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Outline • Background

• CUDA Programming Framework

• Why virtualize GPUs?

• Mechanisms to virtualize GPUs

• Existing problem formulations and setups
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Background
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- SIMD and it's applications
- CUDA Programming Framework



Single Instruction Multiple Data (SIMD)
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Scalar Operations SIMD Operations

1. Elements of a vector are processed 
one at a time in a loop.

2. One thread performs the same 
operation on multiple data

1. Multiple elements of a vector are 
processed at one shot.

2. Multiple threads performs the 
same operation on multiple data 
simultaneously.
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SIMD architecture is primarily used for vector processing and matrix operations.



SIMD Applications

AI/ML

1. Involves considerable 
matrix computations

2. Same instruction 
operating on multiple 
data

Image processing/3-D 
Rendering

1. Involves RGB vector 
computations.

2. Same instruction operating 
on multiple points/pixels 
of the image.

Cryptography

1. Involves bitwise 
operations on vectors.

2. SIMD paradigm 
accelerates vector 
processing.

1. Arithmetic operations on 
audio frames, which are 
stored in vectors.

2. Same instruction on 
multiple audio frames 
can be applied.

Audio processing



High level GPU 
architecture

• Thousands of small cores

• Streaming multiprocessors (SM
s) contain the cores

• SM – Group of cores with it's own 
cache

• Own device memory

• Mounted on a PCIe bus

• CUDA/OpenCL API for interfacing



CUDA - Programming 
on the GPUs
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- CUDA programming framework
- Vector addition example
- Demo



CUDA Programming Framework
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ThreadThread Block
Grid

1. Each thread runs on one GPU core

2. Group of threads form a thread block.

3. All the threads in a block run on one 
Streaming multiprocessor.

4. Group of thread Blocks is a Grid

5. Grids are run parallelly across many 
Streaming multiprocessors.

6. Each Streaming multiprocessor in a GPU 
has it's own cache.



CUDA vector addition – Single Block, Single thread
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Kernel: On GPU

Kernel setup: On CPU

Allocate GPU memory
transfer data,

Initiate GPU kernel



CUDA vector addition – Single Block, Multiple threads
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Kernel: On GPU

Kernel setup: On CPU

Allocate GPU memory
transfer data,

Initiate GPU kernel



CUDA vector addition – Multiple Blocks and threads
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Kernel: On GPU

Kernel setup: On CPU

Allocate GPU memory
transfer data,

Initiate GPU kernel



Virtualization aspect of 
GPUs
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- Why virtualize GPUs

- Mechanisms to virtualize GPUs

- Challenges



Why virtualize GPUs?
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GPU utilization with one application

1. Single user/application not 
enough to fully utilize a GPU

2. This results in under-utilization 
of a GPU

MAXIMIZE UTILIZATION

Different 
Sizes of 
GPUs

Varying 
Workloads

Different requirements

1. Multiple requests/VMs can 
have different GPU sizes

2. Varying workloads such as 
compute/graphic can be 
optimized.

FLEXIBILITY

1. GPUs are nowadays found in 
almost all data centres.

2. Due to high cost of GPUs, we 
want to maximise their usage.

First class resource in most 
data centres

FIRST CLASS RESOURCE



GPU virtualization software stack
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GPUs

Passthrough| Para/Full/Hardware virtualization 
| API remoting | GPU Direct

CUDA | OpenCL | Virtual CUDA libraries

AI/ML, 3-D rendering, Compression, Image 
processing, VDI etc.

Applications

APIs & Libraries

Virtualization

Physical GPU

Management layer| Scheduling | Resource 
provisioning 

Virtualization 
management





Mechanisms to virtualize GPUs
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Hardware assisted Software assisted Software + Developer 
assisted

Examples VGPUs, MiGs RCUDA, GPU manager, 
vCUDA, MPS etc.

Kernel Slicing

Multiplexing Temporal(vGPUs) and 
Spatial (MiGs)

Temporal and Spatial (MPS) Temporal

Control Plane Native Drivers Virtualization layer APIs

App changes required No No Yes

Abstraction Device Device, APIs APIs

1. Virtualization mechanisms at different abstraction levels can be used together
2. The mentioned examples are the solutions that use these mechanisms to virtualize GPUs at 

different abstraction levels.



vGPU Profiles

Profile Num of vGPUs Memory per vGPU

1q 24 1GB

2q 12 2GB

4q 6 4GB

8q 3 8GB

24q 1 24GB

4C 6 4GB

6C 4 6GB

8C 3 8GB

24C 1 24GB

GPU: NVIDIA RTX A5000 (24GB memory), 8192 cores

vGPU profile is configured by user via the (host) driver
Cannot have a mix of profiles on the host for the same GPU



vGPUs & MiGs
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vGPUs:

1. Each virtual GPU is assigned to a VM.
2. The host driver contains the scheduler 

through which work is assigned on a 
physical GPU.

3. vGPUs are temporally share the GPU

Static and spatial Partitioning of Multi Instance GPUs

MiGs

1. Each partition of a MiG enabled GPU is 
attached to a VM

2. Spatially multiplexing of cores and memory.
3. Max of 7 slices of the GPU can be created.

Physical GPU

GPU Slice 
#0

GPU Slice 
#1

GPU Slice 
#6

VM0 VM0 VM6

MiG 
Profiles



MiG Profiles for A100

Combinations of different possible combinations

1. The numbers indicate the 
fraction of how the GPU can be 
split

2. For example, for config no. 2
1. First slice will have 4/7 of 

the GPUs resources
2. Second slice will have 3/7 

of the GPUs resources



Challenges with vGPUs and MiGs

• Reserve-and-use service model limits resource usage efficiency

• Static partitioning of GPUs

• Tight-coupling with control plane for access and management



API Virtualization 
of GPUs

• Client CUDA calls are virtualized

• Multiplexing and resource 
management happens with the 
virtualization manager

• Client need not worry about 
management of GPUs.

• CUDA calls are either intercepted, or 
a virtualized CUDA library is 
provided.

24





Multi Process 
Service (MPS)

• MPS supports limited execution 
resource provisioning for Quality 
of Service (QoS)

• Allows a max of 48 GPU 
processes to execute 
simultaneously.

• Allows for different resource 
limits to be set between 
processes running on the GPU.



Kernel Slicing

1. A GPU kernel is made up of thread blocks (Shown 
previously in vector addition example)

2. Kernel slicing is a mechanism, by which, instead of 
invoking all the thread blocks at once, we can invoke 
parts of them.

3. This creates more scheduling opportunities for other 
Kernel slices to be executed on a GPU as there is no 
pre-emption on GPUs

4. Kernel slicing perform psuedo pre-emption of a 
CUDA program

5. The CUDA program is responsible for 
managing/deploying the kernel slices

Thread 
Block

Thread 
Block

Thread 
Block

Thread 
Block

Thread 
Block

Thread 
Block

Thread 
Block

Thread 
Block

Thread 
Block

Thread 
Block

Thread 
Block

Thread 
Block

Kernel 
Slice

Kernel 
Slice

Kernel 
Slice

Kernel 
Slice

GPU Kernel 
with thread 
blocks

GPU

GPU Kernel 
Slices 
scheduled 
on the GPU





Challenges with API virtualization

• Performance overhead added when a software virtualization layer is introduced.

• Maintaining context/state of every process being virtualized.

• Providing isolation between the workloads



Use cases for GPU virtualization
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• Use of GPUs in serverless platforms
• (Serverless platforms are also a mechanism to virtualize GPUs at a function 

abstraction level)

• High performance computing

• Virtual Desktop Infrastructure



What is FaaS?

• Developers focus only on business logic, 
rest is managed by the vendor.

• Scale up or down automatically
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FaaS platform with GPUs

Serverless platform

Request queue

GPU 
Scheduler

Resource Manager (k8s, Apache Mesos)

VM

Physical GPU

vGPU

Container Container

Container

VM

vGPU

Container Container

Container

VM

vGPU

Container Container

Container

GPU MANAGER GPU MANAGER GPU MANAGER

Function request
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FaaS platform with GPUs
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Existing Ongoing 
Projects
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- Variants based scheduling of GPU functions

- Characterization and profiling for NVIDIA MPS

- MPS plugin for Kubernetes

- Orchestration of GPU kernel workflows

- Eureka: Share based vGPU Task Scheduling



Variants based scheduling of GPU functions

1. Each functionality has multiple variations, i.e
it’s variants

2. Function variants provide a resource v/s 
performance trade off

Problem overview for designing the FaaS GPU scheduling heuristic

Project by, Pramod S Rao (pramodrao@cse.iitb.ac.in)





Characterization and profiling for NVIDIA MPS

1. Performance of different workloads 
under different setups:

I. MPS on bare metal
II. MPS on vGPUs
III. MPS on bare metal v/s vGPUs

2. Characterization of GPU workloads

3. Creating a performance model to feed 
into inputs of GPU schedulers

I. Observation of interference 
effects on co-location

MPS client/server architecture

Project by, Mitali Sunil Meratwal (190070033@iitb.ac.in)



Findings on NVIDIA MPS

- Increase in latency between co-
located functions via MPS due to 
interference.

- Increase in throughput for co-
located functions via MPS.



MPS plugin for Kubernetes

Project by, Rahul Shukla (rahul4shukla64@gmail.com)

1. Extension of existing GPU manager to 
incorporate virtualization via NVIDIA MPS

2. Virtualization software which is spatially 
multiplexing in nature

3. Device plugin for Kubernetes

4. This feature enables dynamic multiplexing 
features of MPS for orchestrated containers 
on Kubernetes



Project by, Sameer Ahmad (22m0789@iitb.ac.in)



Orchestration of GPU kernel workflows

1. GPU memory operations are expensive

2. Same memory is often required by the next executing Kernel

3. This project aims at leaving behind output of the current kernel in 
the GPU as the input to the next kernel

4. This helps reduce the transfers between CPU and GPU memory

Project by, Bhattad Krushnakant Dilip (190100036@iitb.ac.in) and Anshul Sanghi (22m0758@iitb.ac.in)

mailto:190100036@iitb.ac.in


Q & A
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