtualization software which is spatially
multiplexing in nature

3. Device plugin for Kubernetes

4. This feature enables dynamic multiplexing
features of MPS for orchestrated containers
on Kubernetes

Project by, Sameer Ahmad (22m0789@iitb.ac.in)

Orchestration of GPU kernel workflows

1. GPU memory operations are expensive

2. Same memory is often required by the next executing Kernel

3. This project aims at leaving behind output of the current kernel in
the GPU as the input to the next kernel

4. This helps reduce the transfers between CPU and GPU memory

Project by, Bhattad Krushnakant Dilip (190100036@iitb.ac.in) and Anshul Sanghi (22m0758@iitb.ac.in)

mailto:190100036@iitb.ac.in

Q & A

45

	Slide 1: Intro to GPU programming and GPU virtualization (CS695)
	Slide 2: Outline
	Slide 4: Background
	Slide 5: Single Instruction Multiple Data (SIMD)
	Slide 6: SIMD Applications
	Slide 7: High level GPU architecture
	Slide 9: CUDA - Programming on the GPUs
	Slide 10: CUDA Programming Framework
	Slide 11: CUDA vector addition – Single Block, Single thread
	Slide 12: CUDA vector addition – Single Block, Multiple threads
	Slide 13: CUDA vector addition – Multiple Blocks and threads
	Slide 14: Virtualization aspect of GPUs
	Slide 16: Why virtualize GPUs?
	Slide 17: GPU virtualization software stack
	Slide 18
	Slide 19: Mechanisms to virtualize GPUs
	Slide 20: vGPU Profiles
	Slide 21: vGPUs & MiGs
	Slide 22: MiG Profiles for A100
	Slide 23: Challenges with vGPUs and MiGs
	Slide 24: API Virtualization of GPUs
	Slide 25
	Slide 26: Multi Process Service (MPS)
	Slide 27: Kernel Slicing
	Slide 28
	Slide 29: Challenges with API virtualization
	Slide 30: Use cases for GPU virtualization
	Slide 31: What is FaaS?
	Slide 32
	Slide 33: FaaS platform with GPUs
	Slide 34: FaaS platform with GPUs
	Slide 35: FaaS platform with GPUs
	Slide 36: FaaS platform with GPUs
	Slide 37: Existing Ongoing Projects
	Slide 38: Variants based scheduling of GPU functions
	Slide 39
	Slide 40: Characterization and profiling for NVIDIA MPS
	Slide 41: Findings on NVIDIA MPS
	Slide 42: MPS plugin for Kubernetes
	Slide 43
	Slide 44: Orchestration of GPU kernel workflows
	Slide 45: Q & A

