Intro to GPU programming and GPU virtualization (CS695)

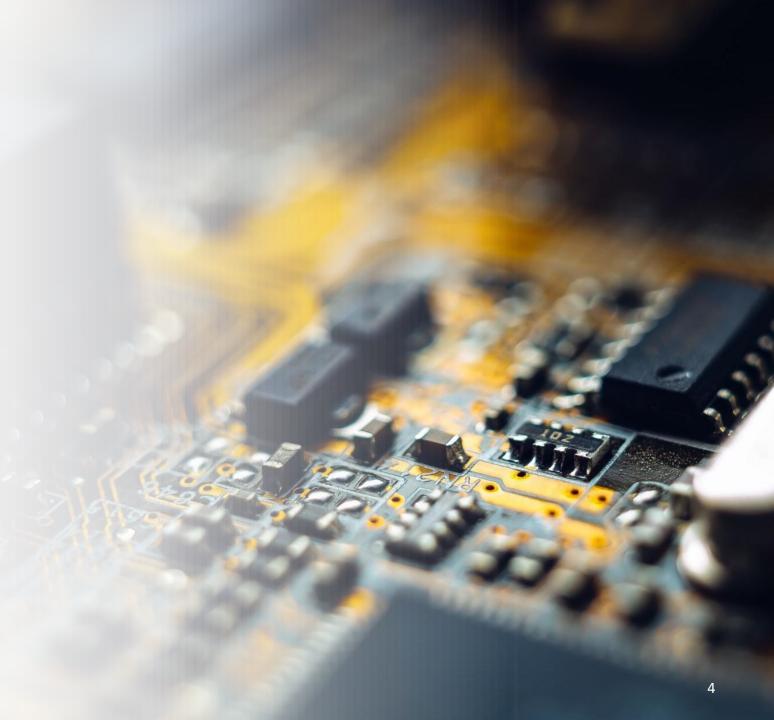
 Pramod under the guidance of Prof.
 Puru

Outline

- Background
- CUDA Programming Framework
- Why virtualize GPUs?
- Mechanisms to virtualize GPUs
- Existing problem formulations and setups

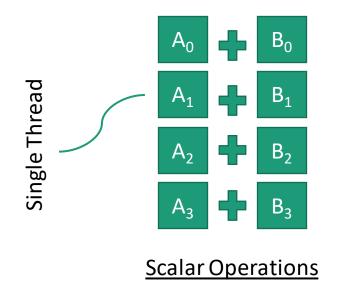
Background

- SIMD and it's applications
- CUDA Programming Framework



Single Instruction Multiple Data (SIMD)

SIMD architecture is primarily used for vector processing and matrix operations.



 \checkmark A_0 B_0 \checkmark A_1 \blacksquare_1 \checkmark A_2 B_2 \checkmark A_3 B_3

SIMD Operations

- 1. Elements of a vector are processed one at a time in a loop.
- 2. One thread performs the same operation on multiple data

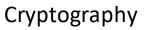
- 1. Multiple elements of a vector are processed at one shot.
- 2. Multiple threads performs the same operation on multiple data simultaneously.

SIMD Applications

- 1. Involves considerable matrix computations
- Same instruction operating on multiple data

Image processing/3-D Rendering

- Involves RGB vector computations.
- 2. Same instruction operating on multiple points/pixels of the image.



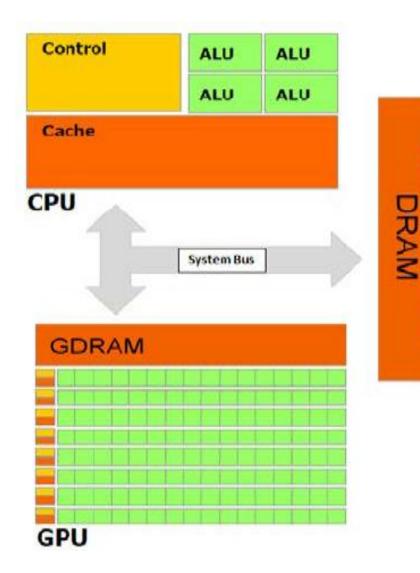
- 1. Involves bitwise operations on vectors.
- SIMD paradigm accelerates vector processing.

Audio processing

- Arithmetic operations on audio frames, which are stored in vectors.
- 2. Same instruction on multiple audio frames can be applied.

High level GPU architecture

- Thousands of small cores
 - Streaming multiprocessors (SM s) contain the cores
- SM Group of cores with it's own cache
- Own device memory
- Mounted on a PCIe bus
- CUDA/OpenCL API for interfacing



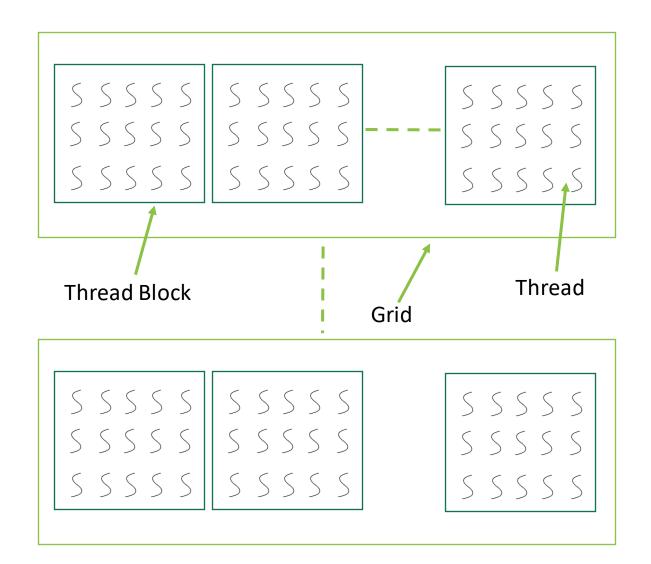
ystem

Memory

CUDA - Programming on the GPUs

- CUDA programming framework
- Vector addition example
- Demo

CUDA Programming Framework



- 1. Each thread runs on one GPU core
- 2. Group of threads form a thread block.
- 3. All the threads in a block run on one Streaming multiprocessor.
- 4. Group of thread Blocks is a Grid
- 5. Grids are run parallelly across many Streaming multiprocessors.
- 6. Each Streaming multiprocessor in a GPU has it's own cache.

CUDA vector addition – Single Block, Single thread

Kernel: On GPU

```
_global__ void vector_add(float *out, float *a, float *b, int n) {
    for(int i = 0; i < n; i ++){
        out[i] = a[i] + b[i];
    }</pre>
```

Kernel setup: On CPU

Allocate GPU memory transfer data, Initiate GPU kernel // Allocate device memory
cudaMalloc((void**)&d_a, sizeof(float) * N);
cudaMalloc((void**)&d_b, sizeof(float) * N);
cudaMalloc((void**)&d_out, sizeof(float) * N);

// Transfer data from host to device memory
cudaMemcpy(d_a, a, sizeof(float) * N, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, sizeof(float) * N, cudaMemcpyHostToDevice);

// Executing kernel
vector_add<<<1, 1>>>(d_out, d_a, d_b, N);

CUDA vector addition – Single Block, Multiple threads

Kernel: On GPU

```
_global__ void vector_add(float *out, float *a, float *b, int n) {
    int index = threadIdx.x;
    int stride = blockDim.x;
    for(int i = index; i < n; i += stride){
        out[i] = a[i] + b[i];
    }
}</pre>
```

Kernel setup: On CPU

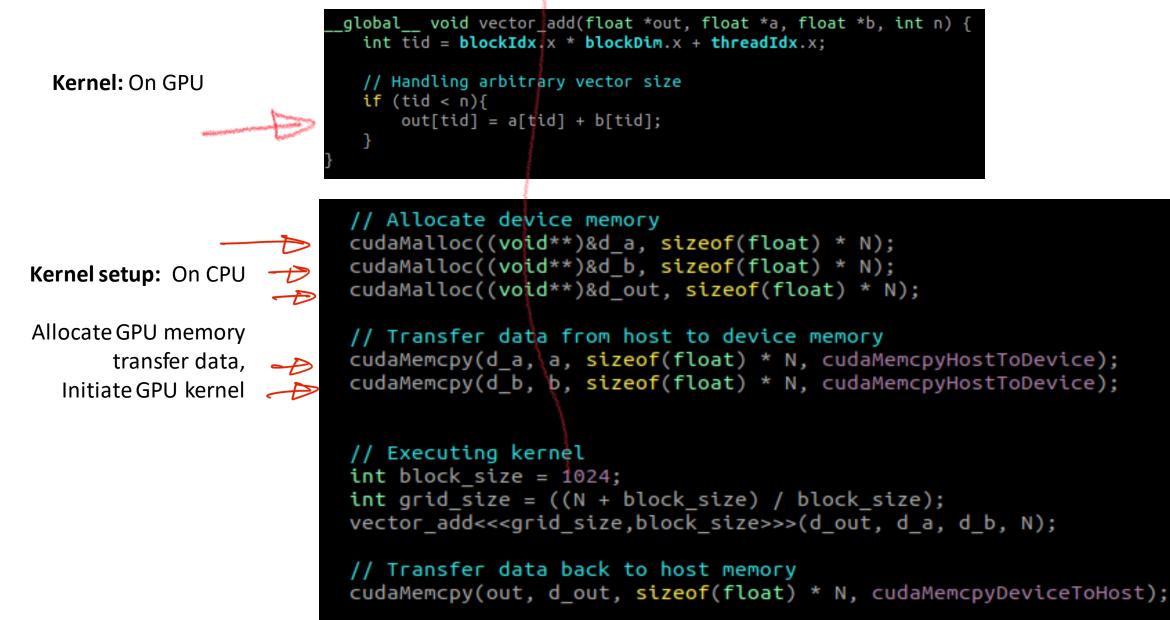
Allocate GPU memory transfer data, Initiate GPU kernel // Allocate device memory
cudaMalloc((void**)&d_a, sizeof(float) * N);
cudaMalloc((void**)&d_b, sizeof(float) * N);
cudaMalloc((void**)&d_out, sizeof(float) * N);

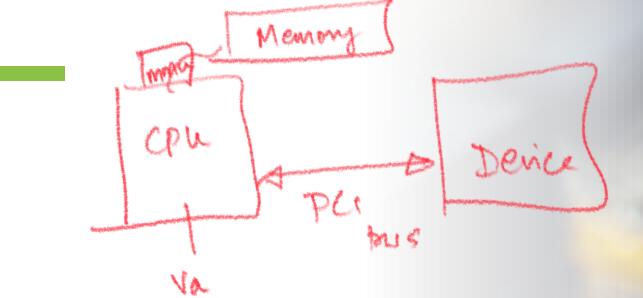
// Transfer data from host to device memory
cudaMemcpy(d_a, a, sizeof(float) * N, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, sizeof(float) * N, cudaMemcpyHostToDevice);

// Executing kernel
vector add<<<1,1024>>>(d out, d a, d b, N);

// Transfer data back to host memory
cudaMemcpy(out, d_out, sizeof(float) * N, cudaMemcpyDeviceToHost);

CUDA vector addition – Multiple Blocks and threads

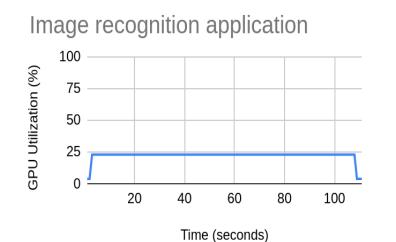




Virtualization aspect of GPUs

- Why virtualize GPUs
- Mechanisms to virtualize GPUs
- Challenges

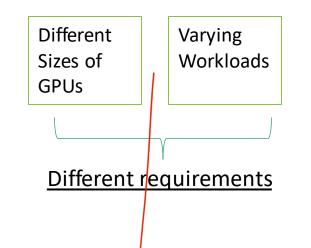
Why virtualize GPUs?



GPU utilization with one application

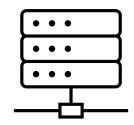
- 1. Single user/application not enough to fully utilize a GPU
- 2. This results in under-utilization of a GPU

MAXIMIZE UTILIZATION



- 1. Multiple requests/VMs can have different GPU sizes
- 2. Varying workloads such as compute/graphic can be optimized.

FLEXIBILITY

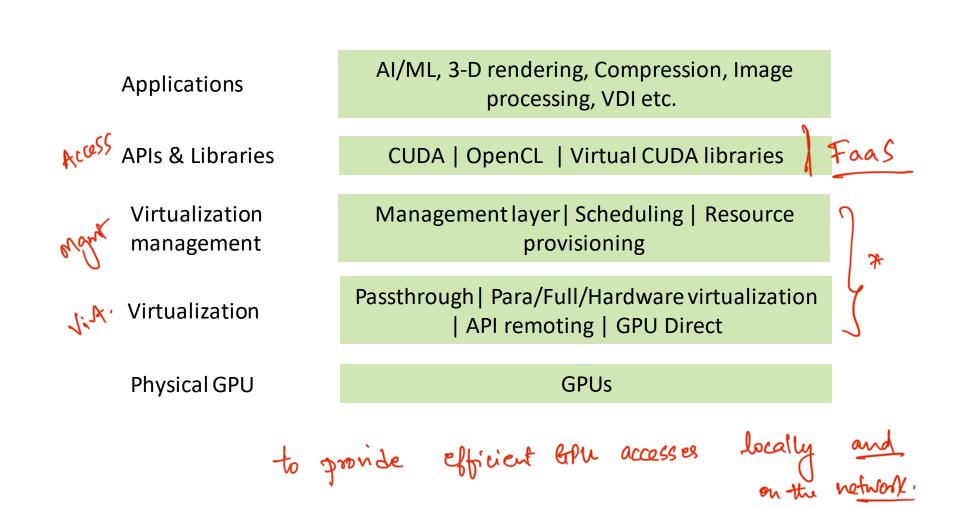


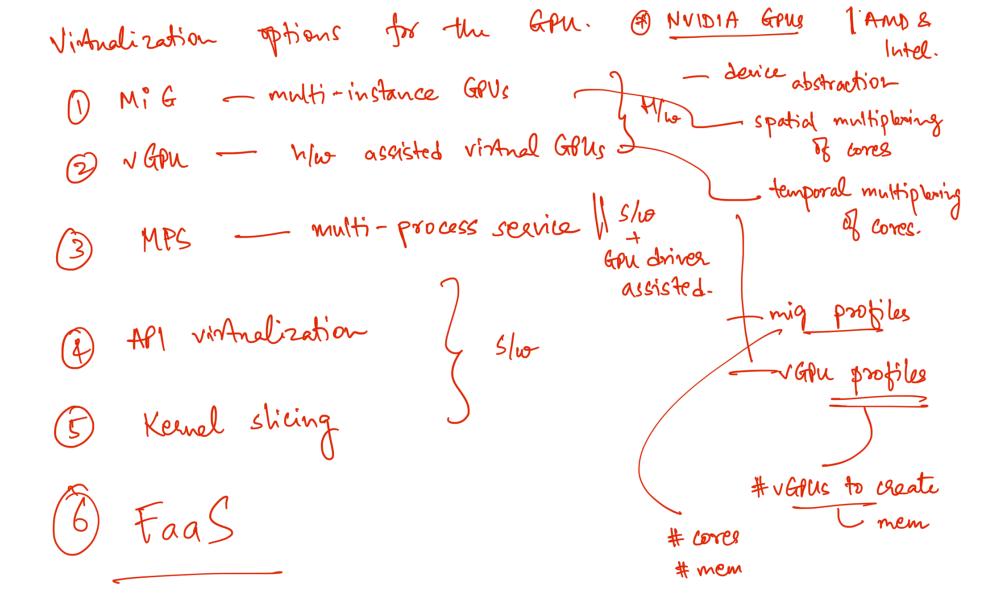
<u>First class resource in most</u> <u>data centres</u>

- 1. GPUs are nowadays found in almost all data centres.
- 2. Due to high cost of GPUs, we want to maximise their usage.

FIRST CLASS RESOURCE

GPU virtualization software stack





Mechanisms to virtualize GPUs

	Hardware assisted	Software assisted	Software + Developer assisted
Examples	VGPUs, MiGs	RCUDA, GPU manager, vCUDA, MPS etc.	Kernel Slicing
Multiplexing	Temporal(vGPUs) and Spatial (MiGs)	Temporal and Spatial (MPS)	Temporal
Control Plane	Native Drivers	Virtualization layer	APIs
App changes required	No	No	Yes
Abstraction	Device	Device, APIs	APIs

- 1. Virtualization mechanisms at different abstraction levels can be used together
- 2. The mentioned examples are the solutions that use these mechanisms to virtualize GPUs at different abstraction levels.

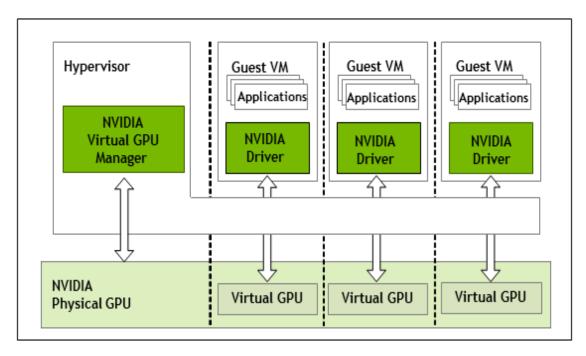
vGPU Profiles

GPU: NVIDIA RTX A5000 (24GB memory), 8192 cores

	Profile	Num of vGPUs	Memory per vGPU
	1q	24	1GB
	2q	12	2GB
	4q	6	4GB
	8q	3	8GB
	24q	1	24GB
Æ	4C	6	4GB
	6C	4	6GB
	8C	3	8GB
	24C	1	24GB

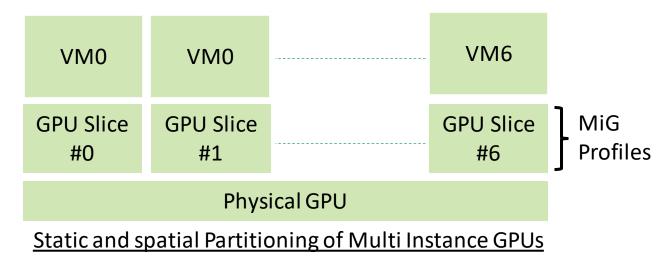
vGPU profile is configured by user via the (host) driver Cannot have a mix of profiles on the host for the same GPU

vGPUs & MiGs



<u>vGPUs:</u>

- 1. Each virtual GPU is assigned to a VM.
- The host driver contains the scheduler through which work is assigned on a physical GPU.
- 3. vGPUs are temporally share the GPU S. Wa



<u>MiGs</u>

- 1. Each partition of a MiG enabled GPU is attached to a VM
- 2. Spatially multiplexing of cores and memory.
- 3. Max of 7 slices of the GPU can be created.

MiG Profiles for A100

Config	GPC							
	Slice #0	Slice #1	Slice #2	Slice #3	Slice #4	Slice #5	Slice #6	
1		7						
2		4			3			
3		4			2	1		
4		4			1	1	1	
5		3			3			
6		3			2 1			
7		3		1	1	1		
8	:	2		3				
9	:	2		1	3			
10	1	1		2	3			
11	1	1	1	1	3			
12		2		2	2		1	
13		2		1	2		1	
14	1	1		2	2		1	
15	:	2		1	1	1	1	
16	1	1		2	1	1	1	
17	1	1	1	1	2 1		1	
18	1	1	1	1	1 2			
19	1	1	1	1	1	1	1	

Combinations of different possible combinations

- The numbers indicate the fraction of how the GPU can be split
- 2. For example, for config no. 2
 - 1. First slice will have 4/7 of the GPUs resources
 - 2. Second slice will have 3/7 of the GPUs resources

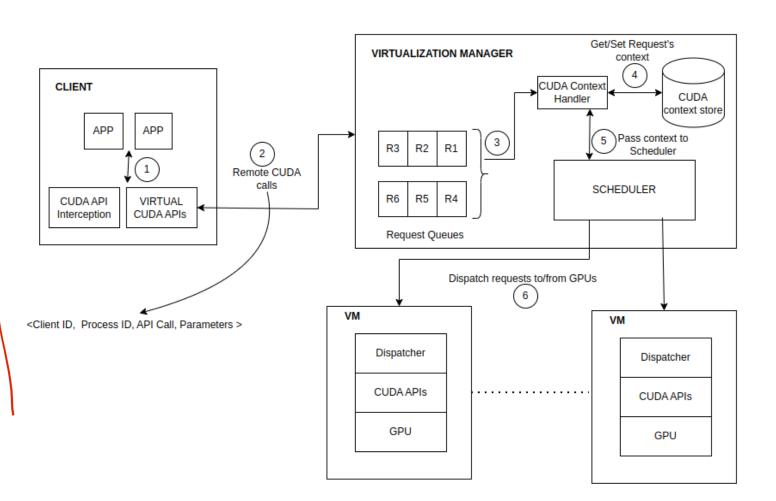
Challenges with vGPUs and MiGs

- Reserve-and-use service model limits resource usage efficiency
- Static partitioning of GPUs

Tight-coupling with control plane for access and management

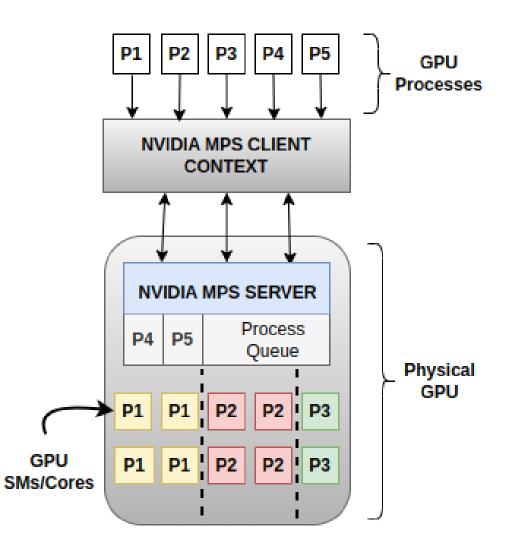
API Virtualization of GPUs

- Client CUDA calls are virtualized
- Multiplexing and resource management happens with the virtualization manager
- Client need not worry about management of GPUs.
- CUDA calls are either intercepted, or a virtualized CUDA library is provided.



Multi Process Service (MPS)

- MPS supports limited execution resource provisioning for Quality of Service (QoS)
- Allows a max of 48 GPU processes to execute simultaneously.
- Allows for different resource limits to be set between processes running on the GPU.



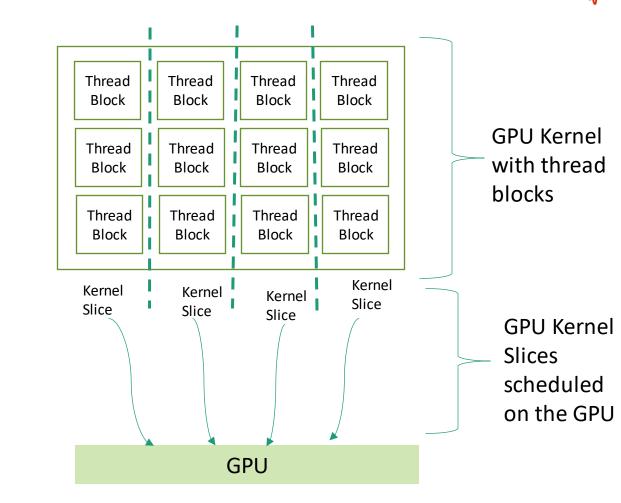
Kernel Slicing

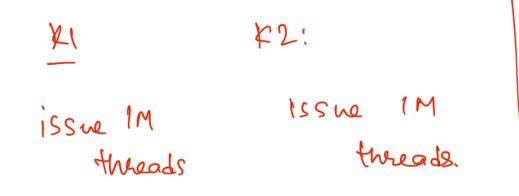
KI ~ IM threads

K2~ IM threads

von to completion => docs not allow preemption/multiplexing.

- 1. A GPU kernel is made up of thread blocks (Shown previously in vector addition example)
- 2. Kernel slicing is a mechanism, by which, instead of invoking all the thread blocks at once, we can invoke parts of them.
- 3. This creates more scheduling opportunities for other Kernel slices to be executed on a GPU as there is no pre-emption on GPUs
- 4. Kernel slicing perform psuedo pre-emption of a CUDA program
- 5. The CUDA program is responsible for managing/deploying the kernel slices





KI. ς issue SLICE # threads 3 do this 坂 前11 IM threads done.

42: 5 ISSNE SLICE # fureads. wait too slice to complete repeat tru IM threads done.

Challenges with API virtualization

- Performance overhead added when a software virtualization layer is introduced.
- Maintaining context/state of every process being virtualized.
- Providing isolation between the workloads

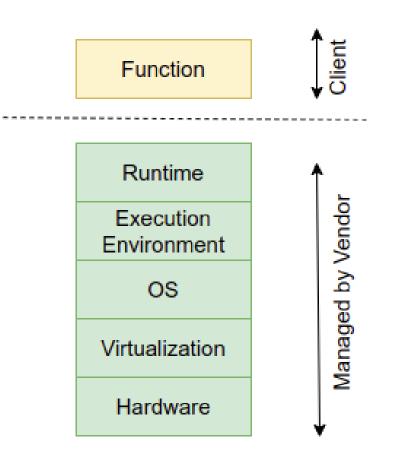
Use cases for GPU virtualization

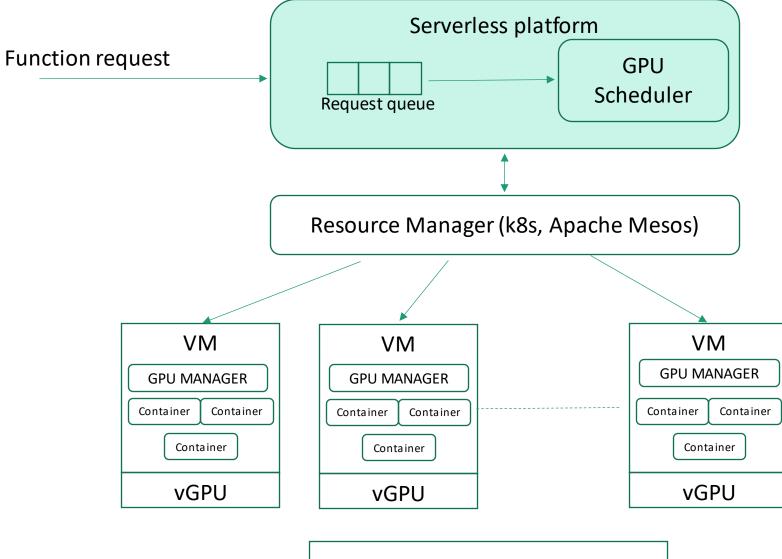
- Use of GPUs in serverless platforms
 - (Serverless platforms are also a mechanism to virtualize GPUs at a function abstraction level)
- High performance computing
- Virtual Desktop Infrastructure

What is FaaS?

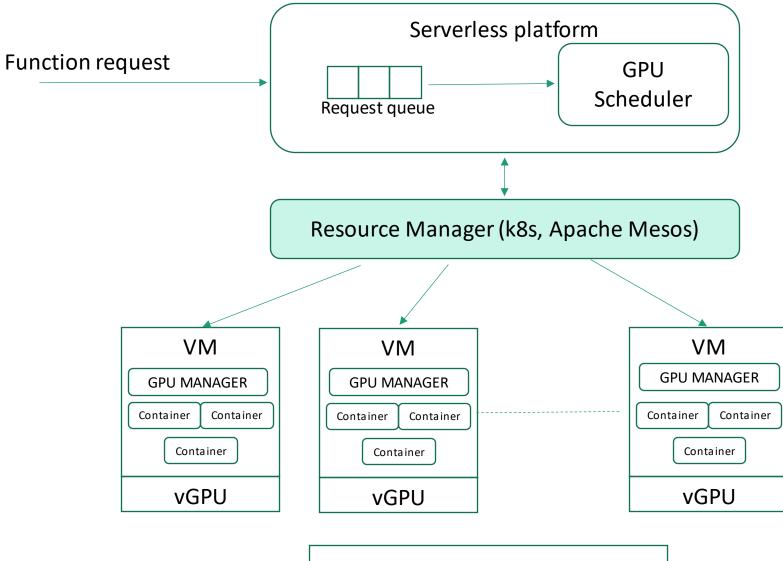
• Developers focus only on business logic, rest is managed by the vendor.

• Scale up or down automatically

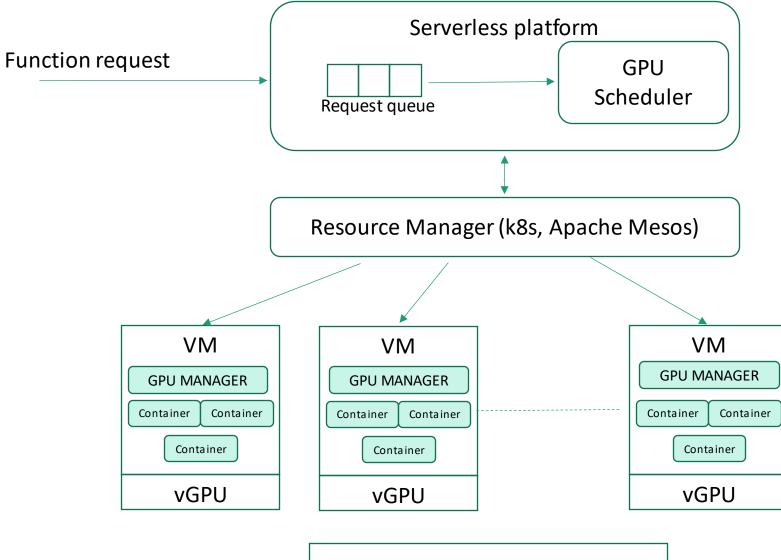




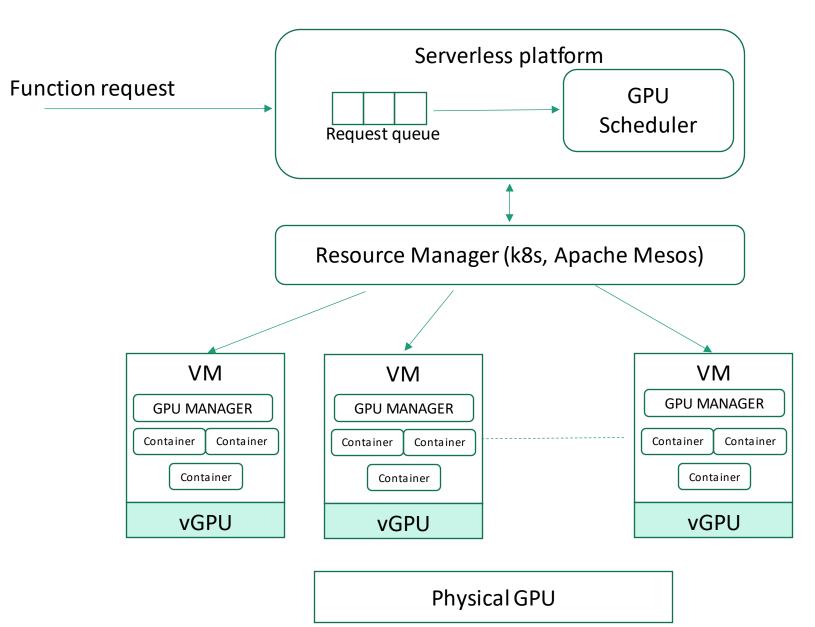
Physical GPU



Physical GPU



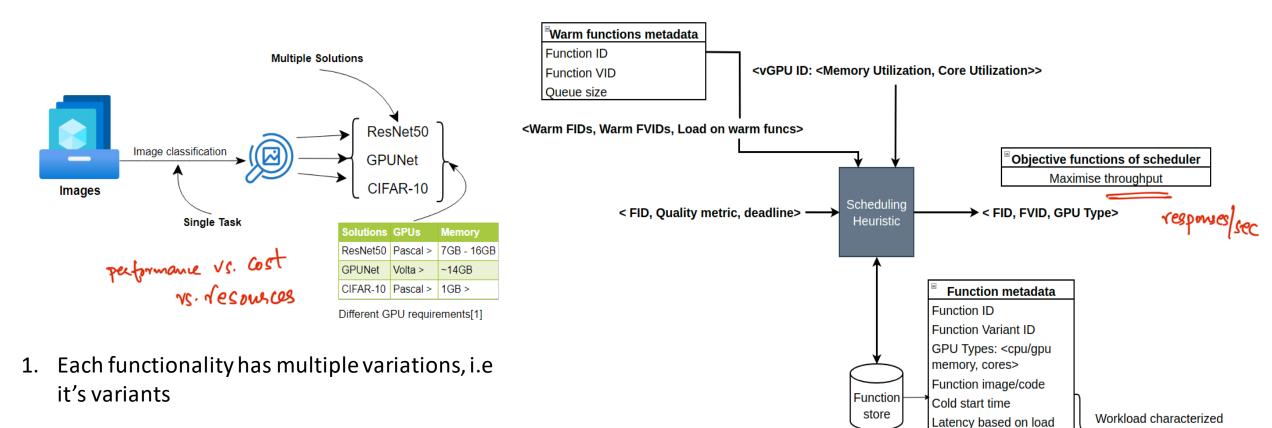
Physical GPU



Existing Ongoing Projects

- Variants based scheduling of GPU functions
- Characterization and profiling for NVIDIA MPS
- MPS plugin for Kubernetes
- Orchestration of GPU kernel workflows
- Eureka: Share based vGPU Task Scheduling

Variants based scheduling of GPU functions



2. Function variants provide a resource v/s performance trade off

Problem overview for designing the FaaS GPU scheduling heuristic

Workload size

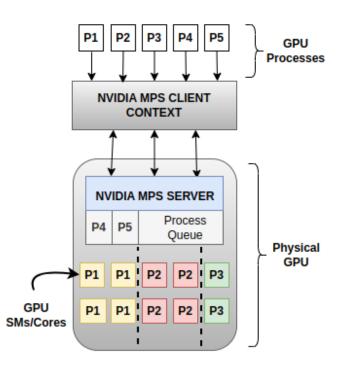
Quality metric

performance

profile

Project by, Pramod S Rao (pramodrao@cse.iitb.ac.in)

Characterization and profiling for NVIDIA MPS

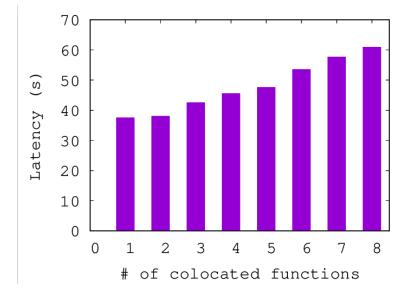


MPS client/server architecture

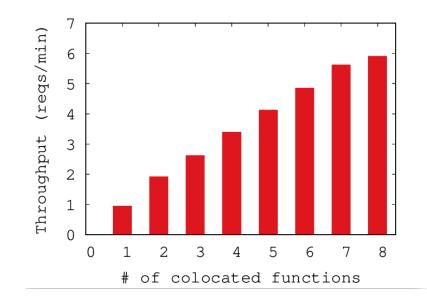
- 1. Performance of different workloads under different setups:
 - I. MPS on bare metal
 - II. MPS on vGPUs
 - III. MPS on bare metal v/s vGPUs
- 2. Characterization of GPU workloads
- 3. Creating a performance model to feed into inputs of GPU schedulers
 - I. Observation of interference effects on co-location

Project by, Mitali Sunil Meratwal (190070033@iitb.ac.in)

Findings on NVIDIA MPS

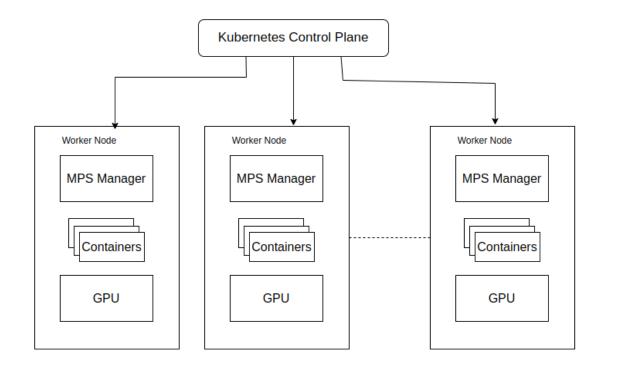


- Increase in latency between colocated functions via MPS due to interference.



- Increase in throughput for colocated functions via MPS.

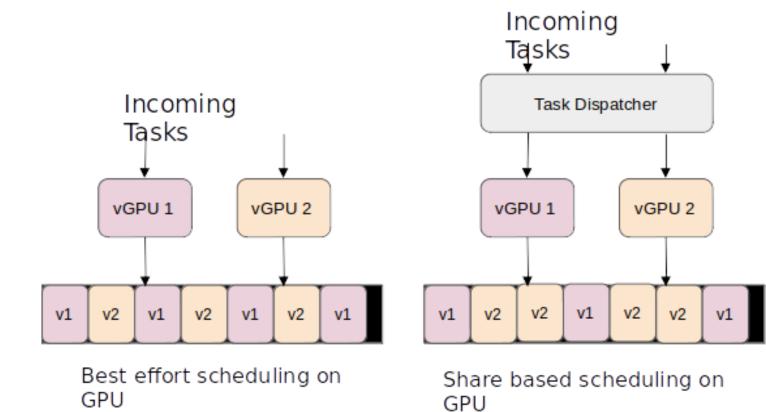
MPS plugin for Kubernetes



- 1. Extension of existing GPU manager to incorporate virtualization via NVIDIA MPS
- 2. Virtualization software which is spatially multiplexing in nature
- 3. Device plugin for Kubernetes
- 4. This feature enables dynamic multiplexing features of MPS for orchestrated containers on Kubernetes

Project by, Rahul Shukla (rahul4shukla64@gmail.com)

Eureka: Share based vGPU Task Scheduling



- In best-effort scheduling vGPUs are scheduled in a Round Robin manner. All vGPUs are given same priority on the GPU.
- We are designing a task distributor that will schedule tasks on different vGPUs in some ratio.
- Suppose there are two vGPUs v1 and v2, we will be able to schedule tasks such that for every 100ms utilization of GPU by v1, v2 uses GPU for 200ms.
- We can provide QoS based GPU allocation.

Project by, Sameer Ahmad (22m0789@iitb.ac.in)

Orchestration of GPU kernel workflows

- 1. GPU memory operations are expensive
- 2. Same memory is often required by the next executing Kernel
- 3. This project aims at leaving behind output of the current kernel in the GPU as the input to the next kernel
- 4. This helps reduce the transfers between CPU and GPU memory

Project by, Bhattad Krushnakant Dilip (<u>190100036@iitb.ac.in</u>) and Anshul Sanghi (22m0758@iitb.ac.in)

