Introduction

Number of transistors doubles every 19-24 months

Confused or performance because as something get smaller.

It can be modified quickly Stopped improving clock speeds since 2005-2006 Acees line bandwidth have 4-10x times In The same time

As a regult problem of efficient network draign is supplementation explored - Kurnel network stack optimizations

- hardware offloads

. clean slate uscrspace network stacks

(1) Setup	Intorms divide ID white can contro
i) Driver first loads	iBelt into kernel polytere to setup de setup de setup de
ii) Then kernel needs	to figure out which device driver
to control each	device
	be 1) function of the device driver
setting up	memory stell queue her
init of	struct net_device [representing network device]
	sets function
	sets function pointers for operatione That network subsystem needs to
	control the device
	Eg: ndo_start_xmit: igb_xmit_fram
I.I) IRO and NAPI	
Behet - IRQ - packet	proceeding
Bottleneel on high	
NAPI allows Levice drivers	to repicter a poll function
Register an interrupt hand	
Enable interupis	
Now der	vice is up

Linux network stack

2) Soft IROS

Way to execute dutiver code outside the interrupt handler
Why? Connet to much, work needs to be deferred
to softing content

Series of kernel thread (one pear CPU)

I run handler functions registered for different

softing events

[Registration happens during setup]

2) Data arrives

Packet arrives at NIC

It picks a descriptor off an ring

DMA: packet into RAM using descriptor IRA attinities

Raises an Interrupt - Talk about turing interrupt coalescing

Raises an Interrupt disables forther interrupt and thigger

Interrupt handler disables forther interrupt and thigger

NET_RX_SOFTIRA softing let's the knowl look

Ksofting aget scheduled to run at the softing thread

on CPU schedule something to

registered before

registered before

bop() is bounded harvests packets

bop() is bounded from NIC

weight and time, configurable

Atter NAPI loop finishes disable NAPI + enable intempts opposite of trigging NET-RX_SOFTERQ

Inside poll

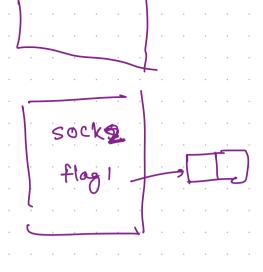
Picks a deccriptor from RX ring and builds Skb around the packet.

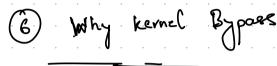
Frees the descriptor for the NEC to use Tries to get the whole frame into selb Paesee thiz ckb to napi-gro-recieve ()

aro tries to coalecce packets

Les makes sense because less processing for kernel to do You can choose to suited this off

Hand off packet to protocol layer


(4) Talk about RSS and RPS


Why is RCS important

via an indirection table How dock it happen 4-tuple honeth + mask give which entry in indirection table

Advanced NICe can configure complicated rules to match packet with RX queve

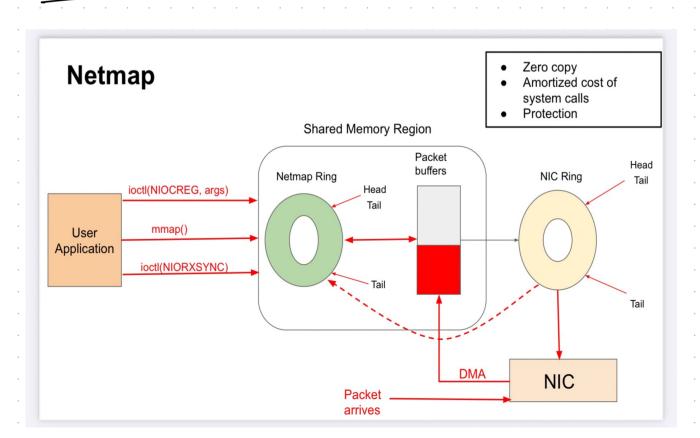
RPC is a	software in	nplementation	v of RS	S	
why .	nceded ?	Hardware.	Sobboat	of mul	
		ex queves t advomec	filters	tn sof	twore
Listen socket					
			-		
Listen socket ->	passive so	cket [Talk	is about h	ow app	l'cotions.
	Applicat				
		· · · · · · · · ·			
· · · · · · · · · · · · · · ·					
Aek Aek	4	Accept			
SAH			 I		
	SYN Queve		syn-Aek		
			 /		
about the	samp bo	Haneck wit	h this	. 411	
ntroduce SO-R		ind him	it solve	e this	
ntroduce SO-K	EUSEPORT				
- 1 - 1 -					
about how	SO_REUSE PO	K.(
· · · · · · · · · · · · · · · · · · ·			Ize shy	socket	selecte
SOCKL			domly		
flag = 1					

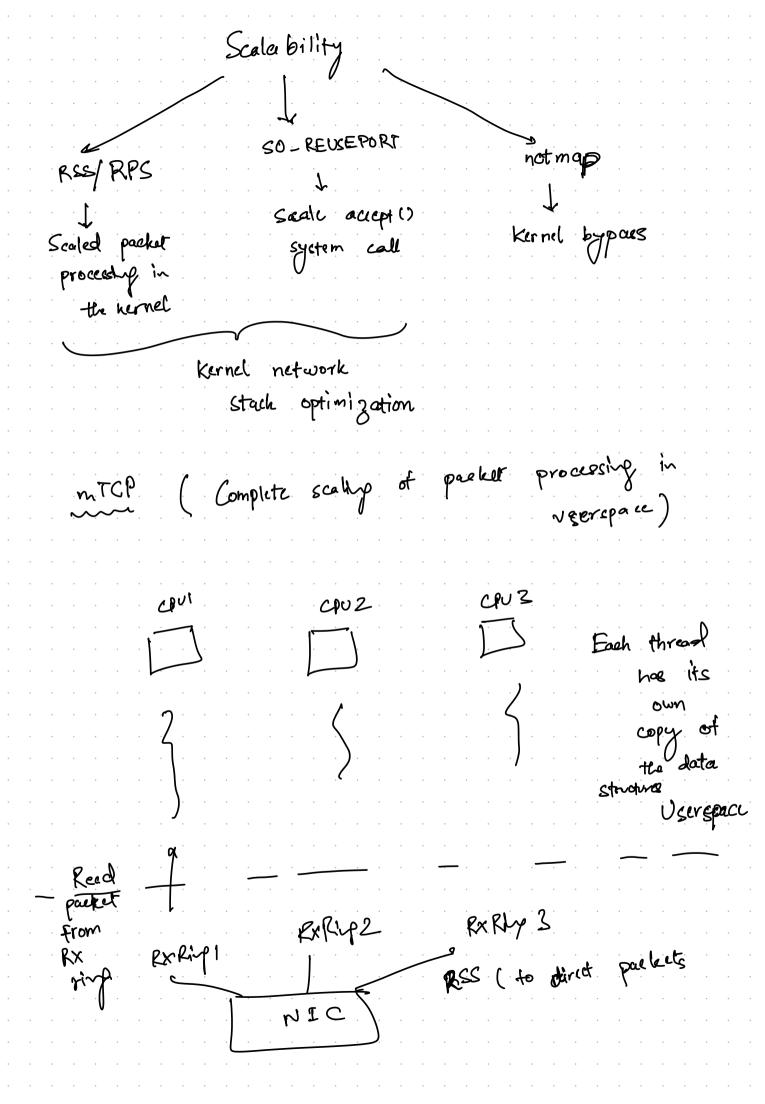
Why Kernel Bypass?

Connection Locality

VFS overheads

System call overheads


- Memory allocation and deallocation
- and more


Linux kernel was not built for being on the data path of 40 Gbps and 100 Gbps network cards.

Difficult to fix the kernel, so bypass it.

The era of Kernel bypass DPDK and netmap

