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Inference Systems



What is inference?
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forward vs generate
● Forward: single forward pass 

through LLM

● Generate:

○ Generates multiple tokens, 

until EOS or max tokens 

reached

source : https://arxiv.org/pdf/2408.05499
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What is inference?

● Text generation (LM Head)

● Classification 

● Translation

https://magazine.sebastianraschka.com/p/buildi
ng-a-gpt-style-llm-classifier
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Simplest generate example

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("gpt2")

prompt = "My trip to Yosemite was"
inputs = tokenizer(prompt, return_tensors="pt")

output = model.generate(inputs.input_ids, max_length=100)

generated_text = tokenizer.batch_decode(output, skip_special_tokens=True)
print(generated_text)
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Inference engines
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What are inference engines?

● Wrap systems concepts around the process 

of inference

○ Batching

○ Streaming

○ Fault management

○ Error handling

○ Parallelism (multi-GPUs)

● Optimizations:

○ Memory storage optimizations

○ Offloading

● Most popular open-source is vllm. Others 

include SGLang, NVIDIA’s Tensor-RT LLM 9
https://ranjankumar.in/large-language-models-llms-inference-and-serving/



A Survey on Inference 
Engines for Large 
Language Models: 
Perspectives on 
Optimization and 
Efficiency 
(https://arxiv.org/pdf/25
05.01658)10



Terminology
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Prefill vs decode

● Prefill: input/prompt phase. Generation of the first output token (ingestion of the 

entire input in parallel)

12



Prefill vs decode

● Prefill: input/prompt phase. Generation of the first output token (ingestion of the 

entire input in parallel)

● Decode: output/generation phase. Decoding of subsequent output tokens 

(sequential)
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Decode
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Metrics

● Throughput: Number of Tokens processed per second

● Latency:
○ Time to first token            (prefill time)

○ Time between tokens      (decode time)

Time To First Token
Time Between Tokens
(inter-token latency)
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Let’s write our own generate
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Step-wise plan

1. Create position ids tensor (What is the position ids for this input?)

2. Call forward(inputs, position_ids) (Make sure both are tensors)

3. What is output (logits) shape? We will learn about this later

4. Append output token to the inputs tensor

5. Wrap entire code in a “for” loop (What is the exit condition?)

[1, 2, … n]

Make sure pytorch_model.bin is in the exercises directory 
wget https://huggingface.co/gpt2/resolve/main/pytorch_model.bin
- pytorch_model.bin
- simple
- kvcache

19

First let’s take a look at gpt.py



MAX_SEQ_LEN = 10
config = GPT2Config.from_pretrained('gpt2')
model = GPTLMHead(config)
tokenizer = AutoTokenizer.from_pretrained("gpt2")

def generate(input):
    # Tokenize input
    tokenized = tokenizer.encode(input)
    inputs = torch.tensor(tokenized)

    while ???: # What is exit condition of the loop?
        positions = ??? # Create position ids tensor
        logits = model(???) # Call model.forward with inputs and position ids
        logits = logits[-1, :]
        next_token = torch.argmax(logits, dim=-1, keepdim=True)
        inputs = ??? # Concatenate next_token to inputs for next step here

    output = tokenizer.decode(inputs)
    return output

input = 'The quick brown fox jumped'
output = generate(input)

See the signature of 
GPTLMHead.forward()
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MAX_SEQ_LEN = 10
config = GPT2Config.from_pretrained('openai-community/gpt2-large')
model = GPTLMHead(config)
tokenizer = AutoTokenizer.from_pretrained("gpt2")

def generate(input):
    # Tokenize input
    tokenized = tokenizer.encode(input)
    inputs = torch.tensor(tokenized,)

    while len(inputs[0]) < MAX_SEQ_LEN:
        positions = torch.arange(len(inputs))
        logits = model(inputs, positions)
        logits = logits[-1, :]
        next_token = torch.argmax(logits, dim=-1, keepdim=True)
        inputs = torch.cat((inputs, next_token), dim=0)

    output = tokenizer.decode(inputs.tolist())
    return output

input = 'The quick brown fox jumped'
output = generate(input)
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Core features
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Core features of inference engines

Inference engines such as vllm etc. have certain features/optimizations

We will look at 3 such techniques:

1. KV Caching

2. Continuous Batching

3. Paged Attention
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KV Caching
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Why cache KVs?

What are K and V?

For causal self-attention, K/V of all past tokens is required to calculate 
attention of current token

Problem: It is recalculated again and again for every token

Idea: Generate and cache once, reuse for subsequent tokens
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Recap of 
self attention
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Q.K is a score:
how relevant is a past 
token (through its K 
representation) to the 
current token 
(through its query 
representation)

27

http://q.kt


Finally, each past token (through its Value 
Representation) is multiplied with the score and 
summed up to obtain a new representation of the 
current token
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What does KV recomputation mean?

1. We need the K and V 
of all tokens in the past, 
at every layer
2. This requires 
calculation of b1, b2 etc. 
for all past tokens
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Let’s see the repetition in action

1. GPTAttention has a field self.idx which refers to the layer
2. Now print the shape of the k or v tensor for a particular layer after the first 5 

lines of the attention block before SDPA

torch.Size([12, 5, 64])

Num heads

Head size

30



Let’s see the repetition in action

1. GPTAttention has a field self.idx which refers to the layer
2. Now print the shape of the k or v tensor for a particular layer
3. One dimension grows every iteration - that is the number of tokens
4. Pick a random idx and print keys[a][b][c] (Choose random valid values of a, b, 

c)

torch.Size([12, 5, 64])

class GPTAttention(nn.Module):    
def forward(self, x):

        batch_size, seq_len, _ = x.shape
        q, k, v = …
        queries = …
        keys = …
        values = …

        if self.idx == 0:
            print(keys[7][4][29])

Num heads Head size
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We don’t pass entire 
input for every 
decode run, only the 
last token
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How many KVs are we 
storing?
Num layers x 
Num tokens x
2

Size of K/V?:
Embedding size

What is the 
size of the 
KV cache?
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Let’s implement KV Cache (gpt.py)

1. Create an argument called kv_cache to the forward in all the 
modules calling Attention
a. GPTLMHead, GPTModel, GPTBlock, GPTAttention

Only 12 lines to be added
Only 9 lines to be changed
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Let’s implement KV Cache (gpt.py)

1. Create an argument called kv_cache to the forward in all the 
modules calling Attention
a. GPTLMHead, GPTModel, GPTBlock, GPTAttention

Only 12 lines to be added
Only 9 lines to be changed

class GPTModel(nn.Module):

def forward(self, x, kv_cache=None):

…
class GPTLMHead(nn.Module):

    def forward(self, inputs, position_ids, kv_cache=None):

…
39



Let’s implement KV Cache (gpt.py)

1. Create an argument called kv_cache to the forward in all the 
modules calling Attention
b. In GPTModel, kv_cache should be initialized as [None] x n_layers 

for each block. Now, we’ll pass the kv_cache[i] to each block’s 
forward call

Only 12 lines to be added
Only 9 lines to be changed

40



Let’s implement KV Cache (gpt.py)

1. Create an argument called kv_cache to the forward in all the 
modules calling Attention
b. In GPTModel, kv_cache should be initialized as [None] x n_layers 

for each block. Now, we’ll pass the kv_cache[i] to each block’s 
forward call

Only 12 lines to be added
Only 9 lines to be changed

class CausalModel(nn.Module):

    def forward(self, inputs, position_ids, kv_cache=None):

 if kv_cache is None:

           kv_cache = [None for _ in range(len(self.h))]

 …
 h(x, kv_cache[i]) 41



Let’s implement KV Cache (gpt.py:Attention)

2. Init case (Prefill): 
i. kv_cache is passed as None

ii. Populate it as tuple of (keys, values)

42



Let’s implement KV Cache (gpt.py:Attention)

2. Init case (Prefill): 
i. kv_cache is passed as None

ii. Populate it as tuple of (keys, values)

class GPTAttention(nn.Module):

    def forward(self, kv_cache=None):

  …
 if kv_cache is None:

           kv_cache = (keys, values)

43



Let’s implement KV Cache (gpt.py:Attention)

3. Decode case: kv_cache has the tuple (keys, values) of past values
i. Read past_keys (values) from kv_cache. Print shape

ii. Print shape of current keys
iii. See which dimension to concatenate to create the merged 

keys and values
iv. Continue using the new keys and values tensor

torch.cat((t1, t2), dim)

44

http://torch.cat


Let’s implement KV Cache (gpt.py:Attention)

3. Decode case: kv_cache has the tuple (keys, values) of past values
i. Read past_keys (values) from kv_cache. Print shape

ii. Print shape of current keys
iii. See which dimension to concatenate to create the merged 

keys and values
iv. Continue using the new keys and values tensor

class GPTAttention(nn.Module):

    def forward(self, kv_cache=None):

 if kv_cache is not None:

           past_keys, past_values = kv_cache

 keys = torch.cat((past_keys, keys), dim=2)

torch.cat((t1, t2), dim)

45

http://torch.cat


Let’s implement KV Cache (gpt.py)

4. Return the populated KV cache at all modules:
a. Return kv_cache at GPTAttention
b. Return at GPTBlock
c. Return at GPTModel (remember each layer will return its own 

kv_cache, so this has to be a list)
d. Return at CausalModel back to user

46



Let’s implement KV Cache

5. Changes at generate:
a. Separate the prefill and decode calls. Prefill is once, decode is in a 

loop.
b. Input: We will not pass the entire input to decode, just the output 

token of the last forward.
c. kv_cache output of one call is passed as input to next call
d. Position ids: What was the old position ids? What should the new 

one be?

47
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Attention mask
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Attention mask
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With KV Cache
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Attention mask with KV Caching

6. In attn():

a. “is_causal=True” fills the triangular attention mask by default. We want 

to turn it off for decode

b. How to know whether prefill or decode?

c. If prefill: Use is_causal=True

d. If decode: Use is_causal=False

Use Q.shape and K.shape 

If everything goes right, your output should match the previous output 
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Savings

Run the timed_generate.py in the solutions file (Copy pytorch_model.bin)

You should see benefits of KV Cache for larger number of tokens
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Let’s summarize KV Cache

1. Why do we cache KV?

2. What do we save? Compute or memory?

3. How are prefill and decode phases different?

4. What can we do if we run out of memory?
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Batching

54



Batching

No batching:
● Generate runs 1 request at a time
● GPU not utilized fully

No 
batching
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Batching

No batching:
● Generate runs 1 request at a time
● GPU not utilized fully

Static batching:
● Request level batching:
● Batch a set of requests
● More parallelization

No 
batching

Static 
batching

56



Static batching
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Static Batching

First dimension in inputs is batch size. Previously, we set it to 1.

How to achieve static batching:

1. Batch multiple requests together
2. How to handle different size requests?

What are the 
problems in this 
approach?

Padding

58



Static batching Entire batch waits until T8

Not utilized fullyIterate until the entire batch is over - low util
High latency for finished requests 60



Continuous Batching

Iterative/Continuous1 Batching

● Token level batching
● Replace completed requests with new
● Batch size parameter:

○ Throughput vs latency tradeoff

1. Orca: A Distributed Serving System for Transformer-Based Generative Models NSDI ’22
2. Image source: https://www.redhat.com/en/blog/meet-vllm-faster-more-efficient-llm-inference-and-serving

No 
batching

Static 
batching

Adaptive 
batching

Any problems?

61

https://www.usenix.org/conference/osdi22/presentation/yu


Continuous batching
Next input starts executing 
immediately

63



Let’s summarize batching

1. 2 types of batching
2. What do we gain by batching?
3. What do we lose?

a. Multi-step scheduling

64



Paged Attention
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Memory management of KV Cache

With batching and KV Caching, the KV cache is initialized as a contiguous Tensor 
for the max sequence length supported by the model

For a long context model (8k - 128k tokens), how much memory does this take?

Once upon a time …

How to read …

R1
R2

2048 slots reserved for Request 1

2048 slots reserved for Request 2

66
PagedAttention: https://arxiv.org/pdf/2309.06180



External fragmentation: Free space from 
past requests

Once upon a time … How to read …

4 slots for future 
(reserved) 7 slots reserved2040 slots never used

(internal fragmentation)
External

fragmentation
4 KV cache states 

(token states)

Reserved ones are only going to be used 
later, some other request can use it now

Internal fragmentation is never used, 
so reserved unnecessarily

Actual KV cache 
states stored
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Once upon a time … How to read …

4 slots for future 
(reserved) 7 slots reserved2040 slots never used

(internal fragmentation)
External

fragmentation
4 KV cache states 

(token states)
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Once upon a time … How to read …

4 slots for future 
(reserved) 7 slots reserved2040 slots never used

(internal fragmentation)
External

fragmentation
4 KV cache states 

(token states)
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Once upon a time … How to read …

4 slots for future 
(reserved) 7 slots reserved2040 slots never used

(internal fragmentation)
External

fragmentation
4 KV cache states 

(token states)
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How do they do this? Blocks/Pages

Block - KV Cache data for a few tokens

71
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2 - 4x throughput gains

73https://www.youtube.com/watch?v=5ZlavKF_98U



Decoding strategies
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What is decoding?
What is the output of inference? Not a token!

Logits: A degree of similarity to each token in the vocabulary

In
p

u
t

O
u

tp
u

t

https://pm.dartus.fr/posts/2025/how-llm-generate-text/
76



Decoding Strategies

logits = model(inputs, positions)
print(logits.shape)
logits = logits[-1, :]

Which token to predict as response?

https://huggingface.co/blog/mlabonne/decoding-strategies

How to convert these logits to a token?

[x, 50257]
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Softmax
Logit (similarity score) -> Probability score (that adds up to 1)

This is done via a softmax normalization function which has a “temperature” parameter 
which scales the logits value. 

Makes values more extreme Makes values more centered

More 
deterministic

More creative 
and diverse 78



Greedy search

https://huggingface.co/blog/how-to-generate

Choose word with highest probability 
at every step
Problems:
1. It starts repeating itself after 

some time
2. Misses high prob. words hidden 

behind low prob. words

next_token = torch.argmax(logits, dim=-1, keepdim=True)
79



Beam search

● Takes n top probabilities into account

● Runs n decodes in parallel

● Can still get stuck in a loop

How to avoid repetition -> add 
randomness
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Top-K Sampling

● Randomly pick one of the output tokens

● But this could bias towards the long tail 

of irrelevant options

● Select only top-K of those and normalize 

the probability

● How to decide K?

81



Top-p sampling
K is decided by number of options that add up to a probability p

82



Let’s see effect of temperature

from transformers import pipeline

prompt = "The quick brown fox jumps over the"

generator(prompt, max_new_tokens=20, do_sample=True, temperature=0.7)

generator(prompt, max_new_tokens=20, do_sample=True, temperature=1.5)

generator(prompt, max_new_tokens=20, do_sample=True, 

temperature=0.00001)
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Research survey
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Prefix Caching

If prefix is the SAME for multiple requests, they can share the KV Cache.

Techniques to efficiently match prefix and load its KV Cache

- Hash based

- Radix Tree based

Should be fast and not affect the latency in case of non-match

Where do you think this would be useful?
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KV Cache size reduction

DejaVu

How to reduce KV Cache size: Any ideas?

Sparsification: 

● Not all values are equally important 

- Use attention mask to determine 

which tokens actually “influence” 

others

Sliding window attention:

● Only consider last N tokens

Problem: KV Cache can grow several times 
larger than model size 
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Speculative Decoding (Draft model)
Problem: Auto-regressive nature of generation means only 1 token is decoded in one iteration

Reduce latency without compromising output correctness!

87



Speculative Decoding (Draft model)
Problem: Auto-regressive nature of generation means only 1 token is decoded in one iteration

Reduce latency without compromising output correctness!

https://medium.com/@genai.works/speed-up-llm-inference-with-speculative-decoding-1fc79701e9d6

Small model: 
50 - 200M 
params

Step 1: Draft model quickly generates 4-5 
tokens (auto-regressively)
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Speculative Decoding (Draft model)
Problem: Auto-regressive nature of generation means only 1 token is decoded in one iteration

Reduce latency without compromising output correctness!

https://medium.com/@genai.works/speed-up-llm-inference-with-speculative-decoding-1fc79701e9d6

Small model: 
50 - 200M 
params

Step 1: Draft model quickly generates 4-5 
tokens (auto-regressively)

Step 2: Target model quickly verifies these 
tokens in parallel. Worst case, re-run from 
that point

(Original model)

Once upon a time

in

89



Prefill-Decode Disaggregation

Problem: Prefill is compute intensive, decode is memory intensive

Not optimal to run both with similar parameters / on the same system

Graph from DistServe (OSDI’24)
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Prefill-Decode Disaggregation

Solution: Run them on different machines

Several prior art: DistServe, Llumnix, 
LMCache, DejaVuFigure from DistServe (OSDI’24)

Overlap communication 
with computation
Stream the KV Cache

91


