
1

Distributed Training

Recap: The Train Loop

For e in epochs:
 For b in batches:
 loss = model.forward(b)
 loss.backward()

 optimizer.step()

3

GPU Resources

+ Compute
+ The number of SMs in the GPU, eg. 128 SMs on an A100
+ Capacity of the GPU, totally represented as TFLOPs

+ Memory
+ HBM capacity: eg. 80 GB on an A100
+ To a lesser extent: Caches and per SM local memory capacity

4

Compute Bound vs Memory Bound
Each Op can be classified into Compute vs Memory
intensive

+ Eg, MatMul is usually Compute intensive
+ LayerNorm, RELU are Memory Bound

5

Memory requirements for training

Simple envelope calculation: assuming 8B model in fp32 datatype with AdamW
optimizer

Model weights: 8B * 4 bytes per param = ~30GB

Gradients: 4 bytes per param = ~30GB

Optimizer state: 12 bytes per param = ~90GB

+ Activations = f(batch size, seq len)

6

Flow of memory

Forward:
Activations increase

Backward:
Activations are freed,
gradients are created

Optimizer Step:
Gradients are freed.

Model and Optimizer are flat.

7

Memory requirements for training various model sizes

Model Weights Gradients Optimizer Sum
(w/o activations)

Granite 2b 7.5 GB 7.5 GB 22 GB 37 GB

Llama 8b 30 GB 30 GB 90 GB 150 GB

Qwen 32B 120 GB 120 GB 360 GB 600 GB

https://huggingface.co/docs/accelerate/main/en/usage_guides/model_size_estimator 8

Memory Availability of commonly used GPUs

Vendor Model Memory

Nvidia A100 80 GB

Nvidia V100 32GB

Nvidia A6000 23 GB

Nvidia L40s 48 GB

AMD Radeon RX 7900 XTX 24GB

9

https://www.google.com/search?sca_esv=3481189b07e67a2a&rlz=1C5GCEM_enIN1057IN1057&sxsrf=AE3TifO4XJBAuyqtk2UQWZPb0fX_JNcYfA%3A1756457449538&q=Radeon+RX+7900+XTX&sa=X&ved=2ahUKEwjf397y0a-PAxW_zDgGHeD1Oh4QxccNegQIMBAB&mstk=AUtExfBYmOsHmR8q_Ej70lljZ1Gbxms04_ig0BF8_oUcum8Xjq4uOFWR_MfjOMWOuI4OsC0UWruy0sFIItNjKRo-IHHCUmWeUL7bb8hjf5D3vidqAsANwF935VcGYC1VW6TI6HGotKgNq1jcKGPUU-PShQVTQhlKnNDc-iljZ5fbtbbCLJ1ILGLruMKcJiSXkQJAnv_j9bAjhijMHNV4azaJVT39rXmja1LP-5AzlI-ZQAZ5i7T3jtEf0DuRS7-LuS4g0XZcLYjBN2-5Dxli4qc_uhrj&csui=3

Extras: Impact of Optimizer choice

Instead of using Adam, earlier models used to use SGD optimizer,

Which has: 8 bytes per param

But Adam/AdamW is better from an algorithmic point of view

10

Extras: Impact of MoE

MoE architecture activates a
fewer set of params during
inferences, but the full model
has to be loaded anyway

In case of training, it makes no
difference

11

Other precision Types: half precision

Image Courtesy of: https://blog.eleuther.ai/transformer-math/

Double precision typically
is 64 bits, ala float and

double.

This is the inverse.

12

TF32

13

https://www.nvidia.com/en-us/data-center/a100/

Hardware support for other precisions

14

H100 specs

15

1 SM in the A100

16

Automatic Mixed Precision

Model weights: half - 16 bits

Gradients: half - 16 bits

Optimizer: full - 32 bits (4 bytes) * 12

Actually faster to run and takes lesser memory

17

What more from here?

Fit model within this GPU

+ Quantization
+ Sparsity

Throw more resources at this problem

Distributed Training!

https://arxiv.org/pdf/2407.20018
https://developer.nvidia.com/blog/sparsity-in-int8-training-workflow-and-best-practices-for-tensorrt-acceleration/ 18

Distributed Training Algorithms vs Systems

+ Data Parallelism (DDP)
+ Tensor Parallelism (TP)
+ Pipeline Parallelism (PP)

+ Full Sharded Data Parallelism (FSDP)
+ With variants - like Full/Hybrid Shard

+ 3D parallelism
+ Context/Sequence Parallelism
+ Expert Parallelism (EP)

+ Pytorch in-built DDP
+ Hugging Face Accelerate
+ Nvidia Megatron
+ Pytorch in-built FSDP
+ Microsoft DeepSpeed ZeRO

family

19

Basic Tech

20

Does your model fit into on a single GPU?

1. Yes - we go with DDP.
2. No - consider other options.

Here: model => (model + optimizer + gradients), the remaining goes to activations

21

Limited Scope of Vertical Scaling

48GB

Model

Grad.

Opt. 80 GB

Act.

Act.BS=8

BS=64

22

DDP: Data Parallelism

Can we have multiple gpus loading the same model and run training on different
subsets of the data?

M

G

O

Act

M

G

O

Act

M

G

O

Act

M

G

O

Act

23

F

B

O

WI

W

A

G

24

How to do simple Horizontal Scaling?

1. Divide your input data
2. Load identical training setup on each GPU - same model, optimizer setup
3. Run forward pass on all gpus:

a. We will have intermediate activations created on each gpu
4. Run backward pass on all gpus:

a. Now each process has its own gradients
5. Run optimizer on all gpus

This is a problem!

25

F

B

O

WI1

W

F

B

O

WI2

W

F

B

O

WI3

W

F

B

O

WI4

W

Synchronize

A A A A

G G G G

26

DDP Details

We have a single all-reduce of gradients
after the backward pass

All processes:

1. Have their own independent
forward & backward rounds.

2. But sync gradients: so identical
optimizer rounds

3. End of step: all gpus have the
same new updated model M’.

4. Next step start again.

F

B

O

WI1

W

F

B

O

WI2

W

F

B

O

WI3

W

F

B

O

WI4

W

A A A A

G G G G

27

What does “Synchronize” mean?

It means, we just add up the gradients.

Why does this work?

Gradients are always accumulate-able

Same mechanism is used during Gradient Accumulation.

28

How to synchronize gradients?

Each process has its own gradients: Num params * 2/4.

For a 8B model, this can mean 15-25 GB of data.

Gradients are automatically created by Pytorch during the backward pass - all of
these “tensors” are in GPU memory.

The all-reduce NCCL primitive

29

30

CCL: honorable mentions

NCCL is not the only CCL.

Communication between CPU cores (if using a CPU only training): Gloo

Other specialized hardware: Google TPU, or Intel XPU etc.

Some research work on optimizing CCLs: eg, UCCL from Berkeley

31

Collective setup - the higher level api

1. Each process can use the CCL functions as needed, using ranks to refer to
others.

2. API exposed by NCCL to Pytorch to higher layers.
a. At pytorch called `torch.distributed`. Abstracts the underlying CCL lib used.

Rank: 0 Rank: 7Rank: 1

World size: 8

Group

32

Point to Point Communication:
Send and recv

https://docs.pytorch.org/tutorials/intermediate/dist_tuto.html

P2P communication

33

Scatter

https://docs.pytorch.org/tutorials/intermediate/dist_tuto.html

Collective Communication

34

Gather

https://docs.pytorch.org/tutorials/intermediate/dist_tuto.html

Collective Communication

35

Reduce

https://docs.pytorch.org/tutorials/intermediate/dist_tuto.html

Collective Communication

36

All-Reduce

https://docs.pytorch.org/tutorials/intermediate/dist_tuto.html

Collective Communication

37

All-gather

https://docs.pytorch.org/tutorials/intermediate/dist_tuto.html

Collective Communication

38

How does NCCL work?

1. Network paths:
a. For GPUs on the same node: we have the NVLink.
b. For GPUs across the node: we have NVSwitch and other higher level

switches.
2. Topology management: ring vs tree etc
3. Chunking of tensors -> chunks -> packets for the lower level transport

https://images.nvidia.com/events/sc
15/pdfs/NCCL-Woolley.pdf 40

Hands-on
(CCL primitives: in the toy framework)

41

How to do a simple hands-on?

We will use a simple Python emulator
where:

1. Each “gpu” process is run as a
thread.

2. CCL is completely simplified into a
single global object with thread
IPC

42

import core
import ccl

class AllReduceExample(core.Runner):
 def run(self):
 print("Starting Runner: ", self.rank)
 res = self.ccl.all_reduce(self.rank, ccl.OP_REDUCE.SUM)
 print(f"Result on {self.rank} is: {res}")

core.run_world(4, AllReduceExample)

All-reduce test
Core libraries

All programs must be
implemented as

sub-classes of the
core.Runner

Run 4 threads with our functionality
43

Test the setup

Add random sleep to each process.

Write a program where all even numbered ranks send a random number to the
next process, which will print it out.

44

The Simplified Model (single.py)

import core

m = core.Model(4, 2, 6)
create some samples for input
i, o = core.gen_inp(10, 2)

print("Output from simple single gpu run: ")
out = m.forward(i)
loss = out - o
m.backward(loss)

print("Output: ", out)
print("Loss: ", loss)
m.print_grads()

A
B

2
6

6 2
L1

x4

10 samples of size 2 each

No optimizer step

Dummy outputs to
manage loss

gradients

45

Look at the Model code in core.py

46

The backward pass for simple matmul

https://cs231n.stanford.edu/handouts/linear-backprop.pdf

47

48

49

50

x
w y

Activations

Output
Gradients

Input
Gradients

Weight
Gradients

L
wT xT

L

51

Implementing
DDP

52

Problems with DDP

Can only scale by batch size.

Having too large of a batch
size is bad for the DL learning
process

Doesn’t work if your model
is too big to fit on a single
gpu

HOLD

https://medium.com/thedeephub/optimizing-neural-network-training-understanding-batch-size-in-higher-dimensions-7687aa35cb6b53

Decoder #1

Decoder #2

Decoder #3

Decoder #12

Decoder #1

Decoder #2

Decoder #3

Decoder #12

Split model vertically Split model horizontally

…

54

Decoder #1

Decoder #2

Decoder #3

Decoder #12

Pipeline Parallelism

A stage can have multiple
layers/blocks

Each GPU has a single stage:
So memory is divided by

world_size

Split model horizontally

…

55

Pipeline Parallelism

https://gixtools.net/2023/11/mastering-llm-techniques-inference-optimization/

PP over 4 devices
Why is the block for B around double

the size of F?

56

What is needed?

1. Split up the model - loading only needed layers on each process
2. Within stages:

a. Run forward/backward normally
3. At stage boundaries:

a. Use p2p send/recv CCL calls
4. At end of forward: flow in reverse direction for backward pass
5. Each optimizer is only focused on it’s section of the model

57

F

WI

F

F

B

O

W

B

B

O

W

O

W

W W

A

A

A

G

G

G

58

59

Problem with PP

Bubbles

Lot of prior art on bubble management:

1. Mini/micro batches
2. Reuse of existing bubbles for secondary tasks
3. Alternative schedules
4. Fusion (of pipelines)

60

Can we split up the model in a way that does
not lead to bubbles?

61

Decoder #1

Decoder #2

Decoder #3

Decoder #12

What is the challenge with this?

There is compute balance
between the processes, but
how does this process now
look like?

Split model vertically 62

Let’s focus on a single MLP block in 1 Decoder
layer:

Linear layers A and B, say input is X

X = XA
X = GELU(X)
X = XB
X = DROPOUT(X)

63

import numpy as np

np.random.seed(10)
x = np.random.rand(4, 6)
a = np.random.rand(6, 12)
b = np.random.rand(12, 6)

x = x @ a a

a[0:2] -> along rows
a[:, 0:2] -> along
columns

check and verify the
shapes

x4

6

a6

12

b12

6

64

x
4

6

a6

12

Let’s try one option

b12

6

65

x @ a

x1 = x[:, 0:3]
x2 = x[:, 3:6]

a1 = a[0:3]
a2 = a[3:6]

(x1@a1) + (x2@a2)

Solution

66

How to continue the chain of computation?

X = XA
X = GELU(X)
X = XB
X = DROPOUT(X)

Let’s simplify for the moment and work with:
Y = XA
Z = YB

Y1 = X1A1, Y2 = X2A2

How will you partition B?

How will you arrange the
computation so that the 2
processes can proceed
independently?

67

x @ a

x1 = x[:, 0:3]
x2 = x[:, 3:6]

a1 = a[0:3]
a2 = a[3:6]

y1 = x1@a1
y2 = x2@a2

Solution

Keep b as it-is

z1 = y1 @ b
z2 = y2 @ b

z == z1 + z2

68

Let’s focus on a single MLP block in 1 Decoder
layer:

Linear laters A and B, say input is X

X = XA
X = GELU(X)
X = XB
X = DROPOUT(X)

69

The problem

So, we can safely synchronize once at the end of the MLP block.

But, this doesn’t work because of GELU:

G(x) + G(y) != G(x + y)

This means we need to synchronize before the GELU is applied…

70

x
4

6

a6

12

Let’s try another option

b12

6

x4

6

a6

12

b12

6

Split the a matrix vertically!

71

y = x @ a

keep x as-is
x

a1 = a[:,0:6]
a2 = a[:,6:12]

y1 = x@a1
y2 = x@a2

Solution

b1 = b[0:6]
b2 = b[6:12]

z1 = y1@b1
z2 = y2@b2

z == z1 + z2

72

Why does this work?

x4

6

a6

12

y1 y24

6 6

Each element of y is fully-ready
At this point

73

Final logic for the MLP block - with 1 all-reduce for fwd

74

Some of the less
intensive layers are
simply duplicated

Even that has been
improved with other
advanced techniques

75

76

Complexities

Refer to:

https://danielvegamyhre.github.io/ml/performance/2025/03/30/illustrated-megatron
.html for a fuller explanation of all combinations of TP

77

https://danielvegamyhre.github.io/ml/performance/2025/03/30/illustrated-megatron.html
https://danielvegamyhre.github.io/ml/performance/2025/03/30/illustrated-megatron.html

Implementing TP

78

The Problem with TP

Too many network connections: 4 all-reduces per block

All-reduce is very expensive across Node boundaries

79

80

81

82

8 Nvidia H100 PCie devices connected into a node

83

84

Nvidia DGX A100 “node”

85

8 A100’s slotted onto a DGX Base

86

87

88

89

Now what?

All-reduce within a single node is very fast,

But the moment you have to go to multiple Nodes, > 8 gpus, hit is going to be very
high..

What can you do about this?

90

● Very costly over multiple
nodes

● Best Compute balanceTP

● Too much wasted compute in
terms of bubbles

● Simple Network
communicationPP

● Does not scale too much
● Can’t use if model is too big● Easy to implementDDP

3 techniques compared

91

3D Parallelism: d-t-p

92

I1

I2

Stage 1 Stage 2 Stage 3 Stage 4

Stage 1 Stage 2 Stage 3 Stage 4

93

3d-parallelism

Tries to use best of all 3 techniques

Optimal schedule, it d-p-t depends on a lot of factors:

1. Model size
2. Data size
3. Number of gpus
4. GPU networking interconnects
5. Task-characteristics: inference vs training
6. etc

94

FSDP: Fully sharded Data Parallel

95

96

97

Implementing FSDP

98

Challenges

Computation-communication overlap

Network speeds dominate computation speeds: leading to around 50% wasted
compute on large clusters

Designing large clusters of gpus to manage communications

Congestion control due to bursty nature of training communication

99

Some Prior Art

100

Pipeline Parallelism advancements - GPipe

https://www.cs.toronto.edu/~cmaddis/courses/csc2541_w25/presentations/ptd-p.pdf

GPipe

101

Pipeline Parallelism advancements - PipeDream

https://www.cs.toronto.edu/~cmaddis/courses/csc2541_w25/presentations/ptd-p.pdf 102

Chimera https://dl.acm.org/doi/10.1145/3458817.3476145

103

IBM’s Compute Setup - Vela (ASPLOS’25)

104https://dl.acm.org/doi/10.1145/3676641.3716280

Vela

105

Alibaba HPN (SIGCOMM ‘24)

106

SuperBench (Microsoft), ATC’24

107

Astral (Tencent) (SIGCOMM ‘25)

108https://dl.acm.org/doi/pdf/10.1145/3718958.3750521

Recap

109

-> How multiple GPUs are used in concert

-> What are the challenges, research areas?

Distributed Training Algorithms vs Systems

+ Data Parallelism (DDP)
+ Tensor Parallelism (TP)
+ Pipeline Parallelism (PP)

+ Full Sharded Data Parallelism (FSDP)
+ With variants - like Full/Hybrid Shard

+ 3D parallelism
+ Context/Sequence Parallelism
+ Expert Parallelism (EP)

+ Pytorch in-built DDP
+ Hugging Face Accelerate
+ Nvidia Megatron
+ Pytorch in-built FSDP
+ Microsoft DeepSpeed ZeRO

family

110

111

Math

Mechanics

Systems

 1 - LLM Core 2 - Pytorch/GPUS

 3 - Inference 4 - Dist. Training

