Y ELECTRONICS &
INDIA-AL IMPACT SUMMIT 2026 (&) INFORMATION TECHNOLOGY IN’MI

wrn o GOVERNMENT OF INDIA

Workshop on Systems for LLMs

Systems for Large Language Models (LLMs) Workshop with Hands-On
Exploring the Infrastructure Behind Intelligent Systems

Sessions Overview: Details

LLM building blocks Date: 61,7t September
GPUs for LLM Time: 9:30 am-5pm
Inference serving with yLLM Register @

Distributed Training https://forms.gle/a8rQQ835j)G42i3eA
Tools: Hugging Face, PyTorch

Supported by: IBM-IITB Academic Research Partnership

IIT Bombay

Distributed Training

Recap: The Train Loop

For e in epochs:
For b in batches:
loss = model.forward(b)
loss.backward()

optimizer.step()

GPU Resources

+ Compute
+ The number of SMs in the GPU, eg. 128 SMs on an A100
+ Capacity of the GPU, totally represented as TFLOPs
+ Memory
+ HBM capacity: eg. 80 GB on an A100
+ To a lesser extent: Caches and per SM local memory capacity

Compute Bound vs Memory Bound

Each Op can be classified into Compute vs Memory

intensive
Performance [GFLOPS] + Eg, MatMul is usually Compute intensive

() + LayerNorm, RELU are Memory Bound

J Bound based on bandwidth/,f
I ‘," Bound based on peak performance
2 -

[]
- : App,
App,
1/2 -
[]

1/4 - AP,

.

T T T T T T T T T T L} T] T 1 1 »~

1/4 1/2 1 2 4 8 16 32 64 128 256 512 Operational Intensity [FLOPS/byte]

Memory requirements for training

Simple envelope calculation: assuming 8B model in fp32 datatype with AdamW
optimizer

Model weights: 8B * 4 bytes per param = ~30GB
Gradients: 4 bytes per param = ~30GB
Optimizer state: 12 bytes per param = ~90GB

+ Activations = f(batch size, seq len)

Flow of memory Model and Optimizer are flat.

B PARAMETER

Max memory allocated: 0.53 GB OPTIMIZER_STATE
Max memory reserved: 0.59 GB B INPUT

| TEMPORARY

I ACTIVATION

Bl GRADIENT

B AUTOGRAD_DETAIL

Forward:
Activations increase

04 ‘ " B Unknown

Backward: .
Activations are freed, ?g
gradients are created -
g 02
LY
= ‘activation':'9.8 GB', (1)
‘ ‘gradients':'1.2 GB', (2)
a v ‘model':'1.2 GB', (3)

‘optimizer':'2.5 GB', (@5)

‘cudamem':"'3.7 GB', (5)

‘cuda_max_mem':'19.0 GB', (6)
1

Optimizer Step:
Gradients are freed.

00

0 50 100 150 200 S0

Time (ms) 7

Memory requirements for training various model sizes

Model

Granite 2b
Llama 8b

Qwen 32B

Weights

7.5 GB
30 GB

120 GB

Gradients

7.5GB

30 GB

120 GB

Optimizer

22 GB
90 GB

360 GB

Sum
(w/o activations)

37 GB
150 GB

600 GB

Memory Availability of commonly used GPUs

Vendor

Nvidia

Nvidia

Nvidia

Nvidia

AMD

Model

A100

V100

A6000

L40s

Radeon RX 7900 XTX

Memory
80 GB
32GB
23 GB
48 GB

24GB

https://www.google.com/search?sca_esv=3481189b07e67a2a&rlz=1C5GCEM_enIN1057IN1057&sxsrf=AE3TifO4XJBAuyqtk2UQWZPb0fX_JNcYfA%3A1756457449538&q=Radeon+RX+7900+XTX&sa=X&ved=2ahUKEwjf397y0a-PAxW_zDgGHeD1Oh4QxccNegQIMBAB&mstk=AUtExfBYmOsHmR8q_Ej70lljZ1Gbxms04_ig0BF8_oUcum8Xjq4uOFWR_MfjOMWOuI4OsC0UWruy0sFIItNjKRo-IHHCUmWeUL7bb8hjf5D3vidqAsANwF935VcGYC1VW6TI6HGotKgNq1jcKGPUU-PShQVTQhlKnNDc-iljZ5fbtbbCLJ1ILGLruMKcJiSXkQJAnv_j9bAjhijMHNV4azaJVT39rXmja1LP-5AzlI-ZQAZ5i7T3jtEf0DuRS7-LuS4g0XZcLYjBN2-5Dxli4qc_uhrj&csui=3

Extras: Impact of Optimizer choice

Instead of using Adam, earlier models used to use SGD optimizer,

Which has: 8 bytes per param

But Adam/AdamW is better from an algorithmic point of view

10

Extras: Impact of MoE

MoE architecture activates a
fewer set of params during
inferences, but the full model
has to be loaded anyway

In case of training, it makes no
difference

.................... .I

Router

B —

11

Other precision Types: half precision

FP32

TF32

BF16

FP16

Sign Exponenlt (Range)

Mantissa (Precision)
|

\ |
8 Bits 23 Bits
L |
|) Y
8 Bits 10 Bits
L J
| |
8 Bits 7 Bits
\) J
|| 1
5 Bits 10 Bits

Image Courtesy of: https://blog.eleuther.ai/transformer-math/

Double precision typically
is 64 bits, ala float and
double.

This is the inverse.

12

TF32

FP32
TF32
FP16
BF16

c Range Precision

= exponent mantissa
e8 m23
SOOI
e8 m10
ST
e5 m10
{1y
e8 m7
8 (I (T T

FP32 FP32
matrix matrix

Format to TF32
and multiply

FP32 accumulate

FP32
Matrix

Figure 7. TensorFloat-32 (TF32) provides the range of FP32 with the precision of FP16 (left). A100 accelerates tensor math with TF32
while supporting FP32 input and output data (right), enabling easy integration into DL and HPC programs and automatic acceleration

of DL frameworks.

13

Hardware support for other precisions

Al00 80GB PCle Al00 80GB SXM

FP64

FP64 Tensor Core
FP32

Tensor Float 32 (TF32)
BFLOATI6 Tensor Core
FP16 Tensor Core

INT8 Tensor Core

GPU Memory

GPU Memory Bandwidth

https://www.nvidia.com/en-us/data-center/a100/

9.7 TFLOPS

19.5 TFLOPS

19.5 TFLOPS

156 TFLOPS | 312 TFLOPS*

312 TFLOPS | 624 TFLOPS*

312 TFLOPS | 624 TFLOPS*

624 TOPS | 1248 TOPS*

80GB HBM2e 80GB HBM2e

1,935 GB/s 2,039 GB/s

14

H100 specs

Technical Specifications

H100 SXM H100 NVL
FP64 34 teraFLOPS 30 teraFLOPS
FP64 Tensor Core 67 teraFLOPS 60 teraFLOPS
FP32 67 teraFLOPS 60 teraFLOPS
TF32 Tensor Core* 989 teraFLOPS 835 teraFLOPS
BFLOAT16 Tensor Core* 1,979 teraFLOPS 1,671 teraFLOPS
FP16 Tensor Core* 1,979 teraFLOPS 1,671 teraFLOPS

FP8 Tensor Core*

INT8 Tensor Core*

GPU Memory

GPU Memory Bandwidth

3,958 teraFLOPS
3,958 TOPS
80GB

3.35TB/s

3,341 teraFLOPS
3,341 TOPS
94GB

3.9TB/s

15

1 SM in the A100

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

LD/ LD/
ST ST

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

TENSOR CORE

LD/ LD/
ST ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64
FP32FP32 FPea
FP32FP32 FPe4

FP32 FP32 FP64

L1 Instruction Cache

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

TENSOR CORE

FP32 FP32 FPe4
FPa2FP32 FPes
FP32 FP32 FPe4
FP32 FP32 Fpe4

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64

FP32 FP32 FP64

FP32 FP32 FP64

FP32 FP32 FP64

INT32 INT32
INT32 INT32
INT32 INT32
INT32 INT32

LD/ LD/
SFU ST ST

INT32 INT32
INT32 INT32
INT32 INT32

INT32 INT32

TENSOR CORE

FP32 FP32 FPe4

FP32 FP32 FP64

FP32 FP32 Fpe4

FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/
S & |l S|l S | S | S

INT32 INT32
INT32 INT32
INT32 INT32
INT32 INT32

LD/ LD/
SFU ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)
FP32FP32 FP64
FP32[FP32 FPe4

FP32FP32 FPe4

FP32FP32 Fpe4

TENSOR CORE

FP32FP32 Fpe4
FP32FP32 Fpes
FP32FP32 FPos
FP32FP32 Fpe4

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64
FP32FP32 FPe4
FP32 FP32 FP64

FP32 FP32 Fpe4

TENSOR CORE

FP32 FP32 FP64

FP32FP32 FPea

FP32 FP32 FP64

FP32 FP32 Fpe4

LD/ LD/ LD/ LD/ LD/ LD/
g | @ || @ | & |l S | S

192KB L1 Data Cache / Shared Memory

Tex

Tex

16

Automatic Mixed Precision

Model weights: half - 16 bits
Gradients: half - 16 bits
Optimizer: full - 32 bits (4 bytes) * 12

Actually faster to run and takes lesser memory

17

What more from here?

Fit model within this GPU Throw more resources at this problem
+ Quantization Distributed Training!
+ Sparsity

3~ 3~ v S~
IAR: AllReduce/\\\/&\/ I\\\{}\/ Data Parallel Rank 1 /\\/&\/ /\\\{}\/
Data Parallel Rank 0

Sequence Parallel Rank 0

TP: Tensor Parallelism

LLM Layers 12-15

Dense Matrix Sparse Matrix Sparse-Quantized Matrix

https://arxiv.org/pdf/2407.20018

https://developer.nvidia.com/blog/sparsity-in-int8-training-workflow-and-best-practices-for-tensorrt-acceleration/ 18

Distributed Training Algorithms vs Systems

+ Data Parallelism (DDP)
+ Tensor Parallelism (TP)
+ Pipeline Parallelism (PP)

Pytorch in-built DDP
Hugging Face Accelerate
Nvidia Megatron

Pytorch in-built FSDP

Microsoft DeepSpeed ZeRO
+ Full Sharded Data Parallelism (FSDP) family

+ With variants - like Full/Hybrid Shard

+ + + + +

+ 3D parallelism
+ Context/Sequence Parallelism
+ Expert Parallelism (EP)

19

Basic Tech

Does your model fit into on a single GPU?

1. Yes - we go with DDP.
2. No - consider other options.

Here: model => (model + optimizer + gradients), the remaining goes to activations

21

Limited Scope of Vertical Scaling

48GB

Grad.

Model

BS=64

80 GB

22

DDP: Data Parallelism

Can we have multiple gpus loading the same model and run training on different
subsets of the data?

Act Act Act Act
M M M M
G G G G

“P

How to do simple Horizontal Scaling?

1. Divide your input data
2. Load identical training setup on each GPU - same model, optimizer setup

3. Run forward pass on all gpus:
a. We will have intermediate activations created on each gpu

4. Run backward pass on all gpus:
a. Now each process has its own gradients

5. Run optimizer on all gpus

This is a problem!

25

@ @@ @p @g
I

E E E E Synchronize

DDP Details

We have a single all-reduce of gradients

after the backward pass ()
All processes:

1.

2.

Have their own independent
forward & backward rounds.
But sync gradients: so identical

optimizer rounds \
End of step: all gpus have the

same new updated model M'.
Next step start again. \

= o = K (=)

O SIS IE A

(= o= = Kz
(==& V(z)

27

What does “Synchronize” mean?

It means, we just add up the gradients.

Why does this work?
Gradients are always accumulate-able

Same mechanism is used during Gradient Accumulation.

28

How to synchronize gradients?

Each process has its own gradients: Num params * 2/4.

For a 8B model, this can mean 15-25 GB of data.

Gradients are automatically created by Pytorch during the backward pass - all of
these “tensors” are in GPU memory.

The all-reduce NCCL primitive

29

« - C @ QO B https://developer.nvidia.com/nccl

Documentation Developer Guide GitHub

Watch GTC Webinar

Performance

NCCL conveniently removes the need for developers to

optimize their applications for specific machines. NCCL

provides fast collectives over multiple GPUs both within
and across nodes.

1 GPU multi-GPU, multi-node

Ease of Programming

NCCL uses a simple C API, which can be easily accessed
from a variety of programming languages.NCCL closely
follows the popular collectives API defined by MPI
(Message Passing Interface).

Compatibility
NCCL is compatible with virtually any multi-GPU
parallelization model, such as: single-threaded, multi-
threaded (using one thread per GPU) and multi-process
(MPI combined with multi-threaded operation on GPUs).

30

CCL: honorable mentions

NCCL is not the only CCL.

Communication between CPU cores (if using a CPU only training): Gloo
Other specialized hardware: Google TPU, or Intel XPU etc.

Some research work on optimizing CCLs: eg, UCCL from Berkeley

31

Collective setup - the higher level api

1. Each process can use the CCL functions as needed, using ranks to refer to
others.

2. APl exposed by NCCL to Pytorch to higher layers.
a. At pytorch called “torch.distributed’. Abstracts the underlying CCL lib used.

[Group]

Rank: 0 Rank: 1 OO0 O O Rank: 7

[World size: 8]

P2P communication

[tO,] []

o e

[] [t0,]

{ Rank 1 J Rank 3 J

Point to Point Communication:
Send and recv

https://docs.pytorch.org/tutorials/intermediate/dist_tuto.html

33

Collective Communication

[tO, t1, 12, t3]

[11.] [12,]

[0,]

[£3,]

Scatter

https://docs.pytorch.org/tutorials/intermediate/dist_tuto.html

34

Collective Communication

[tO,] [t1,] [12,] [t3,]
[Rank 0] [Rank 1] [Rank 2] [Rank 3]

[tO, t1, t2, t3]

Gather

https://docs.pytorch.org/tutorials/intermediate/dist_tuto.html

35

Collective Communication

[t0,] [17.] [2,] [t3,]
Rank 0

[T =10+ 1 + {2 + 3]

Reduce

https://docs.pytorch.org/tutorials/intermediate/dist_tuto.html

36

Collective Communication

[tO,] [17] [12.] [t3,]
{ Rank 0 } [Rank 1] [Rank 2 J [Rank 3 }

| Rank 0 } { Rank 1] [Rank 2 } Rank 3
[T =t0+11+2+t3] [T = t0+11+2+t3] [T =t0+11+2+3] [T = tO+11+{2+{3]

All-Reduce

https://docs.pytorch.org/tutorials/intermediate/dist_tuto.html

37

Collective Communication

[tO,] [11,] [t2,] [t3,]
Rank O Rank 1 Rank 2 Rank 3

Rank O { Rank 1] (Rank 2] Rank 3

[t0, 11, 12, t3] [tO, i1, 12, t3] [tO, t1, 2, t3] [tO, 1, t2, t3]

All-gather

https://docs.pytorch.org/tutorials/intermediate/dist_tuto.html

38

How does NCCL work?

1. Network paths:
a. For GPUs on the same node: we have the NVLink.
b. For GPUs across the node: we have NVSwitch and other higher level
switches.
2. Topology management: ring vs tree etc
3. Chunking of tensors -> chunks -> packets for the lower level transport

https://images.nvidia.com/events/sc
15/pdfs/INCCL-Woolley.pdf 40

Hands-on
(CCL primitives: in the toy framework)

How to do a simple hands-on?

We will use a simple Python emulator
where:

1. Each “gpu” process is run as a
thread.

2. CCL is completely simplified into a
single global object with thread
IPC

42

All-reduce test

Core libraries

All programs must be
implemented as

import core ///////////

import ccl

sub-classes of the
core.Runner

class AllReduceExample(core.Runner):

def run(self):

print("Starting Runner: ", self.rank)
res = self.ccl.all_reduce(self.rank, ccl.OP_REDUCE.SUM)
print(f"Result on {self.rank} is: {res}")

core.run_world(4, AllReduceExample)

T

Run 4 threads with our functionality

43

Test the setup

Add random sleep to each process.

Write a program where all even numbered ranks send a random number to the
next process, which will print it out.

44

The Simplified Model (single.py)

import core

m = core.Model(4, 2, 6) ~/"”””///”///’////’//,*

create some samples for input
i, o = core.gen_inp(10, 2)

print("Output from simple single gpu run: ")

x4

L1

out = m.forward(i)
loss = out - o
m.backward(loss)

10 samples of size 2 each

Dummy outputs to
print("Output: ", out) manage loss
print("Loss: ", loss) gradients

m.print_grads()

No optimizer step

45

Look at the Model code in core.py

self.
self.
self.

self.
self.
self.

n = num_layers
in_dim
hidden_dim

in_dim =
hidden_dim
blocks = []
inputs = []
grads = []

def forward(self, x):

Input is of the form: seqlen * in_dim

for i in range(self.n):
self.inputs[i]["a"] = x # save input
X = x @ self.blocks[i]["a"]
self.inputs[i]["b"] = x # save input
X = X @ self.blocks[i]["b"]

return x

46

The backward pass for simple matmul

11 T1.2 w11 W12 W13

X —_— 2 M/ e d ’ ? (1)
To21 T22 W21 W22 W23

Y = XW (2)

_ [T11Ww11 T X1 2W21 T11W12 T T12W22 T1,1W13 + T12W2 3 (3)
T21W1,1 + T2 2W21 T21W12 + T22W22 T2 1W13 1+ T22W23

https://cs231n.stanford.edu/handouts/linear-backprop.pdf

47

Since L is a scalar and Y is a matrix of shape N x M, the gradien

oL
oYy
will be a matrix with the same shape as Y, where each element of g—{; gives the
derivative of the loss L with respect to one element of Y:
OL OL oL
oL _ | Oy11 Oyi2 Oyi,3 (4)
oY — oL oL oL
Oy2,1 Oy2,2 Oyz23
By the chain rule, we know that:
OL OL oY OL 0L Y -
0X Y 09X oW 9y oW
The terms g—}; and g—%

in Equation 5 are Jacobian matrices containing the
partial derivative of each element of Y with respect to each element of the inputs
X and W.

48

oL oL oL oL oL L
OL wy1 + oy, 2wl 2 + Py1.5 W13 By W21 T Py1.2 W2,2 F By, 5 W23

_ oy1,1
- L oL oL dL oL oL
X ya, 1 1+ Oyz.2 2 2 + Oya.3 w1,3 Oya.1 1 1+ Oya,2 wa2,2 + Jy2,3 w2,3
(22)
oL oL oL w11 W21
) o oy, :
= | “&¢’ 5r’ 5L° w12 W22 (23)
Oya 1 Jya,2 Oy2,3 wi1,3 W23
aL
=| =WwT (24)
oY

Using the same strategy of thinking about components one at a time, you
can derive a similarly simple equation to compute 3&, without explicitly forming

oY .
the Jacobian ot

49

def backward(self, loss_grad):
#f single var used to track grad propogation across layers
starts out with the input loss_grad
act_grad = loss_grad

for i in range(self.n-1, 0-1, -1):
self.grads[i]["b"] = self.inputs[i]["b"].T @ act_grad
act_grad = act_grad @ self.blocks[i]["b"].T

self.grads[i]["a"] = self.inputs[i]["a"].T @ act_grad
act_grad = act_grad @ self.blocks[i]["a"].T

50

Activations

- - y

Input
Gradients

Weight
Gradients

Output
Gradients

51

Implementing
DDP

m= ...
T =
class DDPRunner(core.Runner):
def run(self):
i make a local copy of the model
_m = copy.deepcopy(m)

1= ... # get input shard of relevance to us
. i implement forward pass here
loss = out - _o

. i implement backward pass here
. # any final synchronization here
if self.rank == 0O:
global m_final
m_final = _m
core.run_world(2, DDPRunner)
single model processing here
...
m.compare(m_£final)

This test should return true o

Problems with DDP

Can only scale by batch size.

Having too large of a batch
size is bad for the DL learning

Small Optimized High
batch size batch size batch size
\/ ’\:\I\/
Underfitting Ideal Overfitting

Doesn’t work if your model
IS too big to fit on a single

gpu
‘G

https://medium.com/thedeephub/optimizing-neural-network-training-u nderstanding-batch-size-in-higher-dimensions-7687aa350b6?)3

1
1
| I |
! Decoc:ler #12 ! Decoder #12
: :: ,
1 f T TTTTsTmsTmsETmETmTETEEEEEEEE T T T T EEEEIEE T
I I I
I I I
I I I
I I I
I I I e R
1 1 1
| | 1
: Deco:der #3 : Decoder #3
: : e ——————
| 1 1
|
. Decofer #2 | Decoder #2
| ! |
I I |
| | |
! Decolder #1 ! Decoder #1
| | 1
1 1
1 1

Split model vertically Split model horizontally

Pipeline Parallelism

A stage can have multiple
layers/blocks

Decoder #12

Decoder #2

Decoder #1

Split model horizontally

55

Pipeline Parallelism

Fo | Bo | Update
= F | B, | b
/ \ ’ | o \ 0 | pdate
Device 3 F3 > B3 ‘ Fo | 8 B0 Update
$ v ’ F. m ’ B, Update
Device 2 F. - B, ‘ '
t ¢ (b)
Device 1 F, ~ B
} .
Hevics 6 \ PP over 4 devices

F. - B
S / Why is the block for B around double

Gradients the size of F?

(a)

https://gixtools.net/2023/11/mastering-lim-techniques-inference-optimization/

What is needed?

1.
2.

Split up the model - loading only needed layers on each process
Within stages:
a. Run forward/backward normally

At stage boundaries:
a. Use p2p send/recv CCL calls

At end of forward: flow in reverse direction for backward pass
Each optimizer is only focused on it’s section of the model

57

OONEORN

m= ...
L C) B = B
class PPRunner(core.Runner):
def run(self):
make a local copy of the model
_m = copy.deepcopy(m)
. # identify what subset of the model we will use for this rank
. # implement forward pass depending on our rank,
including any sync before and after
loss = out - _o # only on the final rank
. # implement backward pass here, depending on rank
. # any final synchronization here
i# purely test code
global m_final
. ¥ copy gradients of our portion into a single copy
core.run_world(4, DDPRunner)
single model processing here
F .
m.compare(m_£final)
This test should return true

59

Problem with PP

Bubbles

Lot of prior art on bubble management:

Mini/micro batches

Reuse of existing bubbles for secon
Alternative schedules

Fusion (of pipelines)

N~

Fo B. Update

F. B. Update

F. B. Update

Fs Time > B. Update
(b)

Fso | Fa1 | Faz | Faa| Baa | Bsz | Bas | Bao Update

F20 | F21 | F22 | F23 B2s | B2z | Ba1 | Bzo Update

Fio|Fia | Fiz2|Fis| [Bis | Biz | Bu1 | Bio Update

Fos | Fos | Foz | Fos | Bubble } Bos | Boz | Bos | Boo | Update
(c)

60

Can we split up the model in a way that does
not lead to bubbles?

Decoder #12

I
I
I
a
I
i
I
I
I
I
;
I
:
1
I

Decoper#3

|
Decoper#Z

Decober#1
|

Split model vertically

What is the challenge with this?

There is compute balance
between the processes, but
how does this process now
look like?

62

Let’s focus on a single MLP block in 1 Decoder
layer:

Linear layers A and B, say input is X

X = XA
X = GELU(X)

X = XB

X = DROPOUT(X)

63

import numpy as np

np.random.seed(10)

X = np.random.rand(4, 6)
a = np.random.rand(6, 12)
b = np.random.rand(12, 6)
X =X @ a
12
© 12
6 a
X

a

a[0:2] -> along rows
al:, 0:2] -> along
columns

check and verify the
shapes

64

Let’s try one option

One option to parallelize the GEMM is to split the weight
matrix A along its rows and input X along its columns as:

A
X = [X17X2]7 A= [All : (2)
2
6
12
° 12 b

(0

65

Solution

X @ a

x1 = x[:, 0:3]
x2 = x[:, 3:6]
al = a[0:3]

a2 = a[3:6]

(x1@a1) + (x2@a2)

66

How to continue the chain of computation?

X=XA
X = GELU(X)
X =XB How will you partition B?
X = DROPOUT(X)
How will you arrange the

Let’s simplify for the moment and work with: computation so that the 2
Y = XA processes can proceed
Z=YB independently?

Y1 =X1A1,Y2 = X2A2

67

Solution

X @ a

x1 = x[:, 0:3]
x2 = x[:, 3:6]
al = a[0:3]

a2 = a[3:6]

y1 x1@aT

Keep b as it-is

zl =yl @b
z2 = y2 @b
z == z1 + 22

68

Let’s focus on a single MLP block in 1 Decoder
layer:

Linear laters A and B, say inputis X

X = XA
X = GELU(X)

X = XB

X = DROPOUT(X)

69

The problem

So, we can safely synchronize once at the end of the MLP block.

But, this doesn’t work because of GELU:

2
GELUgann(z) = 0.52 (1 + tanh (\ﬁ (z+ 0.044715333)))
v

G(x) + G(y) I= G(x +)

This means we need to synchronize before the GELU is applied...

70

Let’s try another option

(7))

12

Split the a matrix vertically!

0}

71

Solution

y = X @ a

keep x as-is
X

al = a[:,0:6]
a2 = al[:,6:12]
yl = x@al
y2 = x@a2

b[B:6]
b[6:12]

y1@b1
y20@b2

z1l + z2

72

Why does this work?

y1

y2

Each element of y is fully-ready

At this point

73

Final logic for the MLP block - with 1 all-reduce for fwd

——————————————————————————

=X

o T s

haad R ———— g

= XA]

=

=

S ——— i — — — —————————————

~

)|
® | |
= | 1By [2|Z| =
s | O
s I 3
: : = =
| (@)
o || =
® ! -~
(o= i !
e l f—
|
I
I Bl
' —

e e e e e N

74

\\\\\\

)
® 3
=X = X4, 2R 11?1’1‘31

G (I

)

I

| ||

B

'=¢IICQ ALAQ —f&ﬂ{llg=b Y2B; [=
G

g

o etEEnae

(a) MLP

Y = Self-Attention(X)

/ : /" Z=Dropout(YB)
o=@ (8] |9
+BH =®Daa -
L |=r] 2| 2
X|= —
BEESp)
=+Hr#E @=

>

4
><

Q=[Q1.Qs B’
% split attention heads — { K = [K1, Ks) y
- V=W,V
(b) Self-Attention

Figure 3. Blocks of Transformer with Model Parallelism. f and g
are conjugate. f is an identity operator in the forward pass and all
reduce in the backward pass while g is an all reduce in the forward
pass and identity in the backward pass.

Some of the less
intensive layers are
simply duplicated

Even that has been
improved with other
advanced techniques

75

Y

i)

\NV@

0

ﬁ Dropout ;

o e Uasasns—-—-—-—-~ “
(| Linear /m
i 30!
‘[Gelu] B
i f =2q
m, Linear m
- ﬂ! IIIIIIIIIIIIIII i

/V :m<m_,zo3;
(o

_uqonocﬁ g
dii=— Q IIIIIIIIIIIIIII N
¢ [Linear 3 d,m
B i1
| Self = mram
. L Attention]

\ ﬁ LayerNorm g

X

2 All-Reduce
(forward + backward)

2 All-Reduce
(forward + backward)

76

Complexities

Refer to:

https://danielvegamyhre.qithub.io/ml/performance/2025/03/30/illustrated-meqgatron

.html for a fuller explanation of all combinations of TP

77

https://danielvegamyhre.github.io/ml/performance/2025/03/30/illustrated-megatron.html
https://danielvegamyhre.github.io/ml/performance/2025/03/30/illustrated-megatron.html

Implementing TP

The Problem with TP

Too many network connections: 4 all-reduces per block

All-reduce is very expensive across Node boundaries

79

U

Wi

U v
S

©

7

50°80GE

i %
-
g

80

A100

X Interconnection Graphics Video
interface Processing Memory
\/ Unit (GPU) (VRAM)

Network QLT
interface ' Voltage regulator
Data module (VRM)
Processing Motherboard
Unit (DPU) interface

https://blog.paperspace.com/a-complete-anatomy-of-a-graphics-card-case-study-of-the-nvidia-

81

viainu 2

NVIDIA H100 PCle cards

use three NVIDIA®* NVLink® bridges.

In the PCle version each two GPUs

can be connected by NVLINK to each other

https://www.youtube.com/watch?v=5daQpuKOKYU

82

8 Nvidia H100 PCie devices connected into a node

Basic 8 PCle GPU to CPU Block Diagram

PCle Switch
PEX

H100 PCle 1 H100 PCle 5
NVLink NVLink

Bridge Bridge
-
- r—

NVLink NVLink

Bridge Bridge

- PCle x16 « = » CPU Interconnect

Nvidia DGX A100 “node”

85

O
7p)
(O
m
x
o,
A
©
O
-
-
@
O
)
=
O
7))
w
()
o
D wn
<
e0)

6x NVIDIA NVSwitches

4.8 TB/sec of Bi-directional Bandwidth

Mellanox ConnectX-6 VPI
HDR InfiniBand/200 GigE

8x Single-Port ConnectX-6 for Clustering
200 GB/sec of Total Peak Performance

1x Dual-Port ConnectX-6 for
Data/Storage Networking

88

Basic DGX/HGX GPU to CPU Block Diagram

s ok Y NVIDIA DGX/HGX H100 GPU to CPU System Board

Now what?

All-reduce within a single node is very fast,

But the moment you have to go to multiple Nodes, > 8 gpus, hit is going to be very
high..

What can you do about this?

90

3 techniques compared

Easy to implement

Simple Network
communication

Best Compute balance

Does not scale too much
Can't use if model is too big

Too much wasted compute in
terms of bubbles

Very costly over multiple
nodes

91

3D Parallelism: d-t-p

Stage 1 Stage 2

Stage 1 Stage 2

Stage 3 Stage 4
Stage 3 Stage 4

93

3d-parallelism

Tries to use best of all 3 techniques

Optimal schedule, it d-p-t depends on a lot of factors:

Model size

Data size

Number of gpus

GPU networking interconnects
Task-characteristics: inference vs training
etc

2 o

94

FSDP: Fully sharded Data Parallel

FSDP Unit0 ... Forward Backward

~ N 3
r0 : synchronize
) gradients
H rl ; T
5 :] | Exec i gather full free peer
= \ E arams shards
% = : - .
r3 '
A rd '
o
=) I
5 r5 free peer gather full
[70] :
& shards params
_ _J :

Figure 1: FSDP Algorithm Overview

MR RalE s Tizd
weight (4 15 16 1 7 1 bias 13
RSN IO SiN11e gade
e B
e e e S e S e R

FlatParameter SO
""""""""""""""""""""" *. |1 Sharding Group
(2 s N aammm

0 1 7 ' 7 Local Shard
L 0 J & _"7) | [Padding
~ .) . —_— (i) Ranki
B BB B 1 Full Sharding
8 SN0/ \.._____/’,’ (F= 16)

Figure 3: Full Sharding Across 16 GPUs

FlatParameter
R o D R T e e I S B R B e B
___________ S s U S g Ut (U G I e

K ' /1 Sharding Group

[1 l 7 ;E /1 Replication Group
fatias t=77°1 i1 3 Local Shard

s I oy e (i) Ranki

Hybrid Sharding (F = 8)

Figure 4: Hybrid Sharding on 16 GPUs: GPUs are configured
into 2 sharding groups and 8 replication groups

97

Implementing FSDP

Challenges

Computation-communication overlap

Network speeds dominate computation speeds: leading to around 50% wasted
compute on large clusters

Designing large clusters of gpus to manage communications

Congestion control due to bursty nature of training communication

99

Some Prior Art

Pipeline Parallelism advancements - GPipe

Device 1 45678 1|2 |3]|4|5]|6]| 7|8 ERCIRFIEITEIIE

Device 2 6 7 8 AL AEAEAE AEAEA R 9 10111213141516

Device 3 456 78 Yz 5l %1867 9 10111213141516 a

Device 4 'Y 1 |2 |3|a|5|6|7]|8 9 10111213141516nm
Time Devices idle

B Forward Pass [] Backward Pass

GPipe

https://www.cs.toronto.edu/~cmaddis/courses/csc2541_ w25/presentations/ptd-p.pdf 101

Pipeline Parallelism advancements - PipeDream

Device 1
Device 2
Device 3
Device 4

https://www.cs.toronto.edu/~cmaddis/courses/csc2541_ w25/presentations/ptd-p.pdf 102

Chimera

https://dl.acm.org/doi/10.1145/3458817.3476145

Table 2: Comparison between different pipeline schemes.

Pipeline Schemes Bubble Ratio Weights Memory Activations Memory Convergence Friendly
PipeDream [38] ~0 Oy [Mp, D * Mp] 1@ [Mg, DxMg] ' &
Asynchronous @
PipeDream-2BW [39] ~0 O 2My Oy [Mag, DxMg] !
GPipe [26] (D-1)/(N+D-1) " My O N*M, Qg
GEMS [28] ~(D-1)/(D+1) e 2My O M, OO
" Synchronous
DAPPLE [16] (D-1)/(N+D-1) W@ My O [Mg, D*Mg] '
Chimera (this work) (D-2)/2N+D-2)) 2Mp O [(D/2+ 1)Mg, D * Mg] '+
flush
3 1
0| 3 il |
2 i 3 |
1 2 | 3

103

IBM’s Compute Setup - Vela (ASPLOS’25)

NETWORK

ToR1 [Tor2| [ToR1 [Tor2| |TOR1| [TOR2
| |

I
1 [
EQ COMPUTE SERVERS %
b =

(o) EJ o
[O_JRACK 1 é b RACK ZEJ [:0 'RACK N;]E

https://dl.acm.org/doi/10.1145/3676641.3716280 104

Vela

304

20

10 +

Measured Aggregate
Bandwidth (GB/s)

—— RoCE
— TCP

8 256512

Array Size (MB)

1000

1600 2000

(a) 1024 GPUs AllReduce performance.

1.00
0.75
0.50
0.25

Normalized
Performance

0.00

IBM Granite-50B

2 o©

(L o) O R 40
DR S PN

Number of GPUs

Time (%)

Breakdown

75 A
50 1
25 1

0_

Il Compute
[Communicate

Figure 1. Training performance of IBM Granite-50B model
on Vela at different scales normalized to ideal throughput.

105

Alibaba HPN (SIGCOMM ‘24)

TAQ_‘\ —NIC-1 —NIC-3 —NIC-5 —NIC-7
e —8 NIC-2 —NIC-4 —NIC-6 —NIC-8
g 2f Traffic-In — Connection | {200 % ~—~ 400¢ g
@ — Traffic-Out 'é E" 300 I
o 1} 100 8 &n 200+
& = =
5 g = 100}
= O .-g
%2 8 12 16 20 24 ¥ 0 50 100
Time (hour) Time (s)
Figure 1: Traditional cloud computing traffic pattern. Figure 2: NIC egress traffic pattern dur-

ing production model training.

106

SuperBench (Microsoft), ATC'24

Cloud Environment Cloud infrastructure environments
can introduce additional incidents, as they differ from vendors’
qualification environments in terms of power, temperature,
and other factors. For example, data centers in tropical ar-
eas experience more incidents due to higher temperatures.
We observed a 35 increase in defective InfiniBand links
with > 10712 bit error rate in data centers in tropical areas
compared to data centers in higher latitudes, leading to sig-
nificantly degraded performance for training and inference.
Another example 1s GPU throttling. Even within the same data
center, different racks or locations within the same rack can
exhibit varying temperatures. However, all GPUs are designed
with identical cooling and heatsinks by vendors, resulting in
GPUs located in warmer locations potentially experiencing
thermal throttling if they cannot receive more cool air.

107

Astral (Tencent) (SIGCOMM 25)

Dieselgen. Solar gen.

==l

Figure 4: Hierarchy of the distributed
HVDC power system.

§22.94
;_,’22.71

>
§22.47
(]
£22.24

.
| F22.01

20
=

20D
=

(a) Traditional airflow

2D
=

https://dl.acm.org/doi/pdf/10.1145/3718958.3750521

622'12

522.09

=

§22.06 QP qr QP
§22.03

F22.01

(b) Optimized airflow

Figure 5: Temperature distribution with air cooling.

108

Recap

-> How multiple GPUs are used in concert

-> \What are the challenges, research areas?

109

Distributed Training Algorithms vs Systems

+ Data Parallelism (DDP)
+ Tensor Parallelism (TP)
+ Pipeline Parallelism (PP)

Pytorch in-built DDP
Hugging Face Accelerate
Nvidia Megatron

Pytorch in-built FSDP

Microsoft DeepSpeed ZeRO
+ Full Sharded Data Parallelism (FSDP) family

+ With variants - like Full/Hybrid Shard

+ + + + +

+ 3D parallelism
+ Context/Sequence Parallelism
+ Expert Parallelism (EP)

110

Systems

3 - Inference

Mechanics

4 - Dist. Training

1 -LLM Core

2 - Pytorch/GPUS

111

