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Preamble

$ 1s —L linux—6.1.8.tar.xz
—rw—rw—r— 1 abc xyz 129M Jan 26 10:22 linux—6.1.8.tar.xz

$ cloc linux—6.1.8.tar.xz
78668 text files.
78117 unique files.
11213 files ignored.

github.com/AlDanial/cloc v 1.82 T=75.35 s (895.6 files/s, 445703.3 lines/s)

Language files blank comment code
C 32036 3247854 2563386 16703497
C/C++ Header 23313 699814 1332985 6903609
reStructuredText 3243 157809 62821 431622
JSON 485 2 0 389030
YAML 2981 54274 13666 247930
Assembly 1318 47180 100562 228246
Bourne Shell 884 26811 18621 104753
make 2780 10816 11822 49545
SVG 74 90 1171 48177
Perl 66 7381 5028 36525
Python 154 6527 6088 32631
yacc 9 697 409 4904
Rust 29 817 4687 4855
PO File 5 791 918 3077
lex 9 346 309 2108
C++ 10 372 138 2016
Bourne Again Shell 54 392 321 1599
awk 13 217 157 1323
Glade 1 58 0 603
NAnt script 2 155 0 540
Cucumber 1 34 58 196
TeX 1 6 74 156
Windows Module Definition 2 15 0 109
m4 1 15 1 95
CSS 2 35 37 920
XSLT 5 13 26 61
MATLAB 1 17 37 35
vim script 1 3 12 27
Ruby 1 4 0 25
Markdown 1 8 0 25
INI 1 1 0 6
sed 1 2 5 5
TOML 1 1 9 2
SUM: 67485 4262557 4123348 25197422

This is what Linux looks like—a 129 MB source tar file and over tens of millions of lines of code.
First, lets clarify what this book is not,
« it is not a textbook. definitely, not the first book you should be reading about operating systems.

1ii



« it is not a definitive guide about all things Linux.
The book is an attempt to
... Something about encouraging the students to read the source code....
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Some Basics

What is Linux?
You have probably heard this word way many times by now: Linux, and must be wondering what exactly
is this?

Well, to be accurate, Linux is a family of operating systems that use the Linux Kernel at its core. So, that
means that Linux is not just one OS, and many OSes can be referred to as Linux!

In fact, these operating systems, that are part of this family are called Linux Distributions ("distros" for
short). Some of the most popular ones (purely opinion based, no hard feelings!) are Ubuntu, Fedora, and
Arch Linux.

You see? Linux is like coffee, it has many flavours!

What is a Kernel?
But, then what is Linux Kernel? From OS 101, we all know that the heart of any operating system lies at
its kernel. What you get to see when your OS boots up are just layers built upon the kernel.

As you would have probably guessed by now, Linux Kernel is what runs a Linux Distro.

Why is it called Linux? Well, long story short, Linux was "unintentionally” named after its main contrib-
utor, Linus Torvalds.

From now on, the word kernel in this handbook would imply Linux Kernel.

What does Open Source / FOSS mean?

Open source simply means that the source code of a project is publicly available for everyone to view/-
modify/copy/etc.. You can see all the C/C++/Java/etc program files that make up that project and can see
how things are getting done.

Nevertheless, certain implications imposed by licenses restrict your freedom in commercial usage and
distribution of the code.

You must be wondering why make your project open for everyone else to see, right? I mean, it is your
own cool idea upon which you are developing something and you would want it to be private. But, just
imagine if Linus Torvalds had thought the same in 1991 and never released project he was working on.

If you ever want to be really good at programming in a language, read a few source files of a popular
open-source project written in that language.
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Oh! Did I tell you that the kernel is also open-source?

Some important resources

Suggested Readings

We will be referring to these awesome books on the Linux kernel throughout this handbook. It will greatly
help if you read the relevant sections from these beforehand.

« Linux Kernel Development [1kd] by Robert Love

« Understanding the Linux Kernel [ulk] by Daniel P. Bovet and Marco Cesati

« Linux Device Drivers [1dd] by Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman

o Professional Linux kernel architecture [plkal by Wolfgang Mauerer

Online Resources

+ The Linux Kernel Documentation [link] This is the official Linux Kernel documentation and is main-
tained by the kernel development community.

« The Linux Kernel Archives [link] The place where the Linux kernel source officially resides.

« Elixir Cross Referencer [link] If you want to browse the kernel code from the comfort of your web
browser, Elixir is the place to go.

« Kernel Newbies [link] This is the place for Linux kernel learners and potential contributors.

« LWN (fka Linux Weekly News) [link] You can find the latest kernel development news here. It also
features great articles related to kernel hacking.

Offline Resources

Now that you have the kernel source with you, you have the most important resource at hand! The
kernel provides some documentation in the form of plain text files which is located inside the directory
Documentation.

The same is also available online [here].

There will also be times when you need to find details about a Linux command or a glibc function. You
can always use Linux man pages using the man command.

Some things about the kernel

The kernel is coded primarily in C (C90 to be precise) and Git is used for its version control.
Git? Sounds familiar?

It is another software marvel from the creator of Linux himself! Also powered by the open source com-
munity, Linus made Git in 2005 to manage Linux kernel development!


https://www.kernel.org/doc/html/latest/index.html
https://www.kernel.org
https://elixir.bootlin.com/linux/v4.17.4/source
https://kernelnewbies.org
https://lwn.net
https://www.kernel.org/doc/Documentation/
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While we won’t be covering anything related to Git in this handbook, you are encouraged to learn Git if
you are looking forward to doing Linux system programming long-term.

Where to find the Kernel source?

You can find the Linux kernel at https://www.kernel.org. If you need a specific version, you can get it
from https://mirrors.edge.kernel.org/pub/linux/kernel/ .

If you know Git and the benefits that come with it, you can clone the stable repository:

git clone https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
cd linux

git checkout tags/v4.17.4

(optional) git checkout tags/v4.17.4 —b mybranch

NOTE: Cloning this repo may take quite a while as this method will download around 2 GB of data, which
is a lot more compared to the tar files.

You will notice there are two formats in which the compressed kernel is available: tar.gz and tar.xz

xz is based on the LZMA2 compression algorithm. It achieves a compression ratio higher than that of gz
format but takes more time to [de]compress. The xz compressed kernel source tarball is 97 MB in size.
gz is based on DEFLATE compression algorithm. It achieves a lower compression ratio, but is quicker to
[de]compress. The gz compressed kernel source tarball is 150 MB in size.

git vs. tar.xz vs. tar.gz, choice is yours, totally!

Kernel version numbering

For the kernel before 1.0, incremental numbers denoted a release. For example, the first kernel version was
0.01 (released in September 1991), then the next kernel version was 0.02, and so on.

After 1.0 and up to 2.x, the kernel versions had a number pattern with deeper meaning. If the kernel
version was a.b.c.d, then:

« a specified the (major) version
+ b specified the minor version / patch level / major revision (odd for development, even for stable)
« c specified the (minor) revision number or sublevel

« d specified patch version for bug fixes and security patches
Kernel 2.6.x series is the longest running series till date. It went on from 2.6.0 to 2.6.39.

Since the kernel 3.x series, there are only three numbers in play, a.b.c where a was the version, b was
the revision and c¢ denoted the patch version. The kernel version numbers would be followed by some
characters such as -rc1, which resembled that the kernel is a "release candidate”, i.e. development version.

Kernel release types
« Release Candidate (RC)
« Mainline

« Stable

» Longterm
If you are ever confused about which kernel version to use, read What stable kernel should I use?.

We’ll use kernel 4.17.4, because it is latest (was, at the time of creation of this handbook!) and has some
really cool features.

Kernel 4.17 series is code-named "Merciless Moray" (moray is a predatory eel-like fish!). Mentioned below


http://www.kroah.com/log/blog/2018/08/24/what-stable-kernel-should-i-use/
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are few of the many new features and changes introduced in the kernel version 4.17, not that we will make
use of any of these. For a complete list of changes (with links to respective commits), visit here. Also visit
here for a brief summary of kernel version changelogs.

« Improving the idle power consumption (by 10%) by reworking the kernel’s idle loop.

« Removed support for some unused architectures such as blackfin, cris, frv, m32r, metag, mn10300,
score and tile while adding support for nds32.

+ Various improvements in the DRM drivers of Intel and AMD.
« Enhanced protection against Metldown and Spectre.

 TLS socket implementation, which allows usage of TLS sockets from within the kernel.

NOTE: The kernel which we are using for our purpose is a "vanilla" kernel, i.e. it is fetched from the
official kernel development tree without any modifications. There are some Linux distributions which
ship a modified version of kernel (called vendor-supplied kernel), containing some patches relevant to that
distribution.

Kernel source code structure
https://elixir.bootlin.com/linux/v4.17.4/source
Subsystems

« arch

« block

» crypto
o drivers
« firmware
. fs

« include
« init

. ipc

« kernel
. lib

o mm

» net
 samples
« scripts
+ security
« sound
. usr

. tools

o virt


https://kernelnewbies.org/Linux_4.17
https://www.thomas-krenn.com/en/wiki/Linux_Kernel_Versions
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Supplementary material

Our GitHub repository | kaleidoscope | contains the source code for the exercises provided with each chap-
ter.

Organization of this document

Misc fun facts about the kernel

+ More than 50% of the code in the Linux Kernel is in drivers/.

+ The longest file in the kernel belongs to AMD DRM driver
(drivers/gpu/drm/amd/include/asic_reg/nbio/nbio_6_1_sh_mask.h), having 111547 lines of code and
is 14MB in size! Good luck opening it in a text editor!

« All the supercomputers in the TOP500 list, as of November 2017, ran on Linux. IBM’s Summit and
Sierra, the faster supercomputers in the world as of November 2018 also run on Linux.


https://github.com/purukulk/kaleidoscope
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Getting Started

Environment Setup

So, you want to start kernel development? Worry do not. Learn you will.

You would need to set up a few things before you can go on. These include, but are not limited to, base
machine, OS, development tools and some configurations.

Throughout this journey, we will be using the following tools:
+ Ubuntu Server 20.04.05 LTS
« Vim
« GCC

If you understand the concept of a virtual machine and know why it is useful in our scenario, you can skip
to the next subsection.

<Proper reasoning for why VM?> Now, we are talking about hacking on the kernel, and that would require
modifying some of its source files and maybe adding some new files. A kernel forms the core of your OS.
Playing with your (live) OS is not really a good idea, unless you have bought a dedicated machine for
this purpose. You might have a browser open where you are browsing stuff, a media player open where
you are listening to some music while coding, etc. Kernel development would require sporadic reboots of
your system. To break free from these infrastructural problems, we will harness the power of modern day
virtualization and do all our hacking inside a Virtual Machine (VM).

Please note that your processor must support virtualization in order for our plan to work out. If not,
you have to use your bare machine for development.

To check virtualization support on a Linux system: Open a terminal and enter:

egrep "vmx|svm" /proc/cpuinfo

To check virtualization support on a Windows system: Open the command prompt and enter:

systeminfo

To enable virtualization if it is supported by your processor, check BIOS settings.
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NOTE: Once you install your OS in a VM, and finish all the basic environment setup tasks, do not use it.
It can be your base VM. If you need a VM to work on, simply copy/clone the base VM. This will save you
a LOT of time and resources.

Setup I: VirtualBox

VirtualBox is a hosted virtualization solution by Oracle. It is FOSS and written primarily in C++. Apart
from that, it is easy to set up and is available for Windows, macOS and most of the Linux distributions.

This is recommended for Windows and macOS users. They do not have any other easy option!

You can download the software from the official website: https://www.virtualbox.org
On ubuntu:

sudo apt install virtualbox virtualbox—ext—pack

May not be the latest release though!

Setup II: virt-manager

This is for Linux users who want to dive in real quick.

sudo apt install virt-manager gemu—kvm

It will install libvirt-bin as well.

Setup III: gemu-system

This one is for those who want to pursue kernel programming for eternity, more or less.
Host steps:
> Install required package

sudo apt install gemu—system

> Create an image for VM

gemu—img create —f qcow2 <path to VM img> 30G

This will create an image (virtual hard disk for the VM) of size 30 GB.
> Install Ubuntu in VM

sudo gemu—system—x86_64
—enable—kvm
—m 1024
—smp cpus=2 \
—hda <path to VM img> \
—cdrom <path to iso>

~ - -
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This will start an "empty” VM with 1 GB RAM, 2 CPU cores, using KVM support for virtualization and
the disk you created in the previous step. You only need to provide the path to the .iso for the very first
time.

> Run the VM
sudo gemu—system—x86_64 \
—enable—kvm \
—m 1024 \
—smp cpus=2 \
—hda <path to VM img> \
—net nic \

—net user,hostfwd=tcp::2222—:22

The last line sets up port fowarding so that all communication on the hosts port 2222 gets sent to the
VMs port 22. -net nic initialises a virtual network interface card. This lets you use SSH to login from
your host system.

ssh localhost —p 2222

This way, you can use your favourite terminal and basic things like copy-paste will be easier.

NOTE: If you plan on experimenting with different versions of kernel, make sure that you have a separate
partition for /boot and give at least 1 GB space to it. The kernel that we will compile initially will take
around 400 MB space. Plan accordingly.

Setup IV: Bare Linux system

The only benefit about this is that you don’t need to do any setup for the host machine as the previous
approaches did.

Inside the VM

By now, you must have a VM ready with an OS installed. Everything that we do from this point on will
work regardless of what VM you use, be it VirtualBox, virt-manager or QEMU, as long as you are running
Ubuntu.

# Initial setup of the system:

sudo apt update
sudo apt upgrade
<reboot>

# Install packages required by the compilation process

sudo apt install gcc make bash binutils flex bison pahole util—linux kmod build-essential
libncurses5—dev libelf—dev libssl—dev bc flex bison

# Download the kernel source

https://cdn.kernel.org/pub/linux/kernel/v6.x/linux—6.1.8.tar.xz

# Extract the files

tar —xvf linux—6.1.8.tar.xz
cd linux—6.1.8/
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Warming Up
Before we dive into the internals of the kernel, let us get our hands on some code.

make

GNU make (or just "make") is a development tool used by the kernel (and by most of the open-source
projects) to compile all the source files and produce executables.

A file named Makefile resides in the root directory of a project. It contains a set of directives which specify
the structure in which the source files are to be compiled. The make utility reads this file by default to
proceed with the compilation.

In the following sections, you will frequently run commands of the form make xyz, where xyz is a make
target.

Compiling the kernel from source

You should be ready with your environment setup to proceed with this. A high-level overview of the steps
to be followed to compile and build a custom kernel is given below.

1. Create a configuration file. The configuration file, .config is stored in the root of the kernel source
tree and used by the kbuild system to compile and build the kernel.

2. Compile and build the kernel modules using make -j$(nproc) which will be stored in arch/x86/boot/ .
This generates the compressed kernel image bzImage, the uncompressed kernel image vmlinux , the
Symbol-address table System.map, and kernel module objects. vmlinux and System.map are useful
for debugging purposes (during boot, the GRUB bootloader uncompresses the compressed kernel
image and jumps to the kernel’s entry point).

3. Install the newly built kernel modules to a default location (which is typically /lib/modules/$(uname -r))
using sudo make modules_install.

4. Create the initramfs image and update the GRUB menu using sudo make install.
5. Reboot into your newly built kernel!

# Go to the directory of kernel source

cd linux—6.1.8

# Create configuration file The entire configuration and building of the Linux kernel is managed by the
kernel’s Kbuild system. The Kbuild system consists of four components:

— Configuration symbols: Any option that can be modified in the kernel (like the size of the kernel
log buffer) is represented by a configuration symbol.

— Kconfig files: Configuration symbols are defined in Kconfig files. It turns out that the contents
of Kconfig files are used to generate menu entries when make menuconfig is used to modify the
configuration.

— Makefile: The Kbuild system uses a recursive Makefile structure to build the kernel source. During
the build process, the top-level Makefile invoking Makefiles in sub-folders.
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— The .config file: On generating the configuration, all the symbols are stored in the .config which
is located in the root of the source tree.
The kernel has just way too many configuration options! It’s hard to think about how one could assign
values to each and every one of these. Fortunately, there is a workaround. We can start by creating a
default configuration and modifying that to suit our requirements. There are a couple of ways to do
this, we just list some of the more commonly used ones.

# Distribution Config
You can use your distribution’s config file which can be found in /lib/modules/$(uname -r)/ . Copy it
to the root of the source tree and run make menuconfig to modify the configuration:

cd linux—6.1.8
cp /lib/modules/\$(uname —r)/.config .
make menuconfig

# Using currently loaded modules
Another way of obtaining a good configuration is to base it off the kernel modules current running on
the system. You can list the modules loaded using lsmod and redirect the output to a file. This file is
passed to localmodconfig:

lsmod > current_modules
make LSMOD=current_modules localmodconfig

Since the kernel source is updated frequently, it is very likely that there are differences in configura-
tion options between the kernel you are trying to build and the one you are currently running. In such
cases, the kbuild system will prompt you to select values for new configuration symbols. To keep things
simple, just press <ENTER> and proceed (this assigns default values to the configuration symbols). For
further customisation, you can run make menuconfig to finetune the kernel configuration. As an ex-
ample, disable Device Drivers -> Graphics Support -> Direct Rendering Manager in the menuconfig
UL

NOTE: You can also disable configurations using the config script as follows,

cd linux—6.1.8
scripts/config —disable CONFIG_DRM

# Compile and build the kernel and modules.

make —j\$(nproc) > /dev/null 2>&1
OR

screen —dm make —j\$(nproc)

OR

tmux

make —j\$(nproc)

NOTE: In case you don’t have screen or tmux, you can install them using,

sudo apt install screen tmux

If the command executes successfully, you should be able to see the vmlinux and System.map file in
the root of the source tree. You should also be able to see the compressed kernel image bzImage in the
folder arch/x86/boot . Finally, the source tree should have been populated with compiled kernel object
(.ko) files. To find the modules generated, you can run the following command:

find . —name ".ko"
find . —name ".ko" | wc —1
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The second command counts the number of kernel modules.
NOTE: An error you might face during the build process is the following:

make[1]: **x No rule to make target 'debian/canonical-certs.pem', needed by 'certs/
x509_certificate_list'. Stop.
make: xxx [Makefile:1809: certs] Error 2

This error has to do with the fact that kernel versions post 5.14-rc2 require all kernel modules to be
signed for security purposes. The kernel module signing facilities signs all modules during installation
and validates the signature during loading. If there is a signature mismatch, the module is not loaded into
the kernel. The CONFIG_MODULE_SIG_KEY configuration contains the name of a module signing key. If it is
unchanged from the default value of certs/signing_key.pem, a public-private keypair is automatically
generated during the build process (the public key is built into the kernel during the build process).
CONFIG_SYSTEM_TRUSTED_KEYS gives you the ability to include additional certificates that the kernel will
use for signature checking. CONFIG_SYSTEM_REVOCATION_KEYS is an option that allows you to blacklist
certain keys, i.e, any module signed with these keys will not be loaded into the kernel.

By default, the configuration CONFIG_SYSTEM_REVOCATION_KEYS will be setto debian/canonical-certs.penm.
If this file is not present in the kernel source tree, make will throw the above error Similarly, the symbol
CONFIG_SYSTEM_TRUSTED_KEYS might be set or unset. To resolve the error, you can either disable both
configurations:

scripts/config —disable SYSTEM_TRUSTED_KEYS
scripts/config —disable SYSTEM_REVOCATION_KEYS

Or, you can download the required .pem file using,

sudo apt install install linux—source

mkdir debian

cp /usr/src/linux—source—x/debian/canonical—x*.pem debian/
sudo apt purge linux—sourcex

and set the symbols to,

scripts/config —set—str SYSTEM_TRUSTED_KEYS debian/canonical-certs.pem
scripts/config —set—str SYSTEM_REVOCATION_KEYS debian/canonical-revoked—certs.pem

# Install the kernel modules in /l1ib/modules/$(uname -r)

sudo make modules_install —j\$(nproc) > /dev/null

Simply building the kernel modules is not enough! The modules need to be installed to a known location
in the root filesystem so that the system can locate them and load them into kernel memory. The default
location for this is /1ib/modules/$(uname -r).However, you can override this preference by installing
the modules to a location you specify:

make INSTALL _MOD_PATH=<path here> modules_install —$(nproc)

# Generate the initramfs image

sudo make install —j4 > /dev/null

Internally, the make install runs the script arch/x86/boot/install.sh. This scripts starts by creating
an initramfs image which is used by the GRUB bootloader as a temporary file system during the boot
process, following which the actual root filesystem is mounted using a pivot-root. After generating
the image, it copies the files, System.map-$(uname-r), initrd.img-$(uname-r), vmlinuz-$(uname-r) and
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config-$(uname-r) tothe /boot folder in your system. Finally, the file /boot/grub/grub.cfg is updated
with an entry for the newly-built kernel.

# Update the GRUB entries to reflect the new kernel.

sudo update—grub2

Unfortunately, if you try to boot the system right now, you will not be given the option to boot into a
kernel of your choice (by default, the bootloader will boot into the newest kernel). In fact, no menu will
even be shown! This can be changed by making changes to the GRUB bootloader config file.

sudo cp /etc/default/grub /etc/default/grub.old
sudo vim /etc/default/grub

The first command makes a copy of the original configuration and the second opens the new configu-
ration in Vim. To show the GRUB menu at boot, change the GRUB_TIMEOUT_STYLE from hidden to menu.
Run sudo update-grub2 to bring the changes into effect.

# Reboot and voila!

<reboot>
uname —r

If all the steps were done correctly, this should display the version of the kernel just compiled.

Hello World!

You do not need to compile a new kernel to start coding kernel modules. Following the K&R Hello, World
tradition, here’s a module that does just that:

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>

MODULE_LICENSE("Dual MIT/GPL");
MODULE_AUTHOR("Sukrit Bhatnagar, Purushottam Kulkarni & Aditya Sriram");
MODULE_DESCRIPTION("Customary Hello, World module!");

static int __init hello_init(void)

{
printk (KERN_INFO "Hello, world!\n");
return 0;
}
static void __exit hello_exit(void)
{
printk (KERN_INFO "Goodbye, world!\n");
}

module_init(hello_init);
module_exit(bye_init);

Type in or copy the above program into a file name hello.c and save it. In the same directory, create a
file named Makefile with the following contents:

obj—m += hello.o
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all:
make —C /lib/modules/$(shell uname —r)/build M=$(PWD) modules

clean:
make —C /lib/modules/$(shell uname —r)$/build M=$(PWD) clean

The run make, and you should see a file named hello.ko created in the same directory. The run the
following command to load the kernel module:

sudo insmod hello.ko

If the above command gets executed without any message printed, your module was successfully loaded
into the kernel! Congratulations!

NOTE: For newer kernel versions, you might encounter the following error,

insmod: ERROR: could not insert module hello.ko: Key was rejected by service

Printing the contents of the kernel log buffer using dmesg | less, you should see the following message,

Loading of unsigned module is rejected

Again, this is due to the kernel signing facility. Since this is a user-built module, it is not signed during
the installation process and must be signed manually. You can do this using the sign-file script in the
scripts folder. Assuming the newly built module is a folder named hello, run the following command:

cd linux—6.1.8
scripts/sign—file sha512 certs/signing_key.pem certs/signing_key.x509 ../hello/hello.ko

The sign-file script requires the type of hash to be used along with a signing key. By default, SHA512 is
used as the hash for module signing and if you do not modify the SYSTEM_TRUSTED_KEYS configuration, the
kernel build will automatically generate the signing key, which has been used above. Once you sign your
module, running modinfo should display a module signature,

signer: Build time autogenerated kernel key

sig_key: 04:1A:C5:9E:60:91:C3:73:F0:2C:BE:9D:D9:18:2C:BD:94:F6:7A:6A
sig_hashalgo: sha512

signature: B5:10:CC:5A:EC:76:49:82:B0:E4:3D:0F:F6:F5:73:F8:54:0F:EB:72:

85:BB:F9:79:AF:F8:FA:DB:E3:34:24:A1:7E:F4:72:7A:78:1F:11:E9:
82:E7:E7:51:52:D0:24:F1:7B:B9:1A:BE...

If you are wondering why nothing got printed even when the module was loaded successfully, the answer
is: something did get printed, but not on the terminal you are working on.

To find your module output, run the following command:

dmesg | less

And voila! Here is your "Hello, world!"
To unload the module you just loaded and print "Goodbye, world!", run:

sudo rmmod hello

Note that when rmeoving the module, we did not include the .ko extensio in the name. Now, run again:
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tail /var/log/syslog

And you will see the other message.

Patience!!

Kernel programming is unlike any other type of C/C++ or system programming that you might have done.
Here you are playing with the OS directly and therefore, some things would take time longer than usual.
For instance, a typical first-time kernel compilation requires around 90 minutes! Also, if your module had
a logical error which raised a kernel oops, you have to restart your machine or VM! All this requires a lot
of patience to go on.
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Advanced

Here are a few tools and techniques that will help you in speeding up things, but are not mandatory per
se. You may skip this as per your convenience.

make Jobs & CPU cores

CPU cores matter when you compile the kernel from source. Having a few extra cores might help speed
up kernel compilation. This is made possible using the -j or -jobs option of make. This option will let
the user decide how many make jobs can run simultaneously, which would normally mean the number of
cores to use. Having a good amount of make jobs will fasten the compilation process, something you will
wish for!

The general idea is to run as many jobs as you have CPU cores available. So, if you have x cores, then you
would want the jobs somewhere between x and 2*x. You can find out the number of cores (available to
you) easily using nproc command.

But we don’t want easy now, do we? A more detailed description about your processing units will be
available in /proc/cpuinfo.

grep Is Your Friend

Many a times it will happen that you need to search for a specific token in the kernel source, and you
are too lazy to browse LXR. Moreover, it might happen that the kernel make target "tags" might not work
always as expected.

grep will prove to be a great tool in such cases. For instance, if you need to look at the definition of
struct thread_info, just run this in the kernel root:

grep —ril "~struct thread_info" .

If by any chance you have a multicore/multiprocessor system, and SMP is enabled in the kernel, you can
use the following command for a significant speedup. You must have GNU parallel installed for this.

find . —maxdepth 4 —type f | parallel —k —j150% —n 1000 —m grep —I —H <string to search> {} |
\
grep —color <string to search>

rm-ing a Kernel
On the newer Ubuntu systems, you have the option of removing old and unused packages using our friend
apt:

sudo apt autoremove

Using this method, you can remove unused kernel versions that are vendor-supplied (Ubuntu in this case).

To manually remove an installed kernel, first do a uname -r to ensure that the kernel you are deleting is
indeed the right one. You wouldn’t want to delete the wrong kernel now, would you?
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A typical kernel make process copies kernel files at two locations: /boot and /lib/modules . Let’s assume
that you have installed kernel 4.17.4 and now wish to delete it because compiling a kernel has now become
a hobby for you. You would want to delete the following:

e /boot/config-4.17.4

e /boot/initrd.img-4.17.4

e /boot/System.map-4.17.4

» /boot/vmlinuz-4.17.4

e /lib/modules/4.17.4

e /var/lib/initramfs-tools/4.17.4

TIP: In case you are deleting a compiled kernel to free up some space, do not forget to run a make clean
in the kernel source directory.

config Pruning

When you are compiling the kernel, the first step is to make the .config file. By default the file has many
modules and features enabled which you probably will never use, at least during the course of this hand-
book.

Furthermore, compiling a kernel with the default .config file leads to creation of a very large initrd image
file, nearly 379 MB in size! A normal such image of the vendor-supplied kernel would take around 40 MB.
See the difference.

As a result, your kernel compilation will take longer, and even your system will boot slower when using
that compiled kernel.

It is generally a good idea to disable the configuration options not required at the moment.

gemu Debugging
ccache Optimization

Ccache is a development tool which caches object files created by a make execution. Upon recompilation,
the cached files can be used which saves compilation time (a lot in case of kernel). The first compilation
will take the original amount of time though!

sudo apt install ccache

#Append the following to your ~/.bashrc:

export PATH="/usr/lib/ccache:$PATH"

export CCACHE_DIR="/ramdisk/ccache" #default is ~/.ccache
ccache —M 2G

#Either logout/login or source ~/.bashrc
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tags For Navigation

When you are browsing through the kernel source, you find that a function x calls function y. Now, you
need to search for function y in the code to understand what happens next. One way to go is to visit Linux
Cross Referencer and search. Another (sometimes more efficient) way is to make use of tags. Tags are an
index of all the symbols (function, struct, macro, etc.) found in the source code.

Linux kernel source provides a make target to automatically generate tags to use with editors such as Vim.
To use these tags:
sudo apt install ctags

make tags —j8

Then, in Vim, move the cursor to a {function, struct, macro, etc.} and press Ctrl+] . Shazam! You are now
standing at its definition!. To go back, press Ctrl+t. You can, similarly, chain the jumps one after another.

If you are using Vim, append the following line to your $HOME/.vimrc:

set tags=./tags,tags; $HOME

This options enables Vim to search for tags file, starting from the directory of the current file, then the
parent directory, then recursively one level up till home directory of the current user is reached.

Furthermore, if you wish to search for a tag, simply open Vim in the kernel source directory and type the
following command:

:tag <whatever>

Kernel Coding Style

... if you need more than 3 levels of indentation, you’re screwed anyway, and should fix your program.

This page contains some coding guidelines that are followed in the actual kernel development. Here is a
very short summary of some of the basics:

« tab width: 8 characters; you code should not use more than 3 levels of nesting

« maximum line length: 80 characters; break lines if they exceed

« opening braces: at the end of line (except for function declarations)

 no mixed-case names; use underscores if required

« function names either denote an action (i.e. start with a verb) or they are a predicate
« use -ve values for failure, and 0 for success in functions doing some action

« use ’true’ for success and false’ for failure in predicate functions


https://www.kernel.org/doc/html/v4.10/process/coding-style.html#printing-kernel-messages
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System Calls

The operating system, just like any other system, stores some state and performs some actions. System
calls are requests made by a program running in "user mode" to get something done by the kernel. They
execute in kernel mode on behalf of a user process. Typically, the system calls you invoke from a C program
are glibc wrapper of the real system call. In this chapter, we will not discuss what these system calls do.
We will instead study how they do what they do.

The system calls are defined in arch/x86/entry/syscall_64.c. This file contains all the system calls that
are supported by the system. The system calls headers are declared in include/linux/syscalls.h.

#define SYSCALL_DEFINEO (sname)

\
SYSCALL_METADATA(_##sname, 0); \
asmlinkage long sys_##sname(void); \
ALLOW_ERROR_INJECTION(sys_##sname, ERRNO); \
asmlinkage long sys_##sname(void)
#define SYSCALL_DEFINEl(name, ...) SYSCALL_DEFINEx(1l, _##name, __VA_ARGS__)
#define SYSCALL DEFINE2(name, ...) SYSCALL DEFINEx(2, _##name, __VA ARGS__)
#define SYSCALL_DEFINE6(name, ...) SYSCALL_DEFINEx(6, _##name, __VA_ARGS__)
#define SYSCALL_DEFINEx(x, sname, ...) \
SYSCALL_METADATA(sname, x, __VA_ARGS__) \
__SYSCALL_DEFINEx(x, sname, __VA_ARGS__)
#define __SYSCALL_DEFINEx(x, name, ...) \
asmlinkage long sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)) \
__attribute__((alias(__stringify(__se_sys##name)))); \
ALLOW_ERROR_INJECTION(sys##name, ERRNO); \

One of the good things about the kernel code is that almost all the internal functions are named starting
with a verb. Example: do_fork which really does fork! A function’s name is the essence of what it does.

Some important system calls related to process management: fork, vfork, exec, wait, exit
Some important system calls related to memory management: shmget, sbrk, mmap
The source for fork is in kernel/fork.c: SYSCALL_DEFINEO(fork)

_do_fork() is the function called!
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_do_fork

T

COpy_process get_task_pid wake_up_new_task

N

dup_task_struct

T

copy_creds get_pid __set_task cpu

alloc_task_struct_ node alloc_thread stack node atomic_inc

N

activate_task
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We have included the complete list of error codes here, for the reader’s reference. You can also find them
in the include/uapi/asm-generic folder of the kernel source tree in the files, errno-base.h and errno.h.

EPERM 1 /* Operation not permitted */
ENOENT 2 /* No such file or directory x*/
ESRCH 3 /* No such process */

EINTR 4 /* Interrupted system call */

EIO 5 /* I/0 error x/

ENXIO 6 /* No such device or address x*/
E2BIG 7 /* Argument list too long =/
ENOEXEC 8 /* Exec format error x/

EBADF 9 /* Bad file number x/

ECHILD 10 /* No child processes x*/

EAGAIN 11 /* Try again */

ENOMEM 12 /* Out of memory x/

EACCES 13 /* Permission denied */

EFAULT 14 /* Bad address x/

ENOTBLK 15 /* Block device required */

EBUSY 16 /* Device or resource busy x/
EEXIST 17 /* File exists x/

EXDEV 18 /* Cross—device link x*/

ENODEV 19 /* No such device x*/

ENOTDIR 20 /* Not a directory */

EISDIR 21 /* Is a directory */

EINVAL 22 /* Invalid argument x*/

ENFILE 23 /* File table overflow */

EMFILE 24 /* Too many open files x/

ENOTTY 25 /* Not a typewriter x*/

ETXTBSY 26 /* Text file busy */

EFBIG 27 /* File too large x*/

ENOSPC 28 /* No space left on device x/
ESPIPE 29 /* Illegal seek x*/

EROFS 30 /* Read—only file system x/
EMLINK 31 /* Too many links */

EPIPE 32 /* Broken pipe x/

EDOM 33 /* Math argument out of domain of func x/
ERANGE 34 /* Math result not representable x*/
EDEADLK 35 /* Resource deadlock would occur x*/
ENAMETOOLONG 36 /* File name too long */

ENOLCK 37 /* No record locks available x*/
ENOSYS 38 /* Invalid system call number x/
ENOTEMPTY 39 /* Directory not empty */

ELOOP 40 /* Too many symbolic links encountered x*/
EWOULDBLOCK EAGAIN /* Operation would block */
ENOMSG 42 /* No message of desired type */
EIDRM 43 /* Identifier removed x/

ECHRNG 44 /* Channel number out of range */
EL2NSYNC 45 /* Level 2 not synchronized */
EL3HLT 46 /* Level 3 halted */

EL3RST 47 /* Level 3 reset x/

ELNRNG 48 /* Link number out of range */
EUNATCH 49 /* Protocol driver not attached x*/
ENOCSI 50 /* No CSI structure available x/
EL2HLT 51 /* Level 2 halted */

EBADE 52 /* Invalid exchange x*/

EBADR 53 /* Invalid request descriptor */
EXFULL 54 /* Exchange full */

ENOANO 55 /* No anode x*/

EBADRQC 56 /* Invalid request code */
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EBADSLT
EDEADLOCK
EBFONT
ENOSTR
ENODATA
ETIME
ENOSR
ENONET
ENOPKG
EREMOTE
ENOLINK
EADV
ESRMNT
ECOMM
EPROTO
EMULTIHOP
EDOTDOT
EBADMSG
EOVERFLOW
ENOTUNIQ
EBADFD
EREMCHG
ELIBACC
ELIBBAD
ELIBSCN
ELIBMAX
ELIBEXEC
EILSEQ
ERESTART
ESTRPIPE
EUSERS
ENOTSOCK
EDESTADDRREQ
EMSGSIZE
EPROTOTYPE
ENOPROTOOPT

EPROTONOSUPPORT
ESOCKTNOSUPPORT

EOPNOTSUPP
EPFNOSUPPORT
EAFNOSUPPORT
EADDRINUSE

EADDRNOTAVAIL

ENETDOWN
ENETUNREACH
ENETRESET
ECONNABORTED
ECONNRESET
ENOBUFS
EISCONN
ENOTCONN
ESHUTDOWN
ETOOMANYREFS
ETIMEDOUT
ECONNREFUSED
EHOSTDOWN
EHOSTUNREACH
EALREADY
EINPROGRESS

57
EDEADLK
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
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/%
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Invalid slot *x/

Bad font file format x/

Device not a stream x*/

No data available x/

Timer expired x*/

Out of streams resources */

Machine is not on the network x/

Package not installed x/

Object is remote x/

Link has been severed x/

Advertise error x/

Srmount error x/

Communication error on send */

Protocol error x/

Multihop attempted */

RFS specific error x/

Not a data message */

Value too large for defined data type */
Name not unique on network x/

File descriptor in bad state x*/

Remote address changed x/

Can not access a needed shared library x*/
Accessing a corrupted shared library x*/
.lib section in a.out corrupted x*/
Attempting to link in too many shared libraries x/
Cannot exec a shared library directly x*/
Illegal byte sequence */

Interrupted system call should be restarted */
Streams pipe error x*/

Too many users x/

Socket operation on non-socket *x/
Destination address required x/

Message too long */

Protocol wrong type for socket x*/

Protocol not available */

Protocol not supported x/

Socket type not supported */

Operation not supported on transport endpoint */
Protocol family not supported */

Address family not supported by protocol x/
Address already in use */

Cannot assign requested address x/

Network is down */

Network is unreachable x/

Network dropped connection because of reset x/
Software caused connection abort x/
Connection reset by peer x/

No buffer space available */

Transport endpoint is already connected */
Transport endpoint is not connected x*/
Cannot send after transport endpoint shutdown x/
Too many references: cannot splice x*/
Connection timed out */

Connection refused */

Host is down x/

No route to host */

Operation already in progress */

Operation now in progress */
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ESTALE 116 /* Stale file handle x*/

EUCLEAN 117 /* Structure needs cleaning */
ENOTNAM 118 /* Not a XENIX named type file x/
ENAVAIL 119 /* No XENIX semaphores available x/
EISNAM 120 /* Is a named type file x/

EREMOTEIO 121 /* Remote I/0 error */

EDQUOT 122 /* Quota exceeded x*/

ENOMEDIUM 123 /* No medium found x/

EMEDIUMTYPE 124 /* Wrong medium type */

ECANCELED 125 /* Operation Canceled x*/

ENOKEY 126 /* Required key not available */
EKEYEXPIRED 127 /* Key has expired x*/

EKEYREVOKED 128 /* Key has been revoked x/
EKEYREJECTED 129 /* Key was rejected by service x/
EOWNERDEAD 130 /* Owner died x/

ENOTRECOVERABLE 131 /* State not recoverable x/

ERFKILL 132 /* Operation not possible due to RF—kill x*/
EHWPOISON 133 /* Memory page has hardware error x/

Linux follows the 0/-E return convention, i.e, a return value of 0 indicates a successful exit. In case of
some error, one is expected to return the negative of the value you want the user space global uninitialised
variable, errno to be set.

The variable, errno is part of a process’ uninitialised data segment. When we say that a value is returned
to user space, we mean it is actually returned to the glibc layer of user space. This layer multiplies the
return value by —1 and sets errno. For example, when you are writing a kernel module, the init_module
system call (any wrapper that is used to load a module into the kernel implements this system call) is
expected to return 0 upon success. In case of failure, the kernel emits a warning indicating a non-zero
return value (older kernel versions were far more unforgiving and simply unloaded the module!).

Sometimes, instead of returning an integer value, we want to return a pointer. This is accomplished using
the ERR_PTR() inline function which disguises the pointer as an integer by applying a void * cast.
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Modules

The Linux kernel is monolithic in nature, but that doesn’t stop it from having some loadable modules.
These modules are pieces of kernel code that can be plugged (unplugged) in (from) the kernel at runtime.
Most of the device drivers that work with the kernel are available as loadable modules. This modularity at
the OS-level grants us the freedom to customize our system according to our needs.

We will now dive deeper into kernel module programming.
Let us revisit the Hello World example.

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>

MODULE_LICENSE("Dual MIT/GPL");
MODULE_AUTHOR("Sukrit Bhatnagar, Purushottam Kulkarni & Aditya Sriram");
MODULE_DESCRIPTION("Customary Hello, World module!");

static int __init hello_init(void)

{
printk (KERN_INFO "Hello, world!\n");
return 0;
}
static void __exit hello_exit(void)
{
printk (KERN_INFO "Goodbye, world!\n");
}

module_init(hello_init);
module_exit(bye_init);

What?! No stdio.h ?! That’s right, we don’t need anything from any C library because we are directly
interacting with the kernel now. Let us try to understand the code above:

« linux/init.h is for the use of __init and __exit macros.

« linux/kernel.h is included to be able to use the KERN_INFO macro (which, as we will see, is one of
the 8 kernel log levels).

« linux/module.h is required by all modules and contains the prototype for the hello_init and
hello_exit functions. This header has to be included by all modules.

» module_init is used to specify the entry point of a module, which is given in the form of a function
pointer. Although kernel modules are not userspace applications and run with kernel privileges, you
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can think of the function specified as being similar to the main() function of a C program.

« module_exit isused to specify the exit point of a module, which is also given in the form of a function
pointer. The function specifid is meant to perform cleanup tasks like freeing allocated memory and
closing file descriptors before the module is unloaded.

« printk(KERN_INFO "Hello World!\n") prints "Hello World!" to the kernel log buffer. It is similar to
the printf function in C in that it formats a string (in some sense, printk is a re-implementation of

printf in kernel space). However, unlike printf which writes to a file ( stdout by default), printk
writes to the kernel log buffer in RAM. More on this later!

« __init and __exit are macros which are used to place the init and cleanup functions in a special
code sections (those functions are usually called only once!).

Making both the init and exit functions static ensures they are private to the kernel module. Kernel
versions post 2.3.13 have made it so that any function name can be used to describe your init and exit
routines. However, it is considered a good practice to adopt the naming convention where you include the
module name in the function.

The kernel also provides a few metadata macros which let you describe your module. These are extremely
useful pieces of information that can be viewed by running the modinfo command and passing the name
of the module. We have listed a few metadata macros below:

e MODULE_INFO

e MODULE_LICENSE

e MODULE_AUTHOR

e MODULE_DESCRIPTION
e MODULE_VERSION

As an example, try running modinfo reed_solomon and observe the output!

Compiling a Module

A simple Makefile for the module you wrote would look something like this:

obj—m += <modulename.o>

all:
make —C /lib/modules/$(uname —r)/build/ M=$(PWD) modules

clean:
make —C /lib/modules/$(uname —r)/build M=$(PWD) clean

Assuming you are familiar with the make workflow, let us try and decipher exactly what is going on here.
The kernel’s Kbuild system uses two variable strings: obj-y and obj-m. obj-y is a concatenation of all
the objects that are to be built into the final kernel image (both, the compressed bzImage and uncompressed
vmlinux ). The suffix y literally stands for yes i.e, all configurations that were marked [Y] during the build
process are concatenated into this variable. On the other hand, obj-m concatenates all objects that are to
compiled and built as kernel modules (hence the m). This is what the first line of the Makefile is for:
it tells the Kbuild system to compile and build our module, generating the modulename.o file which is
concatenated to obj-m. all is the default target for make and the rule defining this target does quite a bit:

1. The -C option tells the make process to perform a change directory (using the chdir system call)
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to whatever follows it. Running 1s -1 on the path, we can see that the path is a symbolic link to a
limited source tree stored in /usr/src/linux-headers-$(uname -r).

2. Inside the source tree, it parses the top-level Makefile.

3. The variable M specifies the location where we want our module to be built (in this case, it is the
current working directory).

The final target, clean is to remove all files generated in the build process and mind you, there are quite
a few of them).

Loading/Unloading

If you have reached this step, it’s safe to say that you have been able to compile your kernel module
successfully and are able to see a .ko kernel object file in the destination folder used for compilation. Don’t
expect anything to happen yet because the module has not been loaded into kernel memory! By default,
the user runs in user space and has its own virtual address space. On the other hand, the kernel has its own
separate address space and the only way for you, the user, to communicate with the kernel is to rely on
system calls. The process by which a module gets loaded into kernel memory is called inserting. There are
several utilities to load a kernel module but all use the same system call under the hood, [f]init_module.
Two commonly used wrappers include insmod and modprobe . To load your kernel module, run:

sudo insmod/modprobe <path_to_module>

modprobe is an intelligent version of insmod and is the recommended option when you want to load mod-
ules into the kernel. Usually any module you write will be dependent on other modules. modprobe per-
forms a dependency check and loads the module along with its dependencies, which is convenient. How-
ever, modprobe requires that your module be installed to the default location, /lib/modules/$(uname -r) .

Note that you require root privileges to run the above command. This should seem obvious because kernel
modules run in the kernel’s virtual address space and with elevated privileges. When a process is run as
root, it runs with the RUID/EUID equal to the special value zero. You should also know that according
to the POSIX capabilities model, a process/thread with the CAP_SYS_MODULE capability can load/unload
modules. This is a good time to look at the kernel log buffer using dmesg. Don’t be surprised if you see a
message,

loading out—of—tree module taints kernel

which describes exactly what has happened - you loaded a kernel from outside the source tree. This can be
ignored for most cases and is just your Linux distributions way of warning you that it won’t be responsible
for anything funky that might happen.

Unloaded kernel modules is as simple as loading them - run the rmmod utility with root privileges and pass
the name of your module:

sudo rmmod <modulename>
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Passing command-line arguments

Let us now look at how one can pass command-line parameters to a kernel module. This can only be
done during module insertion (using insmod ) and the parameters are specified as name-value pairs. For
example,

sudo insmod <modulename>.ko mp_<parametername>=<parametervalue>

(It is a good practice to prefix your module parameter names with mp , which stands for module parameter).
The kernel even gives us the ability to pass default values to module parameters!

You might be wondering how exactly is this done. Unlike userspace applications, kernel modules don’t
have main() as their entry point, and hence no argc, argv! This has to do with the linker and as a kernel
programmer, your job is this: declare the module parameter as a static global variable and let the build
system know that your variable is to be treated as a module parameter using the MODULE_PARM() macro.

The MODULE_PARM() macro accepts three arguments: the name of the module parameter, its data type, and
permissions (more on permissions later). The kernel also lets you describe the purpose of your module
parameter using the MODULE_PARM_DESC macro. Running modinfo on a module with module parameters
displays the list of parameters accepted by your module. You can filter out this information using the -p
switch. For example, checking the list of module parameters accepted by drm returns,

$ modinfo —p drm

edid_firmware:Do not probe monitor, use specified EDID blob from built—in data or /lib/
firmware instead. (string)

vblankoffdelay:Delay until vblank irq auto—disable [msecs] (0: never disable, <0: disable
immediately) (int)

timestamp_precision_usec:Max. error on timestamps [usecs] (int)

debug:Enable debug output, where each bit enables a debug category.

Bit 0 (0x01) will enable CORE messages (drm core code)

Bit 1 (0x02) will enable DRIVER messages (drm controller code)
Bit 2 (0x04) will enable KMS messages (modesetting code)

Bit 3 (0x08) will enable PRIME messages (prime code)

Bit 4 (0x10) will enable ATOMIC messages (atomic code)

Bit 5 (0x20) will enable VBL messages (vblank code)

Bit 7 (0x80) will enable LEASE messages (leasing code)

Bit 8 (0x100) will enable DP messages (displayport code) (int)
edid_fixup:Minimum number of valid EDID header bytes (08, default 6) (int)

As you can see, the module accepts five parameters. The name of the parameter is followed by a short
description and its datatype is mentioned inside round braces (for example, timestamp_precision_usec is
an integer while edid_firmware is a string).

Can we access/modify parameters after insertion? This depends on the last field passed to MODULE_PARM() ,
which as we said, has to do with permissions/mode. The permissions can be passed as octal numbers
or macros that are defined in include/uapi/linux/stat.h (although it is recommended that you use the
octal format). Whenever you load a module into the kernel, a new directory gets created in the folder
/sys/module. The /sys/module tree consists of the following,

+ /sys/module/<modulename>: This is always created when the module is loaded dynamically into the
kernel.

+ /sys/module/<modulename>/parameters : This contains files corresponding to each module parameter
that can be changed at runtime.



Modules 27

There are other subdirectories like /sys/module/refcnt but this will do for now. If the value of the access
rights argument is set to 0, the module parameter will not show in the /sys directory!

For example, passing 0660 or equivalently, S_TIRUSR|S_IWUSR|S_IRGRP|S_IWGRP gives the read-write per-
missions to the user and group. In this case, you can examine the contents of the corresponding module
parameter file in /sys/module/<modulename>/parameters and update the values passed at runtime! Note
that there is mechanism by which the kernel knows that the parameter has been updated. We have included
the various permissions defined in the kernel below,

#define S_IRWXU 00700
#define S_IRUSR 00400
#define S_IWUSR 00200
#define S_IXUSR 00100

#define S_IRWXG 00070
#define S_IRGRP 00040
#define S_IWGRP 00020
#define S_IXGRP 00010

#define S_IRWX0 00007
#define S_IROTH 00004
#define S_IWOTH 00002
#define S_IXOTH 00001

As an example, let us examine the contents of /sys/module/drm/parameters,
$ s /sys/module/drm/parameters/

debug edid_firmware edid_fixup timestamp_precision_usec vblankoffdelay

which as expected, contains the list of parameters we saw by running medinfo -p. We can also check the
value taken by each parameter by running cat with root privileges. We know that the default value of
edid_fixup is 6 and can verify this printing the contents of the file corresponding to the parameter,

$ sudo cat /sys/module/drm/parameters/edid_fixup
6

To find a list of all accepted module parameter datatypes, you can refer to the include/linux/moduleparam.h
header.

/*

Standard types are:

* byte, hexint, short, ushort, int, uint, long, ulong
* charp: a character pointer

* bool: a bool, values 0/1, y/n, Y/N.

* invbool: the above, only sense-reversed (N = true).
*/

Auto-loading Modules

So far, we have looked at out-of-tree modules and how they must be inserted into kernel memory by the
user using a utility like insmod . However, sometimes we might want modules to be automatically loaded
at boot. Let us discuss how to do this.
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When we were discussing the installation of a custom kernel, we mentioned that kernel object files have to
be placed in a lib/modules/$(uname -r) for the system to be able to find them and load them into kernel
memory. This was achieved by running, sudo make modules_install. Therefore, to auto-load out-of-tree
modules, all we have to do is add a modules_install target in our Makefile! Your new Makefile will look
like this,

obj—m += <modulename.o>

all:
make —C /lib/modules/$(shell uname —r)/build/ M=$(PWD) modules

clean:
make —C /lib/modules/$(shell uname —r)/build/ M=$(PWD) clean

install:
make —C /lib/modules/$(shell uname —r)/build/ M=$(PWD) modules_install

Running sudo make install will install the module to /lib/modules/$(uname -r)/extra/. Typically. an-
other utility called depmod will be invoked when you run sudo make install. The depmod utility handles
module dependencies and once the module is installed, you can see its effects by running it with the
-dry-run switch:

sudo depmod —dry—run | grep <modulename>

We need to do one final thing for our module to be auto-loaded - adding a configuration file in the
/etc/modules-load.d/ directory. Simply create a <modulename>.conf file and add the name of your mod-
ule inside. Alternatively, you can add the name of your module in the /etc/modules-1load.d/modules.conf
file. Note that any line beginning with # is treated as a comment. Reboot your system and 1smod should
show you your module automatically loaded!

How can we assign values to the parameters of a module that has been auto-loaded (remember that a
module can be passed parameters at the time of loading)? The easiest way is to create a modprobe con-
figuration file in /etc/modprobe.d. As an example, let us take a look at /etc/modprobe.d/alsa-base.conf.
You should be able to lines like,

options bt87x index=-2
options cx88_alsa index=-2
options saa7l134—alsa index=—2

The syntax is meant to be read as options <modulename> <parameter-name>=<value>. Therefore, to pass
module parameters, create a /etc/modprobe.d/modulename.conf configuration and pass parameters using
the option lines.

An advantage of installing out-of-tree modules is that you can use modprobe, a smarter version of insmod
to load them. What makes modprobe better is that it takes care of module dependencies for you! How
does modprobe determine the order in which modules are to be loaded, while resolving dependencies?
Whenever you install out-of-tree kernel modules to /lib/modules/$(uname -r)/extra/, depmod generates
a /lib/modules/$(uname -r)/modules.dep file, which contains dependency information which is used by
utilities like modprobe .

Some additional information, on modern Linux systems, it is the systemd framework that is responsible for
auto-loading kernel modules at boot. This is done by the systemd service, systemd-modules-load.service
which parses the contents of files like /etc/modules-load.d/* . Sometimes, an a uto-loaded kernel module
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might misbehave and you would like to prevent it from loading at system boot. This can be done by
blacklisting the module. You should be able to see several *-blacklist.conf files in the /etc/modprobe.d
directory.

Exercises

General

1 Find out the actual data types underneath the following opaque kernel types:
o pid_t, uid_t, gid_t, size_t, ptrdiff_t, time_t, atomic_t

2 Find out the sizes of the following data types on your system:
« char, bool, short, int, long, long long, void *
 [u]int8_t, [u]int16_t, [u]int32_t, [u]int64_t

You can guess the sizes of these "_t" types without using sizeof operator!
3 Find out the size of a WORD on your system.

4 Find out the total number of system calls available on your system. Also find out what is the limit
on the number of arguments you can pass to a system call.

5 Find out the limit on the number of characters allowed in a line of the syslog buffer.

Modules

1 Write a module to print your name and email ID in the kernel logs. Name your init and cleanup
functions as "hi" and "bye", respectively, instead of init_module and cleanup_module. You will find
module_init and module_exit macros useful here.

(Imust do] (module) {general/hello.c}|

2 Write a module to try out various kernel logging levels using printk. Print a string to the *terminal®
using one of the kernel log levels. Also find out all the log levels that print to the terminal by default.
(NOTE: no log messages will be printed on pseudoterminals (pts), so use one of the ttys to try it
out!).

[[must do] (module) {general/log. c}]

3 Write a module to crash the kernel in the easiest way you can imagine! Verify by looking at the
kernel logs for a kernel oops message. Now reboot!
(Imust do] (module) {general/crash.c}

4 There is a symbol LINUX_VERSION_CODE in include/generated/uapi/linux/version.h which repre-
sents the code for current kernel version. For a kernel version a.b.c, this code is calculated as:
a x (2°16) + b * (2°8) + c. Write a module to calculate and print the kernel version, by using
and decoding this code. (HINT: some bit manipulation skills required!).
([can do] (module) {general/metadata.c}|
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5

10

11

Using the min3 and max3 macros defined in include/linux/kernel.h, write a module that prints
the minimum and maximum value among three signed integers taken in from command line.

([can do] (module) {general/minmax3.c}

Write a module to accept an array of integers as the command-line argument. The number of el-
ements should be fixed (say 10) and the module should exit after printing suitable message if the
number of elements passed is not equal to 10; print the integers in the array otherwise. (HINT: take
a look at module_param_array() ).

(Imust do] (module) {general/array.c}

Write another module to extend the module you have written for the exercise 6 above. Sort the
integers in decreasing order and print them. Use the sort function in include/linux/sort.h. (HINT:
you might want to define your own compare function).

([can do] (module) {general/sort.c}|

Write a module to create and manipulate a kernel linked list. Use the struct definition given below for
the linked list node. Your module should take a number from the command-line which will specify
the number of nodes to add in the linked list.s

For each node, the member num should be a random number generated using an inbuilt kernel
function, and the member sqrt should contain the square root of num (decimal part not needed).
Add the nodes to the end of the list and then print the members of the nodes in the linked list in
reverse, and then delete and free all the nodes in the list. Use the functions get_random_long and
int_sqrt in linux/random.h and linux/kernel.h, respectively. (HINT: You might want to take a
look at list_add_tail and list_for_each_entry_safe_reverse).

struct info

{
unsigned long num;
unsigned long sqrt;
struct list_head list;
+

(Imust do] (module) {general/list.c}

Extend the module you wrote in the exercise above to measure the "average" time taken to insert a
new node in the linked list. Use getnstimeofday to get the time before and after the insert operation
in nanoseconds.

(Imust do] (module) {general/elaptime.c}

Load the module you wrote in Exercise 1 (remove the __init macro from the function signature
before you make it!). Then write a kernel module which accepts the name of that kernel module
as command-line argument and traverse the list of loaded kernel modules to find it. When you
find it, print its name as well as call its "init" function! Refer to the struct module definition in
linux/module.h.

([can do] (module) {general/search_mod.c}|

Write a simple module and make it persistent, i.e. it should automatically load on system boot.
Reboot and check if it is loaded using 1smod . (HINT: take a look inside /lib/modules).
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12

13

14

15

Write a module to print the current date and time. Use do_gettimeofday for fetching the current
time in seconds and the function time_to_tm which populates a struct tm based on that value.
Keep the GMT time zones in mind while you are at it!

[[must do] (module) {general/datetime.c}]

Write a module to access a take a command-line argument which sets the value of a variable. Then
access this variable from another kernel module. Use EXPORT_SYMBOL in the first module and access
it in another module by using extern. (HINT: The second module should be loaded only after first
one is loaded, and similarly the first one should be unloaded only after second one is unloaded).
(Imust do] (module) {general/export.c,export_2.c}

Write a kernel module to print the contents of all the x86_64 registers that the kernel uses, namely
cr0, cr2, cr3, cr4 and cr8. Using the value returned from cr4, check if PAE (Physical Address Exten-
sion) is enabled on your machine.

[[must do] (module) {general/cr.c}]

Write a module to get a pointer to the task that is currently executing on the current CPU i.e. cal-
culate the value of current macro.
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Design Patterns

Data Types

Refer: include/linux/moduleparam.h The following data types are supported as command line arguments
to a kernel module:

byte (unsigned char)  short ushort (unsigned short)
int uint (unsigned int) long
ulong (unsigned long) ullong (unsigned long long) charp (char *)

Data Structures

Lists

The kernel has an unconventional, but efficient implementation of a linked list which is generic in nature.
Normally, a linked list node consists of data and pointers to the next and/or previous nodes. However,
the implementation of the linked list used in the kernel only contains pointers to the next and/or previous
nodes! This means that the linked list is completely oblivious to the type of structure being linked, lend-
ing the implementation its generic nature. Such linked lists are referred to as intrusive, which simply
means that the linked list elements are not structures themselves, but rather each node of the linked list
is embedded into the structure which is supposed to be linked. There are broadly two different types of
intrusive-headed-doubly linked lists that the kernel provides natively, as mentioned below.

Some more terminology, headed means that a special node, usually called head, will act as the pointer to
the first (and in some cases, even the last) node in the list. Double simply means that from a node in the
list, you can traverse to the next as well as the previous elements, provided they exist.

Circular doubly linked list

The Linux kernel includes an implementation for a circular doubly linked list, which can be found in
include/linux/types.h:list_head.

struct list_head {
struct list_head *xnext, *prev;

1
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As you can see, each node in the list has a pointer to the next as well as the previous element, but does not
store the data. If the list has only one element, its next and prev will point to itself (hence the circular
nature). A head node is used to identify a list, hence the struct name list head . The type of head node
is the same as other data nodes, but its next points to the first element in the list and its prev points
to the last node. Note that you don’t really need a head node for the linked list to function. The kernel
includes several routines to manipulate the data structure which can be found in include/linux/list.h.
The implementation is simple enough and hence, has been inlined. Access methods including list_entry,
which is wrapper for container_of , allow you to access the structure being referenced by the list_head
pointer. This linked list implementation was motivated by the fact that sometimes, you want to be able to
traverse the list, both forwards and backwards which is why the prev pointer was included. This has the
added advantage of being able to access the tail in O(1) time. We have included API commonly used with
lists below, for the reader’s convenience.

Hash lists

struct hlist_head {
struct hlist_node *first;
Irg
struct hlist_node {
struct hlist_node *next, *xpprev;

1

This implementation of a linked list is useful in applications where it is not necessary to be able to ac-
cess the last entry in constant time and might benefit from the space reduction due to not storing a prev
pointer. This turns out to be extremely useful in hash tables where all the nodes are stored in an ar-
ray. These lists have separate types for the head node and the data nodes since you need to be able
to access the head of such a list. Just like list_head, helper methods for this linked list are defined in
include/linux/list.h. As an example, we can look at the use of hlist_head to create a hash table de-
fined in include/linux/hashtable.h.

Why has a double pointer been used in place of the normal prev pointer? This is because the hlist is
implemented using two structures, hlist_head and hlist_node. This separation exposes an interface to
the head of the list but also causes an issue. What will prev point to? The head of the list is of type
hlist_head, while every other element in the list is of type hlist_node. Using a double pointer fixes this
problem because the two structures share a common interface, which is a pointer to the type hlist node.

Red-black Trees

struct rb_node {
unsigned long __rb_parent_color;
struct rb_node *rb_right;
struct rb_node xrb_left;
} __attribute__((aligned(sizeof(long))));
/* The alignment might seem pointless, but allegedly CRIS needs it */

struct rb_root {
struct rb_node *rb_node;

};
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The kernel also includes an implementation of red-black trees in include/linux/rbtree.h and lib/rbtree.c.
We won’t go into the internals of a red-black tree, but just know that it is a semi-balanced binary search
tree with operations like insert, delete and search taking O(lg n) time. Just like the circular doubly linked
list, the tree node is embedded in the structure for which the tree is being constructed. What’s interesting
is that the kernel does not include code for insert or search functions, and these must be implemented by
the user themselves! The reason behind this is performance. To implement a search function, you would
need to pass a comparison function using a function pointer. Since comparison functions are simple, the
cost of following the pointer and making the function call would be dominate. In a similar spirit, there is
no code for insertion. The user is expected to write code for the search, if it fails, find the position where
the new node should be inserted, insert the node and balance the tree. You will find functions for to link
the new node and rebalance the tree. Finally, at the root of every red-black tree, is a rb_root structure.

Radix Trees

Besides red-black trees, the kernel includes a second kind of tree - radix trees. However, the way radix trees
are used in the kernel is more general than you might expect. Radix trees can be found in two locations,
include/linux/radix-tree.h, lib/radix-tree.c and include/linux/idr.h, lib/idr.c. A Linux radix
tree lets you associate a pointer with a very long integer key. Radix trees have some features that are also
motivated by kernel-specific needs. Each node in the radix tree consists of a number of slots, which is quite
large. The integer key can be used to index into tree with portions of the key being used to index into node
slots. Unlike lists and red-black trees, a radix tree is not embedded inside the data structure which means
that memory might have to be allocated to add items to the data structure.

Kernel Log Buffer

If you ran the hello module described in the warming up section, you would have noticed that the printk
kernel API is very similar to the printf method that you know from C. This is not an accident! It is
extremely important for you to understand that there is no concept of a "library" in kernel space (the lib/
folder in the kernel source tree is the closest you will ever get to a library in the kernel). This means that
you do not have access to the printf API for debugging purposes. Instead, kernel contributors decided
to re-implement the API within the kernel and the code for the same can be found in the kernel/printk
folder of the source tree.

Unlike printf, printk does not write to terminal window (internally, printf invoke the write syscall
which by default, writes to stdout which is the terminal window in most cases) and has three possible
write destinations:

1. The kernel log buffer in RAM (volatile)
2. Alog file on the disk (non-volatile)

3. The console

This is also why we did not see anything get printed to the console in the example and had to use the
dmesg command to view the "Hello, world!" string.
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You would have also noticed the macro, KERN_INFO before the string, "Hello, world!". There is no comma
between the macro and string which means that this is not a parameter but rather one of the 8 kernel log
levels. The 8 kernel log levels are defined in the file, include/linux/kern_levels.h

#define KERN_SOH "\001" /* ASCII Start Of Header x*/
#define KERN_SOH_ASCII '\001'

#define KERN_EMERG KERN_SOH "0" /* system is unusable x/

#define KERN_ALERT KERN_SOH "1" /* action must be taken immediately x/
#define KERN_CRIT KERN_SOH "2" /* critical conditions x/

#define KERN_ERR KERN_SOH "3" /* error conditions x*/

#define KERN_WARNING KERN_SOH "4" /* warning conditions x*/

#define KERN_NOTICE KERN_SOH "5" /* normal but significant condition x*/
#define KERN_INFO KERN_SOH "6" /* informational x*/

#define KERN_DEBUG KERN_SOH "7" /* debug—level messages */

#define KERN_DEFAULT o /* the default kernel loglevel x/

KERN_SOH is the kernel start of header value and is appended to the beginning of all log levels, which
you can see are nothing but numbers. Note that these log levels are actually representing control strings
for the console. For instance, KERN_INFO would actually correspond to "\0016". If you do not specify
the kernel log level, it defaults to KERN_WARNING. But, it is considered a good practice to mention a suit-
able log level. This might get tedious but can be avoided using the pr_ macros which are defined in
include/linux/printk.h.

printk
struct printk_info {

u64 seq; /* sequence number x/
u64 ts_nsec; /* timestamp in nanoseconds */
ulé text_len; /* length of text message */
u8 facility; /* syslog facility x*/
u8 flags:5; /* internal record flags */
u8 level:3; /* syslog level x/
u32 caller_id; /* thread id or processor id x/

struct dev_printk_info dev_info;

}i

When you call printk, an object of type printk_log will be generated and it will be added to a log buffer. A
global variable log_buf is an array of pointers, where each element is a "line" you see in the syslog. This
is the kernel’s implementation of the syslof buffer. The function log_store does the main work in adding
a printk_log to the __log_buf.

__log_buf is implemented as a ring buffer and by default, is quite small! The size is controlled by the
kernel configuration symbol, CONFIG_LOG_BUF_SHIFT which defines two’s exponent. By default, the symbol
is set to 18 so the size of the buffer is 256 KB. Therefore, too many print statements will fill the entire
buffer and overwrite valuable log data. Thankfully, your distribution will typically write to a file (which
is non-volatile). Debian based systems store the file in /var/log/syslog, which is maintained by the
systemd framework. Logging is performed using the systemd-journal daemon while journalctl allows
you to query the journal. Note that the daemon logs messages from almost everything possible - kernel,
applications, drivers.
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We have seen how printk writes to the kernel log buffer and a log file on the disk. Let’s finally see how
we can get printk to display messages on the console window. It turns out that messages with a low
enough log level (high in priority) will be displayed on the console window, in addition to log buffer! The
kernel uses the proc filesystem to decide which log levels are "important” enough to be displayed on the
console. This can be examined by running,

$ cat /proc/sys/kernel/printk
4 4 1 7

The four numbers displayed are log levels and the particular sequence means the following:
+ The first number is the current console log level. It is 4 by default which corresponds to KERN_WARNING .
All printk instances with log level less than 4 will be printed to the console device.

+ The second number is the default log level for messages explicitly lacking one (say you forgot to add
a macro to your printk statement)

« The third number is the minimum log level allowed
« The fourth number is the default log level at boot-time

By appropriately modifying the numbers in the above file, you can control what messages get logged to
the console window which is a very useful ability.

Finally, you can also generate kernel messages from userspace! This can be done by directly writing to the
/dev/kmsg character device file, which provides userspace access to the kernel’s log buffer:

sudo bash —c "echo hello! > /dev/kmsg"

Running dmesg | tail should show you the message, "hello!" appended to the log buffer.
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Processes

Suggested readings

Books

[kd]: 3, 4
[ulk]: 3,7, 9

Others

https://tampub.uta.fi/bitstream/handle/10024/96864/GRADU-1428493916.pdf
http://sunnyeves.blogspot.com/2010/09/sneak-peek-into-linux-kernel-chapter-2.html
https://www.win.tue.nl/ aeb/linux/lk/lk-10.html

Introduction

Let us start with processes, or as Linux calls them, tasks! They are the ones who actually get the work
done. Note that task has a more general meaning inside the kernel, and we may use this term to refer
to any process or kernel thread. Basically, anything that can be independently scheduled by the kernel
is a task. Now, even though a thread is just an execution path within a process, it turns out that threads
are more important to the kernel than processes. This is because in the Linux kernel, threads are kernel
schedulable entities (KSEs) and every thread (userspace or kernel) gets mapped to a kernel metadata
structure, called the task structure. The task structure (also know as a process descriptor, which is a
source of much confusion) contains everything that the kernel needs to know about the thread, including
information on memory, credentials, namespaces, IPC structures, etc. Some of these attributes will be
inherited by a child process or thread (paging tables, namespaces to name a few), while others will not
be inherited, but reset. You might be wondering, does the kernel know if a task is a process or thread?
The answer is yes, and we will see how soon enough. To conclude, every process consists of one or more
threads, which in turn map to the task structures in the kernel.

Note: It should be pointed out threads of the same process share the process virtual address space (VAS),
except the stack, which is private to each thread. Additionally, the number of stacks that a thread requires
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is related to the number of privilege levels supported by the CPU. Modern OSes like Linux support two
privilege levels, and hence, each thread has two stacks - a userspace stack and a kernel stack. The userspace
stack comes into play when the thread executes userspace code, while the kernel stack comes into play
when you execute kernel code in process context. This rule has one exception - kernel threads. Kernel
threads only have one stack because they cannot see userspace.

Structs and Flags

The Process Control Block (PCB) is represented in the kernel by the structure | task_struct located in
include/linux/sched.h . It looks something like the code below; well, a bit more cryptic than this to be
frank. This code includes only the process attributes relevant to us right now, and there are around a
couple hundred such attributes which it encapsulates! Nevertheless, the order of member declarations is
preserved here for better correspondence.

struct task_struct {

struct thread_info thread_info;

volatile long state;

void *stack;

unsigned int flags;

unsigned int cpu;

int prio, static_prio, normal_prio;
const struct sched_class *sched_class;

struct sched_entity se;

unsigned int policy;

struct sched_info sched_info;

struct list_head tasks;

struct mm_struct *mm, *xactive_mm;

int exit_state, exit_code, exit_signal;
pid_t pid, tgid;

struct task_struct *parent;

struct list_head children, sibling;

struct task_struct *group_leader;

struct pid_link pids[PIDTYPE_MAX];

struct list_head thread_group, thread_node;
u64 utime, stime, gtime;
unsigned long nvcsw, nivcsw;

u64 start_time;

unsigned long min_flt, maj_flt;

const struct cred *xcred;

char comm[TASK_COMM_LEN] ;
struct nameidata *nameidata;

struct fs_struct *fs;


https://elixir.bootlin.com/linux/v4.17.4/source/include/linux/sched.h#L592
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struct files_struct
struct signal_struct
struct sighand_struct
sigset_t

spinlock_t

struct task_io_accounting
int

atomic_t

struct thread_struct

thread_info

xfiles;
*signal;
xsighand;
blocked;
alloc_lock;

ioac;

nr_dirtied;

stack_refcount;

thread;

Pointer to the corresponding thread_info. The implementation of the thread_info is architecture-

specific. It is needed as the first member in our struct so that thread info can be easily extracted by

casting a task_struct pointer to a thread_info pointer.

Refer arch/x86/include/asm/thread_info.h:56

state

Process state. Value -1 represents that the process is not runnable, ® means it is runnable (state
TASK_RUNNING ), and any positive value (>0) means it is stopped. All the possible state values are
defined in include/linux/sched.h and are used as bitmasks to make up a single long variable. Here

are the values for reference:

/* Used in tsk-—>state: x/

#define TASK_RUNNING

#define TASK_INTERRUPTIBLE

#define TASK_UNINTERRUPTIBLE

#define __TASK_STOPPED
#define __TASK_TRACED

/* Used in tsk-—>exit_state: x/

#define EXIT_DEAD
#define EXIT_ZOMBIE
#define EXIT_TRACE

/* Used in tsk—>state again: =/

#define TASK_PARKED
#define TASK_DEAD
#define TASK_WAKEKILL
#define TASK_WAKING
#define TASK_NOLOAD
#define TASK_NEW

#define TASK_RTLOCK_WAIT

#define TASK_FREEZABLE

#define __TASK_FREEZABLE_UNSAFE

#define TASK_FROZEN
#define TASK_STATE_MAX

stack

(0x00004000

0x00000000
0x00000001
0x00000002
0x00000004
0x00000008

0x00000010
0x00000020
(EXIT_ZOMBIE | EXIT_DEAD)

0x00000040
0x00000080
0x00000100
0x00000200
0x00000400
0x00000800
0x00001000
0x00002000

0x00008000
0x00010000

+* IS_ENABLED (CONFIG_LOCKDEP))


https://elixir.bootlin.com/linux/v4.17.4/source/arch/x86/include/asm/thread_info.h#L56

Processes 40

Pointer to the kernel stack associated with the process. The user stack is provided as a virtual mem-
ory area (vma) to the process.

flags
Process flags. All the possible flag values are defined in include/linux/sched.h and are used as bit
masks to make up a single long variable.

PF_IDLE 0x00000002 /+ I am an IDLE thread */

PF_EXITING 0x00000004 /* Getting shut down */

PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */

PF_VCPU 0x00000010 /+ I'm a virtual CPU x/

PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */

PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */

PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors x/

PF_SUPERPRIV 0x00000100 /* Used super—user privileges x*/

PF_DUMPCORE 0x00000200 /* Dumped core */

PF_SIGNALED 0x00000400 /* Killed by a signal x/

PF_MEMALLOC 0x00000800 /+ Allocating memory x*/

PF_NPROC_EXCEEDED  0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
PF_USED_ASYNC 0x00004000 /x* Used async_schedulex(), used by module init */
PF_NOFREEZE 0x00008000 /* This thread should not be frozen x/

PF_FROZEN 0x00010000 /* Frozen for system suspend */

PF_KSWAPD 0x00020000 /* I am kswapd */

PF_MEMALLOC_NOFS 0x00040000 /* ALl allocation requests will inherit GFP_NOFS x/
PF_MEMALLOC_NOIO 0x00080000 /* ALl allocation requests will inherit GFP_NOIO */
PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory x/

PF_KTHREAD 0x00200000 /+ I am a kernel thread */

PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */

PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */

PF_NO_SETAFFINITY 0x04000000 /x Userland is not allowed to meddle with cpus_allowed
*/

PF_MCE_EARLY 0x08000000 /x Early kill for mce process policy */

PF_MUTEX_TESTER 0x20000000 /x Thread belongs to the rt mutex tester x/

PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable x*/

PF_SUSPEND_TASK 0x80000000 /x This thread called freeze processes() and should not

be frozen x/

cpu
CPU number on which the process is currently executing. This value is transient and changes when
the process is scheduled on a different CPU.

prio, static_prio, normal_prio

Priorities associated with the process. static prio is the value assigned to the process when it is
created. This value is computed from the user "nice" values using NICE_TO_PRIO. normal_prio is
computed according to the scheduling policy used by the process. Child processes inherit this pri-
ority from their parents upon fork. prio is one taken into account by the scheduler and changes
dynamically. There is another field rt_priority for real-time tasks.

sched_class

Scheduling class associated with the process. struct sched_class represents a NULL-terminated
singly linked list, where each struct element contains some function pointers. These function point-
ers are initialized with the appropriate function logic when a scheduling class struct is created. The
scheduling class structure represents an "interface" for each scheduling class. There are 5 schedul-
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ing classes defined in the kernel scheduler: stop_sched_class, dl_sched_class, rt_sched_class,
fair_sched_class, idle_sched_class.

Refer kernel/sched/sched.h:1463| and kernel/sched/core.c|.

. se
Scheduling entity. The scheduler does not work with processes directly; instead it takes a set of
scheduling entities. Threads, thread groups, processes, process groups; all are scheduling entities.
struct sched_entity contains information useful in making scheduling decisions; "weight", execu-
tion start time, total execution time and number of migrations, among other properties.

Refer include/linux/sched.h:445]|.

e« policy
Scheduling policy to be used for this process. The following values can be assigned to this field:

SCHED_NORMAL 0
SCHED_FIFO 1
SCHED_RR 2
SCHED_BATCH 3
/* SCHED_ISO */
SCHED_IDLE 5
SCHED_DEADLINE 6

e sched_info
Miscellaneous counters related to scheduling. The members of this struct are available only if
CONFIG_SCHED_INFO is enabled in the kernel.

Refer include/linux/sched.h:281]|.

e tasks
(Doubly linked) list of all the tasks in the system. Useful if you need to traverse through all the
processes in the system. for_each_process uses the same.

e mm, active_mm
The "memory" of a process. Each process will have a mm associated with it. For a process executing in
user mode, both mm and active_mm will point to the same memory struct. When a process switches
to kernel mode, or for kernel processes/threads, the active_mm will point to the memory struct of
the previously scheduled process on the same CPU and mm wiil be NULL. The mm_struct contains
some important fields related to memory management such as address of the page directory, list of
all virtual memory areas (vma) and the start and end addresses of various sections (code, data, heap,
stack). This will be discussed with further depth in the chapter dedicated to memory management.

Refer|include/linux/mm_types.h:352].

e exit_state, exit_code, exit_signal
When a process is currently executing, exit_state can have any of the values that state can have.
When the process is exiting, or waiting to be reaped, it can have the following values:


https://elixir.bootlin.com/linux/v4.17.4/source/kernel/sched/sched.h#L1463
https://elixir.bootlin.com/linux/v4.17.4/source/kernel/sched/sched.h
https://elixir.bootlin.com/linux/v4.17.4/source/include/linux/sched.h#L445
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EXIT_DEAD 0x0010
EXIT_ZOMBIE 0x0020
EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)

The field exit_code can have two sets of values. If the process exited due to a signal, this will
contain the corresponding signal number. If the process called exit explicitly and passed x as its
argument, it will have a value (x & 0xff) « 8. The field exit_signal usually contains the value 17
( SIGCHLD).

e pid, tgid
Process id pid is (supposedly) the unique identifier for a process in the system; two processes can-
not have the same pid (unless they belong to different namespaces). But, the kernel has a different
notion of pid altogether! pid is more like tid (thread ID) and is unique to a process OR a (kernel)
thread. (Recall that user-level threads such as pthreads are each mapped to a kernel thread). Then
what will be the tgid. It is the pid of the group leader, which may be the process that created all the
threads. Note that the concept of group leader applies only to a process and the threads it spawns.
If a process forks a child, then that child will be the group leader of its own group and will not share
the thread group of its parent.
Ironically, getpid returns the pid of the group leader, which is tgid, and gettid returns the pid.
For a process, getpid and gettid will be the same. If the process spawns some pthreads, all of the
pthreads will have a different kernel-space pid ( pid ) but the same user-space pid ( group_leader->pid
or tgid).

Refer|kernel/sys.c:882 .

e parent
Parent, or better the "effective" parent. This is the process that is supposed to reap the process (wait
for it) and receives SIGCHLD when child terminates. There is also a real_parent that is the process
which fork ed, or to be more precise, clone d this process. Unless someone is ptracing, these two
parents are the same.

e children, sibling
Children of the process i.e. all the processes clone d from it. children acts as the head node for the
list. children.next will point to the list element of the first child and children.prev will point to
the list element of the last child in the list. sibling is the linked list node embedded in each sibling’s
task_struct.

e group_leader
Leader of the thread group this task belongs to. Every process is its own group leader. But if a pro-
cess has spawned multiple threads, all of those threads will have that process as their group leader.
And as we know by now, the pid of the group leader will be the tgid of all the threads (it spawned).
All of those threads as well as the process are said to be in the same "thread group”. NOTE: all the
threads and processes in a group will have the same parent, i.e., even if the process had spawned
those threads, the parent of that process will also be the parent of all these threads.

e pids
Hash table linkage of the several types of pids a process can have. There are briefly three types
of such pids: PIDTYPE_PID, PIDTYPE_PGID (process group ID) and PIDTYPE_SID (session ID). These
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types are declared inside an enum named pid_type and act as buckets in the hash table.

A session contains a number of process groups, and a process group contains a number of processes,
and a process contains a number of threads. Typically, there is a session corresponding to every tty
in use. When you open the terminal, it starts a shell (such as bash) on a tty device and this becomes
a new session

We already know about thread group ID (tgid) which is the PIDTYPE_PID of the group leader. Simi-
larly, process group ID of a process is the PIDTYPE_PGID of its group leader and its session group ID
is the PIDTYPE_SID of the group leader. The hash table is implemented by the kernel using linked
lists, with chaining for handling collisions.

e thread_group, thread_node
They both represent a linked list of all the processes in a thread group. The only difference is that
thread_group has its head inside the task struct of group leader, whereas thread_node has its
head inside the signal shared by all the members in a thread group. Using thread_node, you can
iterate all the members of a thread group, including the group leader. But using thread_group, you
can traverse through all members except the leader as it has been used up for being the list’s head.
for_each_thread macro uses thread_node internally.

e utime, stime, gtime
utime is the time spent by the process in user mode. stime is the time spent in kernel mode (usu-
ally through system call invocations). gtime is the guest time. All these times are in the unit of

clock ticks rather than seconds. To convert them back to seconds, you have to divide these values
by CLK_TCK configuration parameter ( getconf CLK_TCK).

e NVCSw, nivcsw
nvcsw and nivesw count the number of context switches that the current task has undergone. nvcsw
counts the number of voluntary context switches, while nivesw counts the number of involuntary
context switches. These variables are exposed to userspsace via the taskstats structure, which
maintains per-process and per-task stats that are returned when the last task of the process exits.

o start_time

e min_flt, maj_flt
e cred

e comm

* nameidata

o fs, files

e signal

» sighand
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* blocked

You must be wondering why the task_struct fields are so arbitrarily arranged declared the kernel. Think
in terms of caches!

Now that we have looked at some of the members of the task structure, let us try and understand how the
task structures are organised in the kernel. It turns out that all the task structure objects in kernel memory
and placed in a circular doubly linked list, called the task list. This is one of the most important uses of the
kernel data structure we saw in the last chapter. At any given time, there are several processes/threads alive
on the system. How do we find the task structure corresponding to the thread/process that is currently
running kernel code in process context? The kernel developers came up with a scheme that uses the
current macro. The current pointer can be followed to the task_struct of the thread that is currently
running kernel code.

The implementation of the current macro is extremely architecture-specific and can be found in the file,
arch/<arch>/asm/include/current.h. For example, in the PowerPC architecture, current is stored in
register r2 for speed. x86 uses a per-CPU variable to hold the value of current .

There is a small caveat to using current in your code - you can only use the macro is process context.
In general, there are two ways by which you can run kernel code - process or interrupt context. Kernel
code can be run in process context by invoking a system call, which transfers control over to the OS that
in turn, runs with elevated privileges. This can also happen when the processor throws an exception.
Process context allows you to run switch to kernel mode in an synchronous manner. On the other hand,
in interrupt context, a hardware interrupt causes the CPU to stop doing whatever it is doing and switch
to kernel mode to execute an interrupt service routine (ISR). This takes place asynchronously.

Therefore, before using current, you must determine the context within which you are executing kernel
code. This can be done using the in_task() macro definedin include/linux/preempt.h. in_task() return
True if your code is executing in process (or task context) and return False if your code is running in
interrupt/atomic context.

One more thing: current gives you access to the task_struct of the process/thread currently running
kernel code and you can use it to access attributes like PID, PPID, etc. However, rather than doing this
directly, it is recommended that you use helper methods defined in include/linux/sched.h because of a
lock that must be taken.

Finally, the kernel provides APIs defined in include/linux/sched/signal.h using which you can iterate
through the task list. You can iterate through the task list displaying,

« All processes currently alive on the system. This can be done using the for_each_process macro,

#define for_each_process(p) \
for (p = &init_task ; (p = next_task(p)) != &init_task ; )

The init_task macro points to the very first userspace process, systemd (initially known as init ).
Note that this allows you to iterate over the main() thread of every active process.

o All threads currently alive on the system. This can be done using the pair of do_each_thread() and
while_each_thread() macros,

#define do_each_thread(g, t

)\
for (g = t = &init_task ; (g =

t = next_task(g)) != &init_task ; ) do

#define while_each_thread(g, t) \
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while ((t = next_thread(t)) != g)

These signal values are defined in uapi/asm-generic/signal.h.

SIGHUP 1
SIGINT 2
SIGQUIT 3
SIGILL 4
SIGTRAP 5
SIGABRT 6
SIGIOT 6
SIGBUS 7
SIGFPE 8
SIGKILL 9
SIGUSR1 10
SIGSEGV 11
SIGUSR2 12
SIGPIPE 13
SIGALRM 14
SIGTERM 15
SIGSTKFLT 16
SIGCHLD 17
SIGCONT 18
SIGSTOP 19
SIGTSTP 20
SIGTTIN 21
SIGTTOU 22
SIGURG 23
SIGXCPU 24
SIGXFSZ 25
SIGVTALRM 26
SIGPROF 27
SIGWINCH 28
SIGIO 29
SIGPOLL 29
SIGPWR 30
SIGSYS 31

SIGUNUSED 31
SIGRTMIN 32
SIGRTMAX 64

/%
/*
/*
/%
/*
/%
/%
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*
/*
/%
/*
/%
/*
/*
/%
/%
/*
/*
/%
/*
/%

Hangup detected on controlling terminal or death of controlling process */
Interrupt from keyboard x*/

Quit from keyboard x*/

Illegal Instruction x*/

Trace/breakpoint trap */

Abort signal from abort(3) =/

Bus error (bad memory access) x/

Floating point exception */

Kill signal =/

User—defined signal 1 x/

Invalid memory reference */

User—defined signal 2 x/

Broken pipe: write to pipe with no readers x/
Timer signal from alarm(2) x/

Termination signal x/

Child stopped or terminated */

Continue if stopped */

Stop process x*/

Stop typed at terminal */

Terminal input for background process */
Terminal output for background process */
Urgent condition on socket x*/

CPU time limit exceeded */

File size limit exceeded x*/

Virtual alarm clock */

Profiling timer expired x/

Pollable event x*/
Pollable event */

Bad argument to routine x*/

List of important functions and macros

Warning: Importance is relative.

Exercises

1 Write a module to print the following information about the kernel internals:

« Maximum and minimum values for the pid of a user process (verify from the output of
dmesg | grep pid_max )
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+ The range of reserved pids i.e. those pids which can never be assigned to a user process.

(Imust do] (module) {process/proc_values.c}|

2 Write a module to print the pid and name of the "current” process. Reason about the output that you
see.

[[must do] (module) {process/current.c}]

3 Write a module to know the names of processes with pids 0, 1 and 2. Use for_each_process macro
defined in linux/sched/signal.h for traversing all the processes. (NOTE: you might have to put
some extra effort to print the name of process with pid 0!).

(Imust do] (module) {process/three.c}

4 Write a module to print all ancestors, siblings and children of a process whose pid is passed as a
command-line argument to the module. Refer to struct task_struct in linux/sched.h.
(Imust do] (module,list) {process/family.c}

5 Write a module to print the name of a process whose pid is passed as a command-line argument to
the module. Use the functions pid_task and find_get pid defined in linux/pid.h to lookup the
task_struct corresponding to the pid.

(Imust do] (module) {process/pid.c}|

6 Write a ps -like kernel module to print information about all process in the system. e.g., the following
fields: pid, parent pid, name, user time, sys time, priority, uid, gid, current cpu, flags, number of open
files, policy, state and terminal (if used). You should make use of for_each_process macro defined
in linux/sched/signal.h.

(Imust do] (module) {process/ps.c}

7 Write a module to rename a process whose pid is passed as a command-line argument. Make use of
comm field in task_struct and verify the change by looking at /proc/<pid>/comm. You will need to
hold a lock on the struct while doing the renaming!

(Imust do] (module,proc) {process/rename.c}

8 Write a module to implement pstree -like functionality. The module should take in the pid of a
process as a command-line argument and must print all its descendants in a similar fashion. (HINT:
does depth-first search ring any bells?).

(Imust do] (module) {process/pstree.c}

9 Write a program in C to fork processes in a tree-like structure. Your program should first fork two
processes. Then each of those two children must fork two children, and so on. The program should
be generic in the sense that the level of this fork-tree must be adjustable. The last children forked (or
the leaf of this fork-tree) must print a single unique element from a global array, and all elements of
the array should be printed due to execution of all last-level children. (HINT: use recursion to fork
processes!). Run the pstree-like module you wrote in the previous exercise on the process to verify
the fork-tree.

([can do] (fork) {process/tree-fork.c}
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Write a module to kill a process! The pid of the process to kill is passed as a command-line argument
and SIGKILL must be delivered to it by the kernel itself. (HINT: you might want to take a look at
send_sig() in linux/sched/signal.h).

[[can do] (module) {process/sigkill. c}]

Write a module to create a kernel thread. Make the thread sleep for 20 seconds when it runs. Take a
look at kthread_run and.Run ps aux | grep ’thread name’ to view it. Try sending SIGKILL to it
using the method described in the previous question. Explain the unexpected behaviour observed.
([can do] (module) {process/kthread.c}

Write a module to create a kernel thread (using kthread_create ) which does some "busy" waiting
for 20 seconds. Use getnstimeofday64 to check the seconds elapsed. After you create the kthread,
bind it to a specific CPU (taken in from command-line) using kthread_bind and then wake it up
using wake_up_process . Run htop to view the CPU getting used up.

([can dol (module) {process/kthread_cpu.c}

Write a module to swap two registered signal handlers. First write a program in C to register two
signal handlers, one for handling SIGUSR1 and the other for SIGUSR2. Then load the module which
simply swaps the two handlers, given the process’s pid as command-line argument. Send the respec-
tive signals using kill to check your module’s correctness. (HINT: you might want to dig deeper
into sighand member of task_struct).

[[can do] (module) {process/sighand.c,sighand_helper.c}]

Write a module to make a process immune from all signals, including SIGKILL and SIGSTOP. That
is, the process should continue execution even when these signals are delivered to it! (HINT: the
hack lies in setting one of the process flags! the process has to lie about its status!).

When you have done the needful, how would you now kill the process, without rebooting the sys-
tem?

([can do] (module) {process/block kill.c,block_kill_helper.c}|

Write a module which locks the task_struct of a process using alloc_lock when loaded, and
unlocks it when unloaded. The process id must be passed as a command-line argument. After
loading the module, kill the process. Why did it not die, and why has it halted? Unload the module
after a few seconds and see what happens.

Then, check the dmesg log buffer to see the soft lockup message. Using the call trace in the debug
output, find the reason for this. (HINT: this has something to do with another kernel function
sleeping on alloc_lock that your module had held earlier). (HINT: kernel provides a function in
sched.h for the required locking)

([can do] (module) {process/lockit.c,lockit_helper.c}

Use the module written in the exercise above to capture the exit information of a process. That
is, print the exit_code and exit_signal fields of the process descriptor after the process has been
signalled a kill but before it exits. Write a C program which prints something periodically, to test
the module. Deliver SIGINT and SIGKILL to it and see the exit code and signal.

Then, have the program register a signal handler for SIGINT which simply calls exit system call
with an arbitrary number such as 2 or 5. Load the module again and see the difference in the value
of exit code. Why does it show such a value? Inspect the definition of exit system call in the
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kernel source to find out the reason.

[[can do] (module) {process/exit.c,exit,helper.c}]

Write a program in C to spawn a few pthreads. Give a name to each of the pthread and make them all
wait for user input. Then, write a kernel module which takes a pid as the command-line argument
and prints the following information about each of its threads: thread/process id, name, pointer to
mm, pointer to stack and pointer to signal. Reason about the values of mm and stack across all
the threads. (HINT: you may want to use the for_each_thread macro for iterating through all the
threads).

[[can do] (module) {process/threads.c,threads,helper.c}]

Write a program in C to fork a child process and then make it wait for user input. Then write a
module to print the process group ID and session group ID of the child process created. Also print
its group leader’s pid. Reason about the output.

[[can do] (module) {process/pids.c,pids,helper.c}]

Write a module to print the names of all the open files associated with a process whose pid is passed
as a command-line argument. Verify by looking at the output of lsof -p <pid>. Explain why the
first three file names output by your module are numbers.

([can do] (module) {process/files.c,files_helper.c}
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Memory

Before delving into kernel memory allocation, let us go over the structure of the process virtual address
space (VAS). A process’ VAS is split between the user and kernel. The size of the individual VASes is
specified using the User:Kernel :: u:k ratio, which is called the VM split. The virtual address where the
kernel VAS (also called the kernel segment) begins is given by the PAGE_OFFSET configuration. The VM split
can also be modified during the kernel build process, using configuration symbols like CONFIG_VMSPLIT 3G,
CONFIG_VMSPLIT_2G, CONFIG_VMSPLIT_1G (any one of these will be set). For example, the Intel x86-32 pro-
cess hasa 3 :1 VM split.

The VM split on 64-bit systems is not that straightforward because all the 64 bits are not used for addressing
(64 bits correspond to a VAS of 16 EB of RAM!). For the x86_64 system, we only use the 48 least significant
bits for addressing. Do not be under the impression that the upper 16 bits are useless! They are treated as
a sign-extension, but also help you determine which segment a virtual address corresponds to: the MSB
bits are set to 1 for the kernel VAS and 0 for the user VAS.

Note: It should be mentioned that these virtual addresses are not offsets from 0, but bitmasks that are used
by the memory management unit (MMU) which with access to the kernel page tables, perform address
translation.

To conclude, a process’ VAS consists of a user-mode and kernel segment. While every process has a unique
user-mode VAS, the kernel segment is shared. The size of user-mode and kernel segments are decided by
the VM split. The PAGE_OFFSET macro points to the base of the kernel segment.

How does one examine the user VAS? The procfs exposes a process’ user VAS through the /proc/<PID>/maps
pseudo-file. As an example, let us try view the segment mapping of the process self,

$ cat /proc/self/maps

5648d9541000—5648d9543000 r—p 00000000 103:07 18612376 /usr/bin/cat
5648d9543000—-5648d9548000 r—xp 00002000 103:07 18612376 /usr/bin/cat
5648d9548000—-5648d954b000 r—p 00007000 103:07 18612376 /usr/bin/cat
5648d954b000—5648d954c000 r—p 00009000 103:07 18612376 /usr/bin/cat
5648d954c000—-5648d954d000 rw—p 00002000 103:07 18612376 /usr/bin/cat
5648db480000—5648db4al000 rw—p 00000000 00:00 0 [heap]
7fac05c03000—7fac05c25000 rw—p 00000000 00:00 0

7fac05c25000—-7fac06a03000 r—p 00000000 103:07 18617441 /usr/lib/locale/
locale—-archive

7fac06a03000—7fac06a25000 r—p 00000000 103:07 18618340 /usr/1lib/x86_64—
linux—gnu/libc—2.31.s0

7fac06a25000—7fac06b9d000 r—xp 00022000 103:07 18618340 /usr/1lib/x86_64—
linux—gnu/libc—2.31.s0

7fac06b9d000—7fac06bebd@d r—p 00192000 103:07 18618340 /usr/1lib/x86_64—

linux—gnu/1libc—2.31.s0
7fac06beb000—7fac06bef000 r—p 0017000 103:07 18618340 /usr/1ib/x86_64—
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linux—gnu/libc—2.31.s0

7fac06bef000—-7fac06bfl000 rw—p 001eb0OO 103:07 18618340 /usr/1lib/x86_64—
linux—gnu/1libc—2.31.s0

7fac06bfl000—7fac06bf7000 rw—p 00000000 00:00 0

7fac06c17000—7fac06c18000 r—p 00000000 103:07 18618120 /usr/1ib/x86_64—
linux—gnu/1d—2.31.s0
7fac06c18000—7fac06c3bb00 r—xp 00001000 103:07 18618120 /usr/1lib/x86_64—
linux—gnu/1ld—2.31.s0
7fac06c3b000—7fac06c43000 —p 00024000 103:07 18618120 /usr/1ib/x86_64—
linux—gnu/1d—2.31.s0
7fac06c44000—7fac06c45000 r—p 0002c000 103:07 18618120 /usr/1ib/x86_64—
linux—gnu/1d—2.31.s0
7fac06c45000—7fac06c46000 rw—p 0002d600 103:07 18618120 /usr/1lib/x86_64—

linux—gnu/1d—2.31.s0
7fac06c46000—7fac06c47000 rw—p 00000000 00:00 O

7ffe963d1000—7ffe963f2000 rw—p 00000000 00:00 0O [stack]
7ffe963f4000—7ffe963f8000 r—p 00000000 00:00 0 [vvar]
7ffe963f8000—7ffe963fab00 r—xp 00000000 00:00 0 [vdso]
ffffffffffo00000Fffffffffff601000 —xp 00000000 00:00 O [vsyscall]

The keyword self represents the calling process (the process that will be run), cat in this case.

Every line in the output represents a segment or mapping in the VAS. Each line can be interpreted as
follows: the first field is the range of user virtual addresses (UVAs) used by the segment in the form
start_uva-end_uva. The second field is the mode (in rwx format) and mapping of the segment. Mapping
indicates if the segment is private to a user process or shared. This is set up by the flags parameter to the
mmap system call. The next field indicates the offset from the beginning of the file that is being mapped
to the segment, start-off. This is only valid for file mappings and not anonymous ones. Anonymous
mappings like the one for the stack and heap will have this field set to all zeros. After start-off, we have
the major number, minor number field, mj:mn. The major number is used by the kernel to identify the
driver associated with the device. It is possible for a driver to be responsible for multiple devices and hence,
the minor number provides a way for the driver to differentiate between different devices it controls. Just
like start-off, this field is only valid for file mappings and will be 00:00 for anonymous mappings. The
penultimate field refers to the inode number of the image file that is mapped into the process VAS. Again,
this is only valid for file mappings and will be 0 otherwise. In fact, this is one of the ways to determine if
a mapping is file-based or anonymous! The last field is the path of the file being mapped.

The kernel abstracts these segments/mappings using a metadata structure, called the Virtual Memory
Area (VMA). Only user VAS segments have VMAs! Kernel segments do not have a corresponding VMA.
The VMAs of a process are organised as a red-black tree and can be accessed using current->mm->mmap .
We have reproduced some portions of VMA for convenience,

struct vm_area_struct {
unsigned long vm_start;
unsigned long vm_end;
struct vm_area_struct xvm_next, xvm_prev;
struct rb_node vm_rb;
unsigned long rb_subtree_gap;
struct mm_struct xvm_mm;

pgprot_t vm_page_prot;
unsigned long vm_flags;
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struct {

struct rb_node rb;

unsigned long rb_subtree_last;
} shared;

struct list_head anon_vma_chain;
struct anon_vma *anon_vma;

const struct vm_operations_struct xvm_ops;

unsigned long vm_pgoff;
struct file x vm_file;
void * vm_private_data;

struct vm_region *xvm_region;
+

We now take a look at the kernel VAS of a process. Even though the kernel segment memory layout is
highly arhcitecture-specific, there are some common features. The kernel segment can be divided into the
following regions,

+ The lowmem region: The lowmem region is immediately after the user VAS, starting from address
PAGE_OFFSET and is where your computer’s RAM get mapped into the kernel. Each physical page
frame gets mapped into a kernel page on a one-to-one basis. Therefore, the size of the lowmem
region equals the amount of physical RAM available on your system. These virtual addresses are
also sometimes referred to as kernel logical addresses. This region has the property that any log-
ical address is at a fixed offset from the physical address in RAM, the offset being given by the
PAGE_OFFSET macro. The kernel provides the virt_to_phys() and phys_to_virt() APIs to perform
virtual-to-physical and physical-to-virtual address translation. These can only be used in the kernel
lowmem region although it is recommended that you avoid using these methods.

« The vmalloc region: This region of the kernel VAS is completely virtual and device drivers and
the kernel can allocate contiguous (virtual) memory from this region using vmalloc. Note that the
memory allocated is virtually contiguous, but not physically contiguous, unlike the lowmem region.
The macros VMALLOC_START and VMALLOC_END denote the starting and ending virtual address of this
region.

+ The kernel modules space: This is where the static text and data segments of modules are allocated.
Therefore, whenever you perform insmod, the init_module system call allocates memory from this
region of the kernel segment using vmalloc. The macros, MODULES_VADDR and MODULES_END denote
the starting and ending virtual address of this region.

Address Space Layout Randomization (ASLR)

As described above, suppose you run cat /proc/self/maps to view the user VAS of the self process.
What if you run the command again? It turns out that the addresses that you see would have changed!
(remember, these are virtual addresses, not actual addresses) This is because of a kernel feature called
Address Space Layout Randomization. ASLR was introduced for security purposes and when enabled
(it is enabled by default), the starting addresses of the stack, heap, shared libraries, mmap -based allocations
are randomized when the process is initiated. When one talks about ASLR, they are generally referring
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to usermode ASLR. The kernel provides the /proc/sys/kernel/randomize va_space within procfs that
allows you to enable/disable ASLR. You can also disable ASLR at boot time, by passing the norandmaps
parameter to the kernel (via GRUB).

Just like usermode ASLR, we can also randomize the layout of the kernel segment... to a certain extent. in
KASLR (Kernel ASLR), the starting addresses of the kernel and module code will be randomized by a page-
aligned offset from the base of RAM. The CONFIG_RANDOMIZE MEMORY configuration lets you enable/disable
KASLR. For an x86 system, kernel documentation in Documentation/x86/x86_64/mm.txt states that en-
abling the configuration will randomize the direct mapping of physical memory, vmalloc/ioremap and
virtual memory maps. However, their order in the kernel VAS is preserved. Just like usermode ASLR, you
can disable KASLR at runtime using the nokaslr parameter (the kaslr parameter turns on KASLR).

RAM Organisation

Let us now go over how the kernel views RAM. RAM is divided into nodes, nodes are divided into zones
which in turn consist of page frames. Nodes abstract the concept of a physical bank of RAM, which
are associated with one or more cores (nodes are abstracted in the kernel as the pglist_data structure
which is referenced using its type definition pg_data_t in include/linux/mmzone.h). Each processor is
connected to a RAM controller. The RAM controllers are connected to physical banks of RAM and are also
interconnected which lets a core access other banks. It is evident that we can get a boost in performance by
allocating memory on the RAM which is nearest to the core (which is running the thread). This is called a
NUMA model, which stands for non-uniform memory access. To be able to talk about NUMA, the system
should have multiple cores and multiple physical banks of RAM (if there was only one bank, there is no
concept of the kernel preferentially allocating memory!). However, Linux treats all systems as NUMA,
even those that only have a single bank of RAM, which are referred to as fake-NUMA systems. You can
observe this using the numactl utility by running numactl -hardware . Running this on my PC gives,

$ numactl —hardware
available: 1 nodes (0)
node O cpus: 01234567
node 0 size: 15752 MB
node 0 free: 11931 MB
node distances:
node 0
0: 10

which confirms the presence of a single node, with all 8 cores (including hyperthreading) being associated
to that bank of RAM.

Zones represent different ranges within memory. These are abstracted in the kernel using zone_struct
(which is referenced as zone ). Zones in turn are divided into page frames. The number and name of zones
is determined by the kernel at boot time. We can list the zones by viewing the buddyinfo file in procfs.
For example, examining the contents on an x86 computer with 16GB RAM gives,

$ cat /proc/buddyinfo

Node 0, zone DMA 0 0 0 0 0 0 0 0 1
2 2
Node 0, zone DMA32 9 6 9 6 5 8 6 5 4
6 232
Node @, zone Normal 10753 14638 7888 3929 1602 549 159 40 19

6 2494
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This also confirms the presence of a single node with 3 zones, DMA, DMA32, and Normal.

Memory Allocators

To handle the allocation/deallocation of memory, the kernel uses a Page Allocator (PA), also known as a
Buddy System Allocator (BSA). However, we will later see that this is not the only way to manage memory
and the kernel also implements a Slab Allocator to alleviate some of the issues of the BSA. The slab allocator
used in the kernel is called SLUB (it uses an unqueued slab allocator-based mechanism) and is built on top
of the PA interface. Therefore, the entire Linux kernel (except the memory management unit itself) uses
the page allocator for memory allocation/deallocation. Note that the page allocator gets it memory from
the lowmem region of the kernel segment.

Page Allocator

Before learning about the PA interface, let us go over the Buddy System Algorithm (hence the name,
Buddy System Allocator), which is used to implement the page allocator. To implement the Buddy System
Algorithm, we must first come up with an efficient way to store the list of free page frames in RAM. This
is accomplished using a data structure called the freelist. The freelist is an array of circular, doubly linked
lists. Each list in the array has a corresponding order, such that raising two the order gives you the number
of pages in a single entry of the corresponding linked list. The order varies from 0 to MAX_ORDER - 1, where
the MAX_ORDER macro is architecture specific. Each entry in the circular doubly linked list points to a set
of free contiguous page frames in RAM, where the size of the chunk is as given using the order of the list.
The linked list entries are not actual physical memory frames, but rather their metadata structures in the
form of struct page. Recall we had printed the contents of /proc/buddyinfo and had seen a bunch of
numbers on each line. These numbers represent the size of each linked list in the freelist data structure. By
counting the number of numbers on a line, you can determine MAX_ORDER! For the output above, we can
verify that MAX_ORDER equals 11, which is typical for x86 and ARM systems. Finally, the kernel maintains
separate freelists for each node:zone pair.

Next, let us understand the working of the Buddy System Algorithm with a simple example. We assume
that the size of each page is 4kB. Suppose a kernel subsystem or device driver requests the page allocator
for 64kB of memory. To fulfill this request, the page allocator will do the following:

1. For 64kB of memory, the allocator needs to find a set of 16 contiguous page frames. This will be
present in the linked list with order 4. So, the allocator will scan through the corresponding list in
the freelist of the current node:zone (remember that there are separate freelists for each node:zone),
searching for some free entry.

2. If it finds such an entry, the allocator allocates that chunk of memory to the requesting party and
removes it from the freelist.

3. In case there is no entry in the list with order 4, the allocator searches through the order 5 list. If
the list is not empty, the allocator removes one of the chunks from the list for use. Since this chunk
has a size greater than what was requested, the chunk is split in half, a part of which goes to the
requesting party while the rest is added to the order 4 list.



Memory 54

4. In case there is no entry in the list with order 5, the allocator continues the process with the order
6 list and so on. In case all lists are empty, the request fails.

We are able to slice memory in this way only because the freelist guarantees that each chunk of memory
is physically contiguous! Why is this called the Buddy System Algorithm? Whenever you cut a chunk of
memory and allocate one of the resulting chunks, the other free chunk is called a buddy block. Since we
typically deal with chunk sizes that are powers of two, this is also called the binary buddy system. When
a block of memory is to be freed, it looks for the possibility of merging with its neighbouring blocks.
If they are free, the allocator merges the two blocks, continuing this process until no more merging is
possible. This prevents external fragmentation. However, the buddy system algorithm suffers from internal
fragmentation within a chunk of memory. For example, if you request for 49kB of memory, the allocator
will return a chunk of size 64kB, which means that 15kB of memory will be unused! There are methods to
mitigate these effects via the alloc_pages_exact() and free_pages_exact() APIs. The implementation of
this algorithm can be found in mm/page_alloc.c:__alloc_pages_nodemask() .

We had mentioned that memory zones (represented by zone_t ) are divided into pages. Looking into the
zone data structure, we observe that the kernel maintains a set of free areas in memory using an ar-
ray of struct free area. This is consistent with our statement that there is a separate freelist for each
node:zone. free area implements the circular doubly linked list and maintains the number of free page
frames, One more thing, you would have noticed that the free area structure maintains multiple freel-
ists, corresponding to different page migration types. This was introduced in the 2.6.24 kernel to handle
complications arising to prevent fragmentation. You can try printing the contents of /proc/pagetypeinfo
to see the different page migration types along with the state of freelists.

Page Allocator APIs

All the routines described below can be found in include/linux/gfp.h.

+ The __get_free_page() method allocates one free page and is just a wrapper around the __get_free_pages()

API. The memory locations are initialised randomly. It returns a pointer to the allocated memory’s
kernel virtual address.

« The __get_free_pages() method allocates 2°"%" physically contiguous page frames. The memory
locations are initialised to random values. It returns a pointer to the allocated memory’s kernel
virtual address.

« The get_zeroed_page() method is just like the methods above, exact it also initialises all memory
locations to ASCII 0. It returns a pointer to the allocated memory’s kernel virtual address.

« The alloc_page() method allocates exactly one page frame. The memory allocated will have ran-
dom initial values. Unlike the previous methods, this returns a pointer to the allocated memory’s
page metadata structure, which can converted to a kernel virtual address using the page address ()
APL

« The alloc_pages() method allocates 27" physically contiguous page frames. The memory allo-
cated will have random initial values. It returns a pointer to the allocated memory’s page meta-
data structure (just like alloc_page() ), which can be converted to a kernel virtual address using
page_address() .

All the routines accept 2 parameters: GFP flags or bitmask, and the order of the freelist from which page
frames are to be allocated. Note that when you use the alloc_page() or alloc_pages() API, the function
returns a pointer to the page data structure corresponding to an actual page frame in RAM (the kernel
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keeps track of every single page frame in RAM!). To access the actual memory chunk just allocated, you
can use the page_address() API on the page structure returned.

struct page {
unsigned long flags;

union {
struct address_space *mapping;
void xs_mem;
atomic_t compound_mapcount;

};

union {
pgoff_t index;
void xfreelist;

};

union {

_slub_counter_t counters;

unsigned int active;

struct {
unsigned inuse:16;
unsigned objects:15;
unsigned frozen:1;

}

int units;

struct {
atomic_t _mapcount;
atomic_t _refcount;
b
+

union {
struct list_head lru;
struct dev_pagemap *pgmap;
struct {
struct page *next;
int pages;
int pobjects;

Y
struct rcu_head rcu_head;

struct {
unsigned long compound_head;
unsigned char compound_dtor;
unsigned char compound_order;

i

struct {
unsigned long __pad;
pgtable_t pmd_huge_pte;
i
}i

union {
unsigned long private;
spinlock_t *ptl;
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struct kmem_cache xslab_cache;

};
void xvirtual;
T

While allocating memory, you will typically either use the GFP_KERNEL or GFP_ATOMIC flag as the GFP
bitmask. The idea is that you are supposed to use GFP_KERNEL in process context, where it is safe to sleep,
while you should use GFP_ATOMIC in interrupt contexts or when sleeping is not safe. By sleeping, we mean
that a process/thread is in a sleep state where it is waiting for the occurrence of some event that will cause
it to become active. We had seen that you can determine the kind of context using in_task(), in_atomic()
macros and you must be mindful of this while allocating memory. Besides GFP_KERNEL and GFP_ATOMIC,
there are other flags which can be found in include/linux/gfp.h.

Complementary to allocating pages, is freeing pages and the kernel provides several APIs for the same,

« The free_page() method frees exactly one page and is a wrapper around the free_pages() APL

« The free pages() method allows you to free multiple pages and is a wrapper around the __free_pages ()
APL

o The __free_pages() method is the one that does all the work, and unlike the methods above, it
accepts a pointer to the page metadata structure of the to-be-freed memory.

The preceding APIs are really just wrappers around __free_pages() , which is defined in mm/page_alloc.c.
While free pages() accepts the starting address of the memory chunk to be freed, __free_pages() (which
actually does the work) accepts a pointer to the page structure of chunk which is to be freed.

In general, freeing memory is a tricky affair which is prone to several errors including memory leakage,
double-free and use-after-free (UAF). A few things you can keep in mind to avoid such problems are,

The major drawback of using the page allocator APIs we described till now is high memory wastage due
to internal fragmentation. Thankfully, there is an alternative method which leads to far less waste when
allocating large chunks of memory. This involves using the alloc_pages_exact() and free_pages_exact()
APIs. alloc_pages_exact() accepts as an argument, the size of memory requested and the returned chunk
is guaranteed to be physically contiguous. How does this reduce internal fragmentation? The function
begins by allocating a memory chunk according to the buddy system algorithm, however, it frees a part
of the entire chunk so that the effective memory allocated equals the size of memory requested. For
example, if you request for 28 kB of memory, alloc_pages_exact() will first allocate a 32 kB chunk and
then free memory from 29 kB to 32 kB. To free memory allocated, you need to use the complementary
free_pages_exact() API, which accepts a pointer to the beginning of the memory chunk to be freed along
with the GFP flag.

Slab Allocator

The slab allocator or slab cache is built upon the page allocator and serves two primary purposes: object
caching and mitigating internal fragmentation by the page allocator.

Caching is a very popular technique to achieve faster performance. In the kernel, there are several data
structures that are allocated and deallocated frequently including the networks stack’s socket buffer sk_buff
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and a process’ task_struct . Therefore, these data structures are pre-allocated into several slab caches at
boot time. This only happens once (at boot time) and ensures that unlike traditional heap-based allocators,
memory remains relatively unfragmented. You can examine the current state of slab caches by printing
the contents of /proc/slabinfo. (Should I add an output example?)

You can also view the amount of memory being used by the slab cache by searching for Slab in /proc/meminfo,

$ grep "Slab" /proc/meminfo
Slab: 266908 kB

The slab cache might use significant portions of memory to improve performance, however this usage is
intelligently reduced in cases of high memory pressure. The page cache is one such example that utilises
a large amount of RAM.

One of the main reasons for internal fragmentation by the page allocator was the granularity at which
requests are handled - memory is always allocated at the page level! The slab cache attempts to alleviate
this problem by servicing requests using fragments of pages.

Slab Allocator APIs

At its core, all slab allocations/deallocations use two functions, while the rest are defined for the sake of
convenience. These are the kmalloc and kzalloc functions, which are defined in include/linux/slab.h.
Both functions accept two arguments: the size of memory requested and GFP flags. The API will return a
pointer to the start of the memory chunk (also called a slab) just allocated (this is a kernel logical address).
kmalloc and kzalloc are guaranteed to return a physically contiguous memory chunk. Another benefit
that they offer is that the return address is guaranteed to be cacheline-aligned for performance. Transfers
between the CPU and memory occur at the granularity of cache lines. The size of cache lines varies with
architecture and can be inspected using the getconf utility. Typical cache line sizes are 64 bytes.

What is the difference between kmalloc and kzalloc? On calling kmalloc, the contents of the slab re-
turned are random, which is not recommended. On the other hand, kzalloc ensures all contents are
initialised to zero, which makes it the method of choice (even at the cost of performance taking a slight
hit).

The counterpart to kmalloc and kzalloc for freeing memoryis kfree. kfree accepts the pointer returned
by kmalloc/kzalloc that you are looking to free. Note that kfree simply returns the slab back to the
corresponding cache. Whatever was written to the slab remains! For security reasons, it is recommended
that you overwrite the contents of the slab using the kzfree APL

We know that kmalloc/kzalloc get their memory from the slab caches. After printing the contents of
/proc/slabinfo, we know that there are several slab caches for frequently used data structures. So exactly
which slab caches are the APIs getting their memory from? Running the vmstat utility lends an answer
to the question,

$ sudo vmstat —m | grep "kmalloc"

kmalloc—8k 299 304 8192 4

kmalloc—4k 2401 2448 4096 8
kmalloc—2k 1869 1920 2048 16
kmalloc—1k 2864 3040 1024 32
kmalloc—512 13669 13792 512 32

kmalloc—256 6914 7520 256 32
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kmalloc—192
kmalloc—128
kmalloc—96
kmalloc—64
kmalloc—32
kmalloc—16
kmalloc—8

7670
3136
4284
24647
31986
25344
11776

7749
3136
4284
26816
34048
25344
11776

192
128
96
64
32
16
8

21
32
42
64
128
256
512

where the output has been truncated for convenience (you could have also searched for these slab caches in
/proc/slabinfo ). As you can see, there are several slab caches which are responsible for servicing requests
between 8 bytes to 8 kB. The range of sizes available are also architecture specific (the output above is for

an x86 system with 16 GB RAM). There are also other cache types like dma-kmalloc-N, kmalloc-rcl-N and

kmalloc-cg-N.

Tip: It is considered a good practice to keep all context information associated with a device driver in a
metadata structure.

Should I add a section on size of maximum request that can be served by the slab and page allocators?

Should I add a section on resource-managed memory allocation APIs for device drivers?

There are at least three different implementations of a slab allocator in the kernel and the one that is used
depends on the value of configuration symbols: CONFIG_SLAB, CONFIG_SLUB, CONFIG_SLOB.

Structs and Flags
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struct mm_struct {

struct vm_area_struct *xmmap;
struct rb_root mm_rb;
u32 vmacache_seqnum;

unsigned long mmap_base;
unsigned long mmap_legacy_base;

unsigned long task_size;
unsigned long highest_vm_end;

pgd_t * pgd;

atomic_t mm_users, mm_count;
atomic_long_t pgtables_bytes;
int map_count;

spinlock_t page_table_lock;
struct rw_semaphore mmap_sem;

struct list_head mmlist;

unsigned long hiwater_rss, hiwater_vm;

unsigned long total_vm, locked_vm, pinned_vm;
unsigned long data_vm, exec_vm, stack_vm;

unsigned long def_flags;

unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;

unsigned long arg_start, arg_end, env_start, env_end;
struct mm_rss_stat rss_stat;

mm_context_t context;

unsigned long flags;

struct core_state *core_state;

struct file __rcu *exe_file;

pgtable_t pmd_huge_pte;

atomic_t tlb_flush_pending;

atomic_long_t hugetlb_usage;
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Functions and Macros
Assignments

1 Write a module to print the following information about the kernel internals:
« Number of page table levels
« Page size
+ Huge page size

(Imust do] (module) {memory/mem_values.c}

2 Write a module to count the number of processes and kernel threads in the system. (HINT: use the
fact that kernel threads will have no personal memory image allocated and refer to the mm field of
task_struct).

(Imust do] (module) {memory/numproc.c}

3 Write a module to calculate the total virtual set size (VSS) of a process whose pid is passed as a
command-line argument. Also, count the total number of virtual memory areas (VMAS) the process
has. Verify your output by visiting the /proc entries for the pid and do the following. Get the
number of VMAs from the output of maps file. Get the VSS from either the output of status file,
or from the output of top/htop. You will see that your VMA count will be one less than that of
/proc/<pid>/maps file due to vsyscall.

(Imust do] (module) {memory/vma.c}

4 Write a basic program in C to fork() a child process. Have the child process run an infinite empty
loop and make the parent wait() on the child. Then write a kernel module to print the information
about the VMAs of the parent as well as the child. The module should take the pids of parent and
child processes as command-line arguments. You must get the "same" output for parent and child.
Why is that so?

Then modify the C program you wrote above to exec() the sleep command for very long time
(say 1000 seconds) instead of an infinite loop. Load the module again and reason about the output
you see now.

(Imust do] (module) {memory/pc.c}

5 Write a module to find out the resident set size (RSS) of a process whose pid is passed as a command-
line argument to the module. The RSS calculated by the module should match with that of the outpur
of /proc/<pid>/smaps . (HINT: you might need to skip a VMA with pf flag!).

[[must do] (module) {memory/rss.c,mem_helper. c}}

6 Write a module to change the contents of a page in memory. First, write a C program to create two
memory mappings using mmap of 100 and 200 bytes, respectively. memset the two memory regions to
all ‘a’s and all ‘b’s, respectively. Then, wait for some user input (simple getchar will work) and print
the contents of the two memory regions. While the C program is waiting for user input, write the
module which goes through all the pages of that process, finds those two pages which have all ‘a’s
and all ‘b’s, respectively, and makes some changes. Load the module passing the pid as a command-
line argument. Finally, provide some input to the C program and it should print the modified page
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contents.

(Imust do] (module) {memory/mmap.c}

7 Write a C program to allocate/free some memory in an infinite loop. Then, write a module to write-
protect all the VMAs of a process. Run the C program and pass its pid to the module. The process
should reecive a segmentation fault when it tries to access one of the VMAs.

(Imust do] (module) {memory/lock.c,lock_ helper.c}

8 Write a module to implement a buddy allocation system. Your module should first acquire some
pages, say 4, which will act as the main memory for your system. Then the module should read
an array of integers from the command-line which will be the memory requests to this system. For
each request, you must use best-fit allocation strategy. The smallest allowable block size should
be 64 Bytes. Also calculate the amount of memory wasted here, i.e. internal fragmentation. You
will need to store some metadata about your buddy system in a tree-like structure where each node
represents a block. The nodes can have information like block size, data length, link to left block, link
to right block etc. If the memory requests were 8000,3000,2000,500,500, then the output should be
something like this:

+0.000017] Split (16384)
+0.000001] 8000 (8192)
+0.000001] Split (8192)
+0.000000] 3000 (4096)
+0.000001] Split (4096)
+0.000000] 2000 (2048)
+0.000000] Split (2048)
+0.000001] Split & full (1024)
+0.000001] 0 (1024)

+0.000000] 500 (512)
+0.000001] 500 (512)
+0.000000] Internal fragmentation: 1360 bytes out of 16384 bytes.

— e e e e e e

If the memory requests were 500,1000,2000,4000,8000,500,500, the last memory request should
trigger an error.
[[try to do] (module) {memory/buddy.c}]

Suggested Reading
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menuconfig / Kconfig

FLAGS

processes

/%
* thread information flags
* these are process state flags that various assembly files
* may need to access
*/

#define TIF_SYSCALL_TRACE 0 /x syscall trace active x/

#define TIF_NOTIFY_RESUME 1 /*x callback before returning to user =/
#define TIF_SIGPENDING 2 /x signal pending */

#define TIF_NEED_RESCHED 3 /x rescheduling necessary */

#define TIF_SINGLESTEP 4 /* reenable singlestep on user returnx/
#define TIF_SSBD 5 /x Reduced data speculation x*/

#define TIF_SYSCALL_EMU 6 /x syscall emulation active x*/

#define TIF_SYSCALL _AUDIT 7 /* syscall auditing active */

#define TIF_SECCOMP 8 /x secure computing x*/

#define TIF_USER_RETURN_NOTIFY 11 /x notify kernel of userspace return x/

#define TIF_UPROBE 12 /* breakpointed or singlestepping */
#define TIF_PATCH_PENDING 13 /* pending live patching update x*/
#define TIF_NOCPUID 15 /* CPUID is not accessible in userland */
#define TIF_NOTSC 16 /* TSC is not accessible in userland */
#define TIF_IA32 17 /* IA32 compatibility process */

#define TIF_NOHZ 19 /* in adaptive nohz mode x/

#define TIF_MEMDIE 20 /x is terminating due to OOM killer x/
#define TIF_POLLING_NRFLAG 21 /* idle is polling for TIF_NEED_RESCHED */
#define TIF_IO_BITMAP 22 /x uses I/0 bitmap */

#define TIF_FORCED_TF 24 /x true if TF in eflags artificially x/
#define TIF_BLOCKSTEP 25 /* set when we want DEBUGCTLMSR_BTF x*/

#define TIF_LAZY_MMU_UPDATES 27 /*x task is updating the mmu lazily x*/
#define TIF_SYSCALL_TRACEPOINT 28 /x syscall tracepoint instrumentation x*/

#define TIF_ADDR32 29 /* 32—bit address space on 64 bits */
#define TIF_X32 30 /x 32-bit native x86-64 binary x/
#define TIF_FSCHECK 31 /* Check FS is USER_DS on return */
#define _PAGE_BIT_PRESENT 0 /x is present %/

#define _PAGE_BIT_RW 1 /x writeable x/

#define _PAGE_BIT_USER 2 /* userspace addressable x/

#define _PAGE_BIT_PWT 3 /x page write through x/

#define _PAGE_BIT_PCD 4  /x page cache disabled x/

#define _PAGE_BIT_ACCESSED 5 /* was accessed (raised by CPU) x/
#define _PAGE_BIT_DIRTY 6 /x was written to (raised by CPU) x*/
#define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page */

#define _PAGE_BIT_PAT 7 /x on 4KB pages */

#define _PAGE_BIT_GLOBAL 8 /x Global TLB entry PPro+ x/

#define _PAGE_BIT_SOFTW1 9 /x available for programmer x/

#define _PAGE_BIT_SOFTW2 10 /x " */

#define _PAGE_BIT_SOFTW3 11 /% " %/

#define _PAGE_BIT_PAT_LARGE 12 /* On 2MB or 1GB pages x*/
#define _PAGE_BIT_SOFTW4 58 /* available for programmer x/
#define _PAGE_BIT_PKEY_BITO 59 /* Protection Keys, bit 1/4 x/
#define _PAGE_BIT_PKEY_BIT1 60 /* Protection Keys, bit 2/4 x/
#define _PAGE_BIT_PKEY_BIT2 61 /* Protection Keys, bit 3/4 %/
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#define _PAGE_BIT_PKEY_BIT3 62 /* Protection Keys, bit 4/4 x/

#define _PAGE_BIT_NX

63 /x No execute: only valid after cpuid check */
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