
Towards a programmable network

CS 695

Department of Computer Science & Engineering
Indian Institute of Technology Bombay

By, Abhik Bose
Guided By: Prof. Purushottam Kulkarni

Mar 10, 2023
1

Computer network overview

Router

End HostEnd Host

Routers connect end hosts and forward data packets at a high rate

2

Work of network routers: Control plane and data plane

…

Match fields
E.g. Mac, IP, TCP

Take action
E.g. Forward, Drop

IP: 1.1.1.1 Forward
Mac: aa:bb:... Drop

Match-action table

Data plane: forwards packets

Routing algorithm e.g. BGP

Install forwarding rules

Control plane: Generates forwarding rules
● Router: Control plane and data plane

● Data plane:
○ Forwards data
○ Match action table
○ Match packet headers, call action

● Control plane:
○ Run routing protocols
○ Generates match-action rules
○ Installs rules in data plane

Data traffic

3

Traditional computer network architecture

Control Plane
(BGP etc)

Data plane

Control plane traffic

Data plane traffic

● Control and data plane in same box

● Decentralised control plane
○ Communicates using open source

protocol e.g. BGP

● Proprietary control and data plane
implementation

4

Traditional computer network limitations

Implement a new control plane protocol for
intrusion detection (Say IGP)

● Write IGP in all vendor specific languages
● Upload IGP to all routers
● Develop an inter router control

communication protocol for IGP

Difficulties
● Time consuming, error prone, downtime
● IGP for new vendor X must be written

before using their switch
● Resource limitation on router control

plane
● All vendors may not support writing such

new control plane protocol

Time consuming, error prone and difficult to scale
5

Software Defined Network (SDN) key principles

Centralised
controller

OpenFlow

● Control and data plane physically
separated

● Centralised network controller

● Open source communication
protocol (OpenFlow) for control
and data plane communication

6

Control and data plane communication protocol (OpenFlow)

Match
(Mac, IP,
TCP etc)

Action
(Forward, Drop,

Send to controller)

Count
(#Bytes or
#Packets

SDN compatible switch

Open Network Operating System (ONOS)

BGP IGMP New Control protocol
ONOS API

OpenFlow

SDN compatible switch
● Can match standard fields
● Action: Forward, drop or send to

controller
● Statistics: packet and byte count

for each rule

Centralised controller
● Commonly runs ONOS
● Configures rules and acquires

statistics from and to data plane
using OpenFlow

● Control plane applications are
written using ONOS API

7

Benefits of SDN

Match
(Mac, IP,
TCP etc)

Action
(Forward, Drop,

Send to controller)

Count
(#Bytes or
#Packets

SDN compatible switch

Open Network Operating System (ONOS)

BGP IGMP New Control protocol
ONOS API

OpenFlow

● All network applications can be written
using ONOS API

● All control protocols can access statistics
acquired by ONOS. Reduce control traffic

● Scalable controller (on cloud)

● Global network view at controller

● Easy to develop, maintain new control
plane protocols

● No update at SDN switch for new control
protocols

● Easy to add more switches (scalable)

● Less downtime

● Network vendors don’t need to open
source their SDN switch implementation

8

Limitations of SDN and solution approaches

● Single point of failure at controller
○ Use fault tolerant hardware e.g. RAID based disk
○ Cloud based controller, use VM based failure handling
○ Open research area

● Data plane is still not programmable (Next Slide..)

9

Let’s add a new data plane protocol to SDN

Design new
data plane

protocol
(say DProto)

Ask OpenFlow
community to

include DProto

Wait for new
release of

OpenFlow and
ONOS

Long wait for switch
vendors to support

new OpenFlow
version

● OpenFlow initially released with 12 protocols support, expanded to 46 within 4 years with many
releases

● SDN dataplane is not scalable

● Solution: Let’s make the dataplane programmable too

10

Need for a high level data plane programming language

Switch A Switch B

● Network devices have different architectures
○ E.g. ASIC, FPGA, SoC etc

● Programming them using device specific
language is difficult

Why not C/C++, JAVA, Python?
● All features supported by them can’t be

implemented at data plane
● A data plane specific language is more efficient

11

Solution: A new language namely Programming Protocol-independent Packet Processors (P4)

Programmable data plane approach and P4

Custom Match Custom Action

Match-Action table

Programmable
Memory

P4 compiler
(Device specific)

P4
Program

Install
compiled
firmware

Control Plane
(SDN controller like)

Populate rules,
fetch statistics

(Using
p4runtime or

Thrift like API)

Programmable Hardware

● P4 Programmable hardware

● Features
○ Custom Header parsing, custom match action
○ On-NIC programmable memory
○ Custom computation
○ Device specific features

● P4 runtime or other APIs to configure custom
match action tables at runtime

Limitations: Limited expressiveness, limited
memory

Pros: Offloading application processing to
programmable hardware is cost effective
and improves performance

1212

P4 portable switch architecture

Extracts custom
headers from

packets

Matches certain fields. Adds,
drops or modifies headers as

part of custom action. Combines header
and payload and

emits packets

Ingress
Ports Ingress match-action

pipeline
Programmable

parser

Egress match-action
pipeline

Programmable
deparser

Egress
Ports

1313

P4 Programming example (Continued..)

Can define any new header Programmable parser
14

P4 example program

Programmable match-action table

Programmable action

Programmable apply section (the main application logic) 15

Current research directions in programmable data plane

Programmable
Dataplane

Application design
& offloading

➢ In-network computation
(NetCache, NetChain)

➢ Fault tolerant routing (Blink)

➢ Telemetry (Marple)

➢ Consensus (NetPaxos)

➢ Load-balancing

Compiler
design

➢ P4 language

➢ Domino language
(SIGCOMM ’16)

16

Hardware
development

➢ FPGA
➢ ASIC
➢ Software Switch

(BMv2)

Programmable dataplane use case: In-network computation

Offload computation on programmable hardware

➢ CPU load reduction

○ Checksum calculation offloading

○ TCP connection setup and teardown offloading

➢ In network cache

○ Increases throughput, reduces latency

○ Handles skewed workload

17

Programmable dataplane use case: Network failure handling

Route selection and intelligent routing decision at data plane.

➢ Failure recovery at data plane

○ Traces failure from TCP retransmission

○ Faster than control plane driven recovery

Figure: Blink recovers connectivity within 1.1
second of failure, completely at data plane

➢ Content based routing

○ Treat packets based on custom headers

○ E.g. NetChain treats read & write request differently

18

Programmable dataplane use case: Network telemetry

➢ Software vs fixed function hardware

○ Software - Expressive but inefficient

○ Hardware - Efficient but less expressive

➢ Programmable data plane based telemetry

○ Expressive as well as efficient

Software only
Programmable data

plane (Sonata)

Figure: CPU workload: Software vs programmable
hardware

Network telemetry: Active monitoring of health
and statistics of network

CPU
Load

19

Programmable data plane limitations

➢ Costly compared to fixed function switches

○ 32X100G NETBERG AURORA 710 (BAREFOOT TOFINO) - 7500 USD

○ Similar non-programmable switch - Approximately 1000 USD

➢ Limited resources at data plane

○ Limited CPU resource, limited on-chip memory.

○ Limited programmability & strict packet processing pipeline e.g. loop execution not supported

➢ Slow control plane operations e.g. populating match-action tables, loading program etc.

20

What should be offloaded?

● Require high throughput and/or low latency . E.g. In network KV store.

● Application should be fairly simple.

○ Should NOT store too much state. E.g. KV-store should cache hot items only.

○ Should NOT do complex calculations (e.g. division etc).

○ Should NOT use complex programming logic (e.g. loop etc.) or complex data structures.

● Should support modularisation and partial offloading.

○ e.g. In TCP protocol stack only connection setup and teardown

● Should NOT communicate too much with control plane.

● Should NOT require global network view.

● Fault tolerant or low-fault rate.

1. HotOS '19: Proceedings of the Workshop on Hot Topics in Operating Systems, May 2019, Pages 209–215
https://doi.org/10.1145/3317550.3321439

21

